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In last decade, wide range of active safety system had been installed in modern 
vehicles. Traction control system, auto-braking system, auto wipers and auto 
lighting are great inventions designed to reduce road accidents. Still, statistics 
indicates that accident rate in Malaysia had not been compromise despite 
inclusion of these features. In year 2013, approximately 777,000 registered 
vehicles were involved in road traffic crashes, with damage cost of more than 9.3 
billion Ringgit Malaysia. Automobile network encompasses network between 
road, vehicles and drivers. Road and vehicles had made great progress, 
whereas part concerning drivers had left to be the most delicate of this network.  
 
 
This study encapsulates stress and anger as prime emotion encouraging road 
accident. Electrodermal Activity (EDA) and Electromyography (EMG) of 
corrugator supercilli had been contemplated for neutral, stress and anger 
emotion recognition. Simulated driving task with preset scenario had been 
developed for emotion stimulation. Experimental data were recorded from 20 
healthy subjects. Acquired EDA signals were filtered, Short-Time-Fourier-
Transformed and had mean, median and variance features extracted, on the 
contrary, EMG signals were rectified, filtered and had mean, standard deviation 
and root mean square computed. Recorded EDA and EMG data manifested 
significant difference (p < 0.05) only between neutral-stress and neutral-anger 
emotion groups. Regardless, no significant difference (p > 0.05) was perceived 
between stress-anger groups. 
 
 
Additionally, two-class and multi-class Support Vector Machine (SVM) 
classification accompanied by cross-validation method had been dispatched to 
differentiate subjects’ emotion when performing simulated driving task. Dataset 
from 10 subjects were used for training and another 10 were for testing purpose 
only. Classification accuracy exceeding 80% had been achieved between 
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neutral-stress and neutral-anger groups when incorporating EDA, less than 70% 
accuracy was achieved for separation between stress-anger groups. EMG 
features failed to perform in view of corrugator supercilli may not be compelling 
measure.  
 
 
This study had incorporated new techniques (Short-Time-Fourier-Transform) for 
EDA analysis, apart, it is the one of the pioneer study that utilizes EDA for anger 
emotion recognition, still, classification result acquired is more preferred than 
past literatures. The research can still be extended by refining signal processing 
techniques for better classification accuracy and conducting real-world driving 
experiment for more persuasive result.  
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 
sebagai memenuhi keperluan untuk ijazah Master Sains 

PENGENALAN EMOSI UNTUK PEMANDU AUTOMOTIF MENGGUNAKAN 
KAEDAH PEMANDUAN BERSIMULASI 

Oleh 

JONATHAN OOI SHI KHAI 

Januari 2017 

Pengerusi :  Siti Anom Ahmad, PhD 
Fakulti :    Kejuruteraan 

Selama ini, pelbagai kawalan keselamatan telah dipasang dalam kenderaan. 
Beberapa ciptaan seperti   Sistem Kawalan Cengkaman (Traction Control 
System), automatik brek sistem, automatik pengelap kenderaan, dan automatik 
lampu kereta adalah fungsi yang dicipta untuk membantu mengurangkan kes 
kemalangan. Namun begitu, kadar kemalangan di Malaysia masih dalam statistik 
yang tidak memuaskan . Di tahun 2013, sebanyak 777,000 kenderaan berdaftar 
terlibat dalam  kemalangan terbabas dengan mencatatkan nilai sebanyak 9.3 
billion ringgit malaysia. Automobil telah meluaskan rangkaian keselamatan di 
antara jalanraya, kenderaan dan pemandu. Tetapi tingkah laku masih di 
kategorikan dalam tahap yang merisaukan. 

Dengan ini, tujuan  kajian ini ialah untuk mengesan emosi pemandu dengan 
mengunnakan  "Electrodermal Activity (EDA)”,  dan "Electromyography (EMG)”  
di salah satu bahagian mata iaitu "corrugator supercili"  untuk keadaan neutral, 
tekanan atau marah .  Kajian ini menggunakan simulasi pemanduan untuk tujuan 
merekodkan emosi 20 pemandu. Semua subjek yang digunakan adalah dalam 
keadaan yang sihat. Data yang diperolehi akan ditapis oleh EDA untuk signal,  
"Short -Time -Fourier Transformed (STFT)" dengan min, median dan variance 
akan dikira, dan EMG signal akan diperbetulkan, ditapis,  untuk mencapai min, 
sisihan piawai dan min punca kuasa dua akan dikira. Rekod menunjukkan EDA 
dan EMG memberikan hasil (p<0.05) ialah antara neutral-tekanan  dan neutral-
kemarahan.  Tiada bacaan ketara untuk (p>0.05) dalam kategori tekanan-
kemarahan. 

Sebagai sokongan,  dua kelas dan mutli kelas  Mesin Sokongan Vektor (SVM) 
telah digunakan dalam silangan pengesahan untuk mengesan emosi  pemandu 
dalam simulasi pemanduan. 10 subjek di kaji dalam latihan dan 10 subjek hanya 
dalam tujuan kajian sahaja. Klasifikasi ketepatan  direkod setinggi 80%  untuk 
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kategori  neutral-tekanan dan neutral-kemarahan dalam kombinasi  EDA ,  70%  
ke bawah dalam kategori tekanan-kemarahan. EMG manakala tidak mempunyai 
prestasi yang mengkagumkan dalam kajian ini. 

Kajian ini telah membuktikan teknik baru iaitu STFT dalam EDA analisis, dan 
meneruskan kegunaan EDA untuk mengesan emosi pemandu dengan 
pengiraan teknik yang lebih tepat dalam pemprosesan signal dan klasifikasi di 
samping melancarkan kajian dalam sistem pemanduan nyata untuk ketepatan 
maklumat. 
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CHAPTER 1 

 

INTRODUCTION 

 
This chapter describes importance of emotion study on automotive drivers. 
Despite availability of wide ranges of active safety system, road crash had still 
been a severe issue had to be resolve in any manner, whereby monitoring of 
drivers emotion is suggested in this study. Existing problem for designing a 
reliable in-lab driving simulator and selection of emotion recognition approach 
had been addressed. Aim and scope of work had also been clearly stated. 
 
 
1.1  Background 
 
 
Motor vehicles are a crucial commodity in modern civilization. However, the 
high number of traffic accidents demonstrates grievous social problem. Road 
crash are the eighth leading cause of death globally, and leading cause of 
death for youngsters aged 15 – 29 (World Health Organization, 2013). The 
cause encompasses inferior road condition, lack of adequate law that address 
accident risk factors (speed, drink-driving, seat-belts and child restraints) and 
limitation of active safety systems (World Health Organization, 
2013)(Hachisuka, 2013). 
 
 
Active safety system ranges from active accident avoidance framework, which 
overrides drivers’ control when road crash is likely to occur, for example, 
traction control system - a secondary function of anti-lock breaking system, that 
anticipate loss of grasping force when throttle input and engine torque 
mismatched due to road surface condition, auto-breaking mechanism that 
stops vehicle immediately before front or rear end collision, to passive assisting 
system that assist drivers’ in tasks other than driving, for instance, voice 
command that aids control of in-vehicle information system. These systems are 
sensational creations designed with vase chronicles of algorithmic 
acknowledgement, which are superior to human reaction, presumed to provide 
better driver experience and improve driver-passenger-pedestrian safety 
(Patterson and Adams, 2014)(Oldham, 2014)(Traffic Technology Today, 
2014)(Edgerton, 2013) 
 
 
Still, insights demonstrated that road mishap rate had not been a bargain. 
World Health Organization (WHO) reported there has been no overall reduction 
of fatal road crash comparing year 2009 and 2013, considering increase of 
number of registered vehicles by 15%. Approximately 20-50 million non-fatal 
injuries and 1.24 million fatal accidents occurred on the world’s road annually 
(World Health Organization, 2013)(World Health Organization, 2009). As for 
Malaysia, 777,817 out of 22,702,211 enlisted vehicles were involved in road 
crashes with harm expense of more than 9.3 billion Ringgit Malaysia, which 
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losses emerges from treatment expenditure, decreased productivity of victims 
(MIROS, 2014)(Nurulhuda.J, Ho.J.S, & Jamilah.M.M, 2013). This pricey figure 
ranked Malaysia 46th out of 172 worldwide and 2nd out of 10 Southeast Asia 
countries for fatal accidents (World Health Organization, 2013). Presumed 
fatalities for 2015 and 2020 are 8,060 and 10,716 (Rohayu, Sharifah Allyana, 
Jamilah, & Wong, 2012). Wherefore, it is imperative to re-examine the 
wellspring of mischance and methodology of aversion. 
 
 
Road traffic crashes, which comprise a public health concern is influenced by 
environmental (road and vehicle) and human (drivers) factors (Moriyama, 
2012). On that record, current research focus shall consider monitoring of 
drivers’ emotion, which impacts their driving conduct (Hachisuka, 2013). 
 
 
Emotion is a broad phenomenon and difficult to define, also because there are 
different views of it. Emotion consists of physical and mental sensations 
coupled with thoughts, causing thoughts or themselves can be caused by 
thoughts. This can result in avoidance behavior or approach behavior. 
Avoidance behavior mainly occurs with negative emotions (angry) and 
approach behavior mainly with positive emotions (happy). Emotion is believed 
to coupled with feelings, which explains a person’s internal feelings and 
thoughts, besides, other internal processes or true feelings the person might 
not aware of (C D Katsis, Katertsidis, Ganiatras, & Fotiadis, 2008)(Busso et al., 
2004). Aristotle, the Greek philosopher thought emotion as a stimulus that 
evaluates experience based in potential gain or pleasure, Descartes consider 
emotion mediate between stimulus and response (D. Singh, 2012) while 
physiologist concludes that emotion influences judgment directly by serving as 
experiential and bodily information regarding how one’s feel about the object or 
of judgment (Kamaruddin & Wahab, 2010). 
 
 
Emotion of drivers directly influences their driving behavior, whence, possesses 
close relationship with road safety. Ability to understand and monitor drivers’ 
emotion aids promoting better driving ethics and development of emotion-
based accident prevention system. Past research manifested fatigue / 
drowsiness, anger and stress driving possesses high correlation with road 
crash (Danaf, Abou-Zeid, & Kaysi, 2014)(Yamaguchi, Wakasugi, & Sakakima, 
2006)(G. Yang, Lin, & Bhattacharya, 2005). This research only focuses on only 
stress and anger emotion as drowsy recognition device had been introduced 
(Coxworth, 2011). 
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1.2 Problem statement 
 
 
Monitoring drivers’ emotion during real world driving task requires abundant 
cost, preparation, and approval; therefore, in-lab driving simulator would be an 
effective and efficient manner for this research. There are three essential 
factors while setting up a driving simulator, which are the element, scenario 
and environment for emotional data monitoring. 
 
 
Element, which composed of driving unit, visual and audio systems, shall be 
sufficient to simulate real-world driving condition. This is to ensure that it 
successfully stimulate the favored emotions for this study. An ideal set of 
driving unit shall encompass force feedback steering wheel, sensitive break 
and gas pedals, drivers’ seat and high definition visual-audio system. Yet, it is a 
challenge to get synchronizing these elements; besides, enormous amount of 
fund is required (Hachisuka, 2013).  
 
 
Scenario comprise of driving simulator software. The software shall be user 
friendly and allows detailed configuration. Track layout, road width, slippery 
level, weather condition, time of driving, visibility and all details related to 
emotion stimulation shall be interchangeable. This is to ensure accurate 
stimulation of studied emotion. For instance, smooth driving scenario promotes 
neutral emotion while heavy driving aids stimulating stress emotion (R. R. 
Singh, Conjeti, & Banerjee, 2013).  
 
 
Determining environment of simulator is another noteworthy task. Temperature, 
airflow, camera location and noise level of the driving simulator needs detailed 
study and monitoring to preserve emotion’s authenticity (Sebe et al., 2007). On 
the contrary, due to variation in driver’s background, such as nationality, 
gender, driving experience and safety levels, drivers may experience different 
emotion at similar scenario (Jeon, Walker, & Yim, 2014). Accordingly, all 
subjects shall best be from the same or similar ethnicity.  
  
 
Automated visual expression algorithm for emotion recognition had been 
heavily research for past few decades due to advancement of computing field. 
Humans recognize facial expressions virtually without effort or delay; however, 
key challenge in this approach is imaging conditioning. View, position and 
numbers of camera needs to be regulated to acquire optimum scale of image 
(Chibelushi & Bourel, 2003). Environment pattern and illumination such as 
background pattern, occlusion, uncontrolled lighting cause difficulty in face 
tracking and features extraction (Gross, Shi, & Cohn, 2001). Besides, artifacts 
like, glasses, shades and cap may directly affect its performance (C.D. Katsis, 
Goletsis, Rigas, & Fotiadis, 2011). Moreover, it is highly dependent on spatial 
position of face (Busso et al., 2004), people with different cultural and 
economic background tend to have variations in their expression (Bettadapura, 
2012)(Harrigan, Rosenthal, & Scherer, 2008). Consequently, facial expression 
recognition system presence today is still inconsistent, thus, they are still 
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unsuitable to be introduced in the motor vehicle (G. Lee, Kwon, Kavuri Sri, & 
Lee, 2014)(Haidet, Tate, Divirgilio-Thomas, Kolanowski, & Happ, 2009). 
  
 
Speech signal recognition approaches detects user emotion using short-
spoken sentences. Most researchers have used global prosodic features as 
acoustic cues for emotion and, in which utterance-level statistics are 
calculated. Pitch contour and energy in the utterances are features that 
normally analyzed (Busso et al., 2004). Major drawback of this approach is 
unavailability of global-level acoustic feature to describe the dynamic variation 
along an utterance (Busso et al., 2004). This spells out speech recognition 
framework is insufficient to work independently on motor vehicles. 
  
 
Biosignal recognition approach uses physiological signals of users as input. 
Researchers that engineered this approach believes that this is a more natural 
means of affective state recognition, in that the influence of emotion and mood 
on facial expression and speech can be suppressed while these status is 
inherently reflected in the activity of nervous system (D. Singh, 2012). For 
instance, during frightened or stress, we would experience rapid breathing, 
heart races, muscle tenses and palm sweat, while these are bodily changes 
are monitored by central and peripheral nervous system, this may be analyzed 
by psychophysiological measures. (Vehkaoja et al., 2005)(Christos D Katsis, 
Katertsidis, Ganiatsas, Fotiadis, & Member, 2008)(R. R. Singh et al., 2013). 
   
 
The vital challenge of biosignal recognition approach is necessity of electrode 
(Saper, Chou, & Scammell, 2001). EEG required placement of electrodes on 
the scalp to detect brain signal, EMG places electrode on the skin to detect 
muscle activity, ECG places electrode on the chest to detect heart activity while 
EDA places electrode on the palm or other regions of the body to measure the 
skin conductance. Presence of these electrodes limits the inclusion of biosignal 
recognition approach in a motor vehicle. A favorable emotion recognition 
framework shall only assist driving task by preventing road crash while not 
interfere and influence the driver. Hence, electrodes shall be repositioned form 
conventional location (direct placement on driver’s body) to existing parts of 
vehicles, for instance, arm rest, steering wheel and gear shifting stick (Jeong, 
Lee, Park, Ko, & Yoon, 2007)(T. Takahashi et al., 2005). 
 
Therefore, electrode location and accident-induced emotion recognizing 
performance of potential biosignal approaches shall be thoroughly reviewed. 
The most convenient and consistent method shall be employed for this 
research. Moreover, biosignal with least channels, yet possesses comparable 
performance shall be maneuver to reduce processing power and time 
(Tsihrintzis, Virvou, Stathopoulou, & Alepis, 2008).  
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1.3 Objectives 
 

1. To develop an in-lab driving simulator that assists neutral, stress and 
anger emotion stimulation. 

2. To establish statistical significant difference for biosignal measures 
between neutral-stress and neutral-anger emotion groups. 

3. To achieve favorable classification accuracy for differentiating neutral 
from stress and anger emotion during simulated driving task with 
Electrodermal activity (EDA) and Electromyography (EMG) approach. 

 

1.4 Scopes of work 
 
 
This study aimed to recognize neutral, stress and anger emotion of driver when 
performing simulated driving task. An in-lab driving simulator developed with 
Speed Dreams and Logitech G25 racing wheel was incorporated with 
predesigned scenario and experimental procedure intended for stimulating the 
described emotions. EDA and EMG biosignal measures are presumed to 
differentiated stress and anger from neutral emotion of drivers. The recorded 
biosignal were processed offline for artifact removal and feature extraction. 
Statistical analysis was performed using extracted features and presumably 
significant difference (P < 0.05) was achieved between neutral-stress and 
neutral-anger groups. Lastly, a classifier was introduced for emotion 
classification, whereby classification accuracy was expected to exceed 80% 
between neutral-stress and neutral-anger emotion groups.  
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