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Nanofluid is a stable mixture of nanoparticles with less than 100 nm which is dispersed 

into base fluids such as ethylene glycol (EG), water (W) and engine oil with relatively 

low thermal conductivity when compared with metal particles. The suspension of 

nanoparticles into base fluids is introduced as one of the passive methods to enhance 

thermal performance. The engineered coolant namely, the nanofluids are developed by 

various researchers with the aim to meet the challenges of improving the efficiency of

cooling systems and subsequently, reduce the energy waste of the system. 

Consequently, this reduces the costs and emissions of greenhouse gases, which have 

become one of the major tasks for the industry. However, the study of forced 

convection heat transfer in different base mixtures is yet to be compared based on their 

performance under similar operating conditions. Therefore, this study endeavours to 

investigate the properties of Al2O3 (aluminium oxide) nanoparticles dispersed in 

different bases with volume ratios of 40:60, 50:50 and 60:40 (W:EG) and their ability 

in optimizing the performance of heat transfer in forced convection systems in circular 

pipes by simulation due to their properties such as high resistance for corrosion and 

wear with good thermal conductivity.  In this research, the heat transfer performance of 

nanofluids is analyzed through a numerical method using the CFD (computational 

fluids dynamic) software.  Initially, the Al2O3 nanofluids are formulated by the two-

step method for volume concentrations of up to 2.0% at three different volume ratios of 

(W:EG).  The thermo-physical properties of Al2O3 nanofluids namely, the thermal 

conductivity and viscosity are measured using the KD2 Pro thermal analyzer and 

Brookfield LVDV-III Ultra Rheometer respectively for a temperature range of 30 to 70 

°C.  The thermo-physical properties measurement of nanofluids is evaluated as part of 

the input parameters for the simulation work.  The heat transfer coefficient, Nusselt 

number, friction factor and wall shear stress are collected by simulation using the 

realizable (k-ε) method to analyze the effects of volume concentration, working 

temperature and base volume ratio towards the heat transfer performance of Al2O3

nanofluids.  The highest thermal conductivity enhancement of 12.6% were obtained at 

2.0% volume concentration when compared to 50:50 (W:EG) base mixture.  Whereas 

the highest viscosity enhancement of 248.8% were obtained at 2.0% volume 
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concentration and 40:60 (W:EG) base mixture.  The highest enhancement ratio for the 

heat transfer coefficient and the Nusselt number of Al2O3 nanofluids are 76.5% and 

61.6% respectively at 60:40 (W:EG), 2.0% volume concentration and 30 °C.  An 

enhancement ratio of 16.1 times is shown for wall shear stress for Al2O3 nanoparticles 

dispersed in 40:60 (W:EG) at 2.0% volume concentration and 70 °C.  The Al2O3

nanofluids in 60:40 (W:EG) base fluid with 2.0% volume concentration have lower 

wall shear stress and higher heat transfer coefficient enhancement compared to 50:50 

and 40:60 (W:EG) base nanofluids. Hence, it is recommended for various applications 

in the engineering field.  
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk Ijazah Sarjana Sains

PRESTASI ALIRAN PEMINDAHAN HABA NANOBENDALIR ALUMINIUM 
OKSIDA DALAM TIUB BULAT 

Oleh 

CHIAM HUEY WEN 

Januari 2017 

Pengerusi : Profesor Madya Nor Mariah bt. Adam, PhD, Ir. 
Fakulti : Kejuruteraan  

Bendalir nano ialah satu campuran stabil yang mengandungi nanopartikel bersaiz 

daripada 100 nm yang diserakkan ke dalam bendalir asas seperti etilena glikol (EG), air 

(W) dan minyak enjin.  Pendingin seperti bendalir nano dibangunkan oleh ramai 

pengkaji dengan sasaran untuk memenuhi cabaran meningkatkan kecekapan sistem 

pendinginan supaya dapat mengurangkan pembaziran tenaga sistem. 

Walaubagaimanapun, kajian pemindahan haba perolakan paksa dalam campuran 

bendalir asas yang berbeza belum dibandingkan berdasarkan prestasi mereka di bawah 

keadaan kendalian yang serupa.  Lantaran itu, kajian ini berusaha menyiasat sifat 

nanopartikel Al2O3 (aluminium oksida) yang disebarkan dalam bendalir asas yang 

berbeza dari segi nisbah isi padunya iaitu, 40:60, 50:50 dan 60:40 (W:EG), dan juga 

kemampuan mereka mengoptimumkan prestasi pemindahan haba dalam sistem 

perolakan paksa menggunakan simulasi.  Dalam penyelidikan ini, prestasi pemindahan 

haba bendalir nano dianalisis melalui satu kaedah berangka yang menggunakan 

perisian dinamik berkomputer (CFD). Pada mulanya, bendalir nano Al2O3 dirumuskan 

menggunakan metode dua langkah untuk tumpuan jumlah sehingga 2.0% pada tiga 

nisbah isipadu berbeza. Sifat-sifat termo-fizikal bendalir nano Al2O3, iaitu 

kekonduksian terma dan kelikatan diukur menggunakan KD2 Pro penganalisis terma 

dan Brookfield LVDV-III Ultra Rheometer untuk julat suhu 30 sehingga 70 °C. Ukuran 

sifat-sifat termo-fizikal bendalir nano dinilaikan sebagai sebahagian daripada parameter

input untuk kerja simulasi menggunakan kaedah “realizable (k-ε)”. Pekali perpindahan 

haba, nombor Nusselt, faktor geseran dan tegasan ricih dinding dihimpun secara 

simulasi untuk menganalisis kesan kepekatan isipadu, suhu kerja dan jumlah nisbah 

asas ke atas prestasi pemindahan haba bendalir nano Al2O3. Peningkatan kekonduksian 

terma yang tertinggi ialah 12.6% dari 2.0% kepekatan isipadu berbanding dengan 50:50 

(W:EG) campuran asas. Manakala peningkatan kelikatan yang tertinggi ialah 248.8% 

dari 2.0% kepekatan isipadu adalah dalam nisbah 40:60 (W:EG) campuran asas. 

Nisbah peningkatan tertinggi bagi pekali perpindahan haba dan nombor Nusselt 

bendaliran nano Al2O3 ialah 76.5% dan 61.6% pada 60:40 (W:EG), 2.0% isipadu 

kepekatan dan 30 °C. Nisbah tambahan 16.1 kali ditunjukkan oleh tegasan ricih 

dinding untuk nanopartikel Al2O3 yang diserakkan dalam 40:60 (W:EG) dalam 2.0% 
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isipadu kepekatan dan 70 °C. Bendalir nano Al2O3 dalam campuran asas dengan nisbah 

60:40 (W:EG) dan 2.0% isipadu kepekatan menunjukkan pengurangan tegasan ricih 

dinding dan peningkatan pekali permindahan haba yang lebih banyak berbanding

dengan 50:50 dan 40:60 (W:EG) nano bendalir asas. Maka, ia disyorkan untuk pelbagai 

kegunaan dalam bidang kejuruteraan. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background study 

Thermal energy is an engineering practice that is concerned with the rate of heat 

transfer either transferring the heat into or out from the system (Y.A Cengel, 2007). A 

deeper understanding on heat transfer mechanisms is required to design a practical 

invention involving heat transfer. Due to the wake of the world oil crisis, its price and 

depletion of resources, fuel consumption need to be reduced. One way to enhance the 

heat dissipation performance system is to develop and help decrease the weight of the 

cooling equipment while reducing the fuel consumption in several systems such as 

radiator (Leong et al., 2010), microelectronic (Daungthongsuk & Wongwises, 2007) 

nuclear reactor (Hadad et al., 2013) and building heating and cooling system (Kulkarni 

et al., 2009). For example, increase the heat flow of microprocessors by using 

nanofluids can reduce the size with more heat transfer rate. The heat exchanger size can 

be reduced when the thermal heat transfer rate increases. Thus the current and 

envisioned application in such miniaturized devices call for nanofluids to remove heat 

as efficiently as possible (Shanthi et al., 2012). For nuclear power industry, by 

increasing the forced convective heat transfer, it is possible to improve 1% efficiency, 

it can reduce 320 billion kWh of electricity of the chiller system in a nuclear system 

(Shinpyo Lee & Choi, 1996). These advanced systems require higher heat fluxes with 

improved energy efficiency and enhanced heat dissipation. Thus, improvement for heat 

transfer efficiency of conservative fluid is obligatory to satisfy the necessities of 

thermal management.    

Water, oil and ethylene glycol are the traditional coolants used as thermal fluid in the 

heat transfer process of a system (Kakac & Pramuanjaroenkij, 2009). However the 

effectiveness of using traditional coolants in heat transfer needs to be enhanced. This is 

due to the low thermal ability of these coolant compared to most of the metals with 

higher thermal conductivity (Ebrahimi et al., 2010). By suspension of the metal 

particles into traditional coolants, it will enhance the efficiency of thermal conductivity; 

bringing greater heat transfer coefficient. The concept of adding micro sized metal 

oxide into the base fluids was introduced by J.C. Maxwell (1881). Numerous 

mechanical experts like Ahuja and Singh (1975) and A.E.  Bergles (1985) evaluated the 

heat transfer performance by suspending micro sized metal particles into traditional 

coolants. Results show that there is enhancements in heat transfer but the metal 

particles have corroded the wall pipe and cause clogging. This required higher pumping 

power and this is costly and not safe (Das et al., 2007).

With the invention of nanoparticles, Choi (1995) suspended the nanoparticles in base 

fluids and named it as nanofluids. Nanofluid is a stable mixture of nanoparticles with 

less than 100 nm dispersed into the base fluids. The engineered coolant, namely, the 

nanofluid is developed by various researchers with the aim to meet the challenges of 

improving the efficiency of the cooling system and subsequently, reduce the energy 
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waste of the system. The result shows that nanofluids enhanced the thermal properties 

and heat transfer rate compared to the traditional coolants. Similar research was done 

by S Lee et al. (1999) and found that the 13 nm aluminum oxide (Al2O3) nanoparticles 

dispersed in water have increased thermal conductivity by 30% compared to water at 

4.3% volume concentration. Various applications use nanofluids such as transportation 

(Singh et al., 2006), cooling electronic component (Jang & Choi, 2006) and solar 

absorption (Otanicar et al., 2010). 

The researchers focused the study by reducing the particle size to nano-size and proved 

its effectiveness in achieving heat transfer enhancements (Xuan & Li, 2000), (Xuan & 

Li, 2003) and (Khaled & Vafai, 2005). Chopkar et al. (2008) observed that, when the 

nanoparticle was dispersed in water and ethylene glycol, the thermal conductivity of 

nanofluid is higher than the base fluid. The solid particles in ultra-fine sizes were able 

to suspend uniformly in the base fluids thus, improving the thermal conductivity of the 

liquid. From the review of Azmi et al. (2016) and Godson et al. (2010), the thermo-

physical properties such as thermal conductivity and dynamic viscosity of nanofluids is 

enhanced compared to traditional coolants.  

A few studies have reported the convective heat transfer of different nanoparticles 

dispersed in conventional fluids such as water, oil and ethylene glycol using 

Computational Fluids Dynamic (CFD). CFD is a method to investigate the fluids flow 

of the system by using numerical and algorithm analysis, which is a standard 

implement to design and analyze the engineering problems involving multiphysics 

phenomena. With the numerical results, the researcher is able to preview the solution of 

the problem, while improving the system before the experimental stage. For example, 

Leong et al. (2010) studied heat transfer performance of copper oxide (CuO) dispersed 

in ethylene glycol flow in flat tubes. The results show that the heat transfer coefficient 

have increased about 14% at 2% volume concentration compared to base fluids. 

Mohanrajhu et al. (2015) also analyzed the heat transfer performance of aluminum 

oxide (Al2O3) nanoparticle dispersed in (40:60) W:EG base mixture flow in flat tubes. 

About 17% increment was found in the heat transfer coefficient at 1% volume fraction. 

Abdolbaqi et al. (2014) evaluated the heat transfer performance of three different 

nanoparticles, which included aluminum oxide (Al2O3), copper oxide (CuO) and 

titanium oxide (TiO2) dispersed in water flow in horizontal ducts. A positive trend was 

observed in heat transfer coefficient when the volume concentration and Reynolds 

number increased.  

Besides the flat tube and horizontal duct, most of the studies used circular pipes to 

analyze the heat transfer performance of nanofluids. A flat tube is a light and compact 

design which can reduce the space usage. It is also less expensive for fabricating (Fraas, 

1989). Round tube provides a very strong joint with the header plates due to the low-

surface-to-volume ratio (Thulukkanam, 2013). From the review, the heat transfer 

coefficient of a flat tube is higher than a round tube. From the research of Adnan M 

Hussein, K V Sharma, et al. (2013), they found that the heat transfer coefficient of 

titanium oxide (TiO2) in flat tubes is higher than circular tubes. This result is agreed by 

the researcher that compared the heat transfer coefficient of the flat tube with circular 

tube (Adnan M. Hussein et al., 2013; Mohanrajhu et al., 2015).  When compared to the 

pressure drop, Mohanrajhu et al. (2015) found that the pressure drop of the flat tube is 
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much higher compared to the circular tube when Al2O3 (aluminum oxide) nanoparticles 

are dispersed in 40:60 (W:EG) base fluid. While from the research of  Safikhani and 

Abbassi (2014),  the heat transfer coefficient and wall shear stress increased when the 

flattening increased at aluminum oxide (Al2O3) nanoparticle dispersed in water in 

mixture phase with laminar flow. A similar result from Zhao et al. (2016) showed that 

the heat transfer coefficient and pressure loss have a significant enhancement when the 

tube flattening is decreased, when aluminum oxide (Al2O3) nanoparticles are dispersed 

in water with laminar flow. 

Hence, to analyze the fundamental of heat transfer performance of nanofluids that 

suitable in most of the application, the circular tube is more suitable in this research. 

This is because the circular cross section can withstand large pressure difference 

between the inside and the outside of the pipe without undergoing significant distortion. 

Meanwhile the non-circular pipes are usually applied in the heating and cooling system 

of buildings as the pressure is relatively small (Yunus A Cengel, 2010). For example, 

Lotfi et al., (2010) analyzed the heat transfer performance of iron oxide (Fe2O3)

nanoparticles dispersed in water and found that the mean heat transfer coefficient is 

about 29% higher compared to the base fluid at 0.6% volume concentration at 20,000 

Reynolds number. Youssef et al., (2014) evaluated the heat transfer performance of 

aluminum oxide (Al2O3) nanoparticles dispersed in water and found that the average 

heat transfer coefficient increases when the volume concentration increase. Naik et al., 

(2013) had analyzed the heat transfer performance of copper oxide (CuO) dispersed in 

(70:30) water–propylene glycol mixture base fluids and found that the heat transfer 

coefficient increases when the volume concentration is increased. However, there are 

limited studies on the heat transfer performance of nanoparticles dispersed in water-

ethylene glycol mixture base fluid. Therefore, a research has to be conducted to fullfil 

the scope of the thesis. Varied volume concentrations in several flow regions was 

conducted to analyze and study the aptitude and ability of the nanofluids as a new class 

of thermal fluid. 

1.2 Problem Statement

Energy efficiency has been implemented in many countries worldwide in order to 

reduce energy consumption, consequently reducing the cost and the emissions of 

greenhouse gasses which have become one of the major tasks for the industry. Some 

process is even affected qualitatively by the actions of enhanced heat transfer. In 

Malaysia, energy efficient products can be applied in many electric appliances such as 

refrigerants, air conditioners, lightings and televisions with the regulation being 

governed by the Malaysian Energy Commissioner. Parallel with the technological 

development in recent years and advanced research approaches, the efficiency of 

energy consumption has been improved in building systems, automotive systems, 

industrial process heating, cooling systems in petrochemicals, textiles, pulp and paper, 

chemical and other processing plants.

Considering the significance of heat transfer in cooling systems, the traditional fluids 

have been utilized for few centuries to transfer heat out of the system. Hence, 

enhancement in heat transfer coefficient leads to miniaturization of thermal equipment,
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which has become more important. To overcome the current heat dissipation problem, 

two different methods can be used to enhance the ability of the fluids, which are the 

active and passive method. Traditional coolants such as water, ethylene glycol and 

engine oil have relatively low thermal conductivity when compared with metal 

particles. The suspension of nanoparticles into base fluids is introduced as one of the 

passive methods to enhance the thermal performance. The convective heat transfer 

coefficient is strongly affected by the surface of the solid, fluid thermal physical 

properties and the type of flow. Vajjha et al. (2009) found that there is an enhancement 

in thermal conductivity in the range of 40% to 69% for aluminium oxide (Al2O3), 

copper oxide (CuO) and zinc oxide (ZnO) dispersed in 40:60 (W:EG) base mixture. 

Elias et al. (2014) mentioned that a positive trend is observed when nanoparticles are 

suspended in host fluid towards the thermal conductivity and heat transfer performance 

compared to traditional fluids. 

However the long term stability of nanoparticle dispersion, errosion of heat device and 

increase in pressure dop is one of the main concerns of the industries using nanofluid 

coolants (Bhogare and Kotahwale 2013). Aluminium Oxide nanoparticles—with its 

high corrosion, wear resistance and good thermal conductivity that can reduce the 

thermal shock resistance of the nanoparticles—are able to reduce the issues of 

nanofluids (Ramsden, 2000). However, the complication of the particle size, material 

properties and volume concentration on heat transfer coefficient are not completely 

understood. Hence, to investigate the forced convective heat transfer of aluminium 

oxide (Al2O3) nanofluids, the thermo-physical properties has to be evaluated. To 

understand the overall heat transfer performance of nanofluids, the particle properties, 

base fluid properties and the operating condition of nanofluids are evaluated. Limited 

literature is available on the evaluation of forced convection heat transfer using 

nanofluids in water-ethylene glycol based mixtures. 

Manufacturers following American Society Technology and Materials (ASTM) 

International standards (2015) highlighted in ASTM D4985-10 (2015) that the 

percentage of base fluids should be 60:40, 50:50 and 40:60 (W:EG). This is because 

when the ethylene glycol concentration is less than 40%, they will be more prone to 

corrosion protection and freezing as ethylene glycol acts as an anti-freezing agent. 

Meanwhile, if the ethylene glycol concentration is more than 60%, the heat transfer 

performance will decrease due to the high viscosity and reduced freeze protection as 

engine parts could be damaged or not functional in the efficient condition. The ASTM 

is provided in APPENDIX D for further details. For regions with extreme temperature 

conditions, the mixture of ethylene glycol and water is more preferably used as the 

thermal fluid in the heating and cooling systems for buildings and automobile radiators 

(Sundar et al., 2013b). Thus, the heat transfer performance using nanoparticles 

dispersed in 60:40, 50:50 and 40:60 (water-ethylene glycol) is evaluated and compared 

under similar conditions. Therefore, studies of three different ratios of water-ethylene 

glycol based mixtures are essential to understand the actual forced convection heat 

transfer of the nanofluids. The forced convective heat transfer of the nanofluids in three 

different ratios is analyzed for future development of nanofluids in applied engineering 

fields at different working temperatures.
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A numerical method can evaluate the forced convective heat transfer of nanofluids 

while reducing the time consumed and cost. Computational fluid dynamics is a 

software that allows users to predict the impact of fluid flow on the product by 

numerical analysis. By using the algorithm method, the solution of a problem can be 

previewed and helped to improve the future and existing product and experiment 

(Kamyar et al., 2012). With the numerical method, the nanofluids in different 

parameters and conditions can be predicted before the real application. Different base 

fluid ratios, temperatures, volume concentrations and Reynolds number can be 

analyzed. For example, M.S Youssef et al. (2014) that were concerned with the heat 

transfer performance of aluminium oxide (Al2O3) nanoparticles dispersed in water, 

found that the average heat transfer coefficient increases when the volume 

concentration increase. Vincenzo Bianco (2010) found that the heat transfer coefficient 

increased by 5% to 30% when volume concentration increased from 1% to 6% as 

aluminium oxide (Al2O3) nanoparticles is dispersed in water. Bayat and Nikseresht 

(2012) found that the heat transfer coefficient have increased by about 39% compared 

to base fluids when aluminium oxide (Al2O3) nanoparticles are dispersed in 40:60 

(W:EG) base fluids at 6% volume concentration and 100,000 Reynolds number.

Namburu et al. (2009) compared three different nanoparticles dispersed in (40:60) 

W:EG and found that the Nusselt number for copper oxide (CuO), aluminium oxide 

(Al2O3) and silicon oxide (SiO2) increased when the volume concentration increased.

Similar research was done by P. Kumar (2011), Naik et al. (2013), Keshavarz Moraveji 

and Hejazian (2012), P. Kumar and Ganesan (2012) and Hejazian and Moraveji (2013). 

Due to the advanced pace and breadth of the research, a truly comprehensive review for 

nanofluids is probably impossible and certainly far from the scope of this thesis. With 

varying concentrations of nanofluids in different flow regions with the influence of the 

base fluid, different interesting studies can be conducted to know the capability and 

ability of nanofluids as a new class of thermal fluid.

The circular pipe is selected in this research because most of the applications used 

circular pipes as the medium to transfer the coolant in the system. Using circular pipes 

can lower the friction factor and pressure loss in turbulent flow compared to other non-

circular pipes. Several simulations that were studied showed that the flows encountered 

in engineering practices are turbulent (Heyhat et al., 2012; Vincenzo Bianco et al., 

2010). Besides that, turbulent flow will provide an additional mechanism for 

momentum and energy transfer, which will help in transporting the energy much more 

rapidly than molecular diffusion, thus, helping enhance the heat transfer. Hence, a 

single phase with turbulent flow in a circular pipe is analyzed using the CFD software 

for this research by referring to the methods of Abdolbaqi et al. (2014).

However, limited researchers are concerned with the effects of base fluids and 

temperature on heat transfer performance of nanofluids. Therefore, the temperature of 

30, 50 and 70 °C are adopted, with aluminium oxide (Al2O3) nanoparticles dispersed in 

60:40, 50:50 and 40:60 (W:EG) base fluids following the Handbook (2005). The heat 

transfer performance of aluminium oxide (Al2O3) nanofluids with volume 

concentrations in the range of 0 to 2.0% and turbulent flow in a copper circular tube is 

analyzed using the CFD simulation software for realizable (k-ε) method. 
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1.3 Objectives of Study
 

Overall objective is to determine the best performance of aluminum oxide (Al2O3)

nanofluids in circular tubes through simulation. The specific objectives of this research 

are as follows:

i. To formulate aluminum oxide (Al2O3) nanofluids and evaluate the thermo-

physical properties at different ratios of base mixtures and temperatures.

ii. To investigate the forced convection heat transfer for various base mixture 

nanofluids at different working temperatures by simulation.

1.4 Scopes and Limitations of Study

For the main purpose of research, the scopes and limitations are as below:

i. The research is only concerned with the simulation study of heat transfer 

performance of aluminum oxide (Al2O3) nanofluids flow in copper circular tubes 

with turbulence flow. 

ii. Thermo-physical properties measured the thermal experimentally are thermal 

conductivity and dynamic viscosity. Density and specific heat is measured using 

mixture relation equation. 

iii. The measurement of thermal properties of aluminum oxide (Al2O3) nanoparticles 

dispersed in ethylene glycol-water base fluid for volume concentration of 0% to 2% 

was conducted.

iv. The base fluid of 60:40, 50:50 and 40:60 of water-ethylene glycol was prepared 

and the thermo-physical properties were measured in temperature range of 30 to 

70 °C. 

v. The thermo-physical properties of Al2O3 nanofluids result is set as the input of the 

simulation. 

vi. The simulation was conducted in temperature range of 30, 50 and 70 °C. 

vii. The simulation only concerned with the single phase of forced convective heat 

transfer. 

viii. The flow is limited to the turbulence flow regime (3000-30000) with constant heat 

flux (8000 W/m2) flow in a circular pipe. 

ix. The simulation used realizable (k-ε) as the turbulence modelling. 

x. The circular tube is assumed prefect circular cross-section with smooth surface 

throughout the 1.5 m pipe.    

1.5 Significant Of Study

This study brings positive impacts toward the heat transfer performance of the system 

by evaluating the properties of the nanofluids in different ratio of Ethylene glycol and 

water mixture and study the forced convective heat transfer in circular pipes using 
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simulation. Nanofluids can help in reducing heat loss of the system, which will increase 

the efficiency of the system. Besides that, nanofluids are also able to improve the heat 

transfer rate, hence, reducing the physical size and weight of the system. Various 

studies regarding the heat transfer performance of the nanofluids had been done.

However, the influence of the base fluids towards the advance heat transfer has not 

been fully grasped in numerical studies. Before starting the simulation, the thermal 

physical properties of nanofluids in different ratio of base fluids is studied to 

understand the properties in various ranges of temperatures and collected the data as 

the boundary condition in simulation. In applied thermal engineering, the heat transfer 

performance of nanofluids can be analyzed through simulation by measuring the 

related parameters that contributed to the forced convection heat transfer studies. To 

investigate the applicability of the nanofluids, the study covered a wide range of 

Reynolds number and temperature ranges to fulfill the different conditions in the 

engineering application. Additionally, there are no establishing literature studies 

regarding the influence of the ratio of Ethylene glycol and water mixture towards the 

heat transfer performance in simulation. Although the selected base fluid is studied, no 

researcher has compared and studied the effects of the ratio of base fluids. Therefore, 

the study of aluminum oxide (Al2O3) nanoparticle dispersed in 40:60, 50:50 and 60:40 

EG:W base mixture in simulation is an innovative method to achieve better heat 

transfer performance. The study is also concerned with the effect of volume 

concentration and temperature towards the heat transfer performance of the nanofluids 

to select a suitable combination of nanofluids for the operating system.

1.6 Thesis Overview 

First the thesis started with the introduction of the research conducted, which included 

the background of the nanofluids and the Computational Fluids Dynamic software. 

Then the reason and purpose of this research was mentioned in this chapter. Next, the 

chapter discussed about the nanofluids in current heat transfer fields through the 

established literature. Besides that, the previous experimental and numerical studies 

regarding nanofluids were also mentioned to help understand the flow and the trend of 

the heat transfer performance of nanofluids. The following chapter explained the flow 

and the method of preparation of the nanofluids and the measurement of thermal-

physical properties. Then, the simulation process regarding the analysis of the heat 

transfer performance flow in circular pipes using nanofluids was discussed, which 

helps to fulfill the objective of this research. After discussion of the methodology, the 

data was collected and the result and discussion were done in the next chapter. To 

maintain the accuracy of the results, simple validation was done and the results were 

discussed to evaluate the effect of volume concentration, temperature and ratio of 

Ethylene glycol towards the heat transfer performance. Lastly, the thesis ends with the 

conclusions and summary of the frame of the thesis, which has arisen from this entire 

research study and suggestion of future work to improve the current research. 
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