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INTERACTION BETWEEN TWO CRACKS IN CIRCULAR POSITIONS IN
PLANE ELASTICITY

By

RAHIMAH BINTI ABDUL RAFAR

February 2017

Chairman: Nik Mohd Asri bin Nik Long, PhD
Faculty: Science

In this thesis, the interaction between two cracks in circular positions in plane elas-
ticity is formulated into a system of hypersingular integral equations by using the
complex variable function method. The center of the cracks are placed at the edge
of a circle with radius R. The first crack is fixed on the x-axis while the second crack
is located on the boundary of a circle with the varying angle, θ . By using the curved
length coordinate method, the cracks are mapped into a straight line which require
less collocation points, hence give faster convergence. With the help of particular
quadrature rules, the unknown coefficients are solved numerically from the resulting
system of hypersingular integral equations. The obtained unknown coefficients are
then used for determining the stress intensity factor (SIF).

Three different domains for the problems of two cracks in circular positions will be
considered which is the varying angle of positions of the second crack, the length ra-
tio of the second to the first crack, and the length ratio of the first crack to the radius
of a circle. The results for the tested problem presented here agree with the previous
reported results.
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DALAM SATAH KEKENYALAN

Oleh

RAHIMAH BINTI ABDUL RAFAR

Februari 2017

Pengerusi: Nik Mohd Asri bin Nik Long, PhD
Fakulti: Sains

Dalam tesis ini, interaksi antara dua rekahan pada kedudukan membulat dalam sa-
tah kekenyalan dirumuskan kepada sistem persamaan kamiran hipersingular dengan
menggunakan kaedah fungsi pembolehubah kompleks. Pusat rekahan diletakkan di
atas sempadan bulatan yang mempunyai jejari R. Rekahan pertama berada tetap pada
paksi-x manakala rekahan kedua diletakkan di atas sempadan bulatan dengan sudut
θ yang berbeza. Dengan menggunakan kaedah koordinat panjang lengkung, rekahan
dipetakan pada satu garis lurus yang hanya memerlukan titik kolokasi yang sedikit,
dengan itu memberi penumpuan yang lebih cepat. Pekali yang tidak diketahui dis-
elesaikan dengan menggunakan kaedah kuadratur tertentu bagi menyelesaikan per-
samaan kamiran hipersingular secara berangka. Pekali yang terhasil digunakan un-
tuk mengira faktor keamatan tekanan.

Tiga domain yang berbeza bagi masalah dua rekahan pada kedudukan membulat
dipertimbangkan iaitu sudut kedudukan rekahan, nisbah panjang antara rekahan per-
tama dan rekahan kedua, dan nisbah panjang antara rekahan pertama dan jejari bu-
latan. Hasil untuk masalah yang diuji mempunyai persetujuan yang bagus dengan
keputusan lepas.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

The existence of flaws or cracks in a structure usually reduces the structure fatigue
and static strength because the stresses and strains are highly magnified at the crack
tip. To ensure the stress values are never close to the maximum received stress,
large concentrations of stress are avoided and some reasonable securities are taken.
However, the imperfections of material that caused at the production process or the
material usage are inevitable, and hence must be taken into consideration.

Brittle fracture is the study that concerned the failure of a structure made from a
normally ductile material at a load below that required to cause common yielding,
and without obvious plastic deformation (Rolfe and Barsom, 1977). This study has
led to the development of fracture mechanics. Fracture mechanics is the field that
deals with the study of the cracks propagation in materials. The study uses analytical
solid mechanics methods in order to calculate the force that apply on a crack and to
characterize the resistance of materials to fracture.

Predicting the fatigue life of cracked components is one of the most important tasks
in engineering of fracture mechanics. Based on the theories of elasticity, the stress
and strain are applied to the materials in order to predict the mechanical failure of
bodies. The parameters analyzed from linear elastic fracture mechanics can be used
to determine the stress and strain magnification at the crack tip. This parameter
known as the stress intensity factor (SIF), combines applied stress levels, geometry
and crack size in a systematic manner and may be evaluated from the elastic stress
analysis of cracked structures.

Many investigators gave their full attention in evaluating the SIFs in order to solve
the crack problems. For instance, the regularization of the singular integral equation
in a crack problem is an important study in the theory of integral equations and
in the solid mechanics. In the past few years, the hypersingular integral equation
was also used to solve the crack problems, involving the multiple crack problems.
The multiple crack problems become an important topic in fracture mechanis since
there exists the interaction among the cracks. Generally, the difficulty in the solution
technique for this problem must be expected because of the interactions between the
cracks.

An infinite plate crack problems, including the multiple cracks problem can be for-
mulated into the integral equations. For the problems that involve a dislocation dis-
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tribution or a dislocation doublet along a crack path, the integral equation may be
generally expressed as∫

L
K(t, t0) f (t)dt + ...= p(t0) (or p(t0)+ c), (t0 ∈ L), (1.1.1)

where L represents the crack configuration, f (t) denotes the unknown function,
K(t, t0) denotes the kernel, and p(t0) denotes the right hand term in the equation.

There are two possibilities for the choices of right hand term, one is the traction
along the crack and second is the resultant force along the crack. The property of the
kernel K(t, t0) depends on the choice of the functions f (t) and p(t0). Table 1.1 lists
the possibilities of the functions f (t) and p(t0), and the property of K(t, t0).

Table 1.1: The classification of the integral equations.

Type f (t) p(t0) Property of K(t, t0)
WS Dislocations Resultant forces Weakly singular
S1 Dislocations Tractions Cauchy singular
S2 Displacement jump (COD) Resultant forces Cauchy singular
HS Displacement jump (COD) Tractions Hypersingular

In weakly singular (WS) integral equations, the unknown function is the dislocation
distribution, and the right hand term is the resultant force (Cheung and Chen, 1987).
This integral equation is named weakly singular because the kernel is a logarithmic
function, that has the weaker singularity for integration. This type of integral equa-
tion has not received a widespread concern for solving the multiple crack problems.
Even though, the straightforward solution of this integral equation is unknown, but
it can be solved numerically with the boundary element method.

In the first kind of Cauchy singular integral equations (S1), the unknown function is
the dislocation distribution, and the right hand term is traction applied on the crack
face. This integral equation is named S1 because the integral belongs to Cauchy
principal value integral. For second kind Cauchy singular integral equations (S2),
the unknown function is the crack opening displacement (COD) function, and the
right hand term is the resultant force on the crack face. This type of integration is
also a Cauchy principle value integral.

For hypersingular (HS) integral equations, the unknown function is the COD, and
the right hand term is the traction applied on the crack face. This integral equation is
names HS because the equation has a hypersingular kernel. The advantage for using
this type of integral equation is that one can get the COD function directly from the
solution. In general, the integration rule for the hypersingular integral along a curve
crack is quite complicated.

2
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1.2 Motivation

In fracture mechanics, there are several situations which involve complicated ar-
rangement and configuration of cracks that can actually be solved by using suitable
method of analysis. On the other hand, the presence of a crack will affect the sta-
bility and safety of a component and reduce the life of a components or structures
significantly. The stresses in the vicinity of the crack tips governing the failure of
cracked components. The singular stress contribution is defined by the stress inten-
sity factor (SIF) which determined the stability and safety of the component. To this
end, efficient and accurate approaches are required for evaluating the SIFs. Thus, the
focus of this research is to investigate the interaction between two cracks in circular
positions in plane elasticity. The hypersingular integral equation are used to solve
this problem.

1.3 Research questions

In this thesis, we investigate two cracks problems lie on the boundary of a virtual
circle in plane elasticity. The research questions of these problems are:

1. how the mathematical model for the interaction between two cracks in circular
positions can be built?

2. how the hypersingular integral equations can be formulated for the above men-
tioned problems?

3. how the obtained hypersingular integral equations be solved to find the stress
intensity factor (SIF) at the cracks tips?

4. how the two cracks behave as the distance between both cracks are close to-
gether or far apart?

1.4 Objectives

Based on the identified problem, the objectives of this investigation are to:

1. Formulate the mathematical model for the interaction between two cracks in
circular positions.

2. Obtain the hypersingular integral equations for the above mentioned problems.

3
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3. Solve the obtained hypersingular integral equations for the stress intensity fac-
tor (SIF) at the cracks tips.

4. Investigate the behavior of the cracks tips with respect to their positions and
length.

1.5 Outline of thesis

The thesis covers seven chapters. Chapter 1 gives a brief introduction on the re-
search subject. Chapter 2 is dedicated for literature review. Chapter 3 focuses on
the methodology for solving the multiple crack problems. Chapter 4 studies the
interaction between two straight cracks problem in circular positions in plane elas-
ticity. Chapter 5 discusses the curved crack and inclined crack problems in circular
positions. Chapter 6 studies the interaction between curved or inclined crack with
straight crack in circular position. Chapter 7 contains the summary of the study and
the suggestion for the future research.

4
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