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NURUL ASMA BINTI SAMSUDIN 

June 2017 

Chairman: Professor Zulkarnain Zainal, PhD 
Faculty     : Science 

Highly ordered titania nanotubes (TNTs) was used in this study as it known to have a 
remarkable chemical stability and its open ended nanotubes structure offers large surface 
area and good interfacial connectivity with the electrolyte which will enhance the 
capacitive performance. The TNTs were synthesised by electrochemical anodisation 
method in two-electrode cell containing NH4F solution. Parameters affecting the 
morphological and geometrical aspects as well as electrochemical performance of TNTs 
were investigated by varying the electrolyte composition, applied anodisation voltage 
and anodisation time. The formation of TNTs were confirmed by x-ray diffraction 
(XRD) and field emission scanning electron microscopy (FESEM) analyses. Meanwhile 
the electrochemical performance of the TNTs were evaluated in 1.0 M KCl electrolyte 
using cyclic voltammetry (CV) and galvanostatic charge-discharge test in a three 
electrode electrochemical cell system consisted of Pt as counter electrode, Ag/AgCl (3 
M KCl) electrode as reference electrode and TNTs as the working electrode. 

Single phase anatase TNTs were obtained upon calcination at 500 oC for samples 
prepared at all electrolyte compositions. FESEM revealed the nanotubes formed were 
uniform with well defined circular tubes. However, the tubes becomes disordered and 
clustered with irregular shape as the water content increased. All prepared TNTs 
displayed reversible unsymmetrical CV shapes with distorted anodic region and this was 
associated to the non-faradic charge-discharge of the oxide surface. TNTs 5 % exhibits 
highest current which leads to higher capacitance compared to other synthesised 
samples.  

TNTs 5% was further modified by electrochemical reduction to enhance the capacitive 
properties. The applied voltage and reduction time were varied to obtain the optimum 
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condition. Excellent electrochemical performance of modified TNTs 5 % denoted as R-
TNTs was observed with CV curve indicated 18 times higher in specific capacitance
value than unmodified TNTs. Ideal capacitor behaviour and good electrochemical 
stability were observed for sample synthesised at applied voltage of 5 V for 30 s. A high 
average specific capacitance of 11.12 mF cm-2 was also observed from galvanostatic 
charge-discharge analysis. The enhancement of the capacitive performance can be 
attributed to the enhancement in conductivity and electrical performance of the sample 
due to the introduction of oxygen vacancy by conversion of Ti4+ to Ti3+ as revealed by 
X-ray photoelectron spectroscopy (XPS). 

Pulse reverse electrodeposition was applied to deposit Mn2O3 and Co3O4 nanoparticles 
into the R-TNTs to further improve the capacitive performance of the samples. 
Electrodeposition parameter such as deposition potential, duty cycle, deposition time, 
concentration of metal precursor, pH of the metal precursor solution and heating 
temperature were varied to obtain the optimum samples XRD analysis confirmed that 
Mn2O3 and Co3O4 nanoparticles were successfully loaded into the R-TNTs while 
FESEM and TEM images revealed the presence of the nanoparticles along the R-TNTs 
tubes wall. Specific capacitance, as high as 37.00 mF cm-2 obtained for Mn2O3/R-TNTs 
and 16.89 mF cm-2 for Co3O4/R-TNTs due to the contribution of double-layered 
capacitance by the R-TNTs and pseudocapacitance of the metal oxides. The synthesised 
samples displayed a good electrochemical stability as they exhibits more than 85% 
capacitive retention after 1000 charge-discharge cycles. 
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SUPERKAPASITOR 

Oleh

NURUL ASMA BINTI SAMSUDIN 

Jun 2017

Pengerusi: Profesor Zulkarnain Zainal, PhD 
Fakulti    : Sains 

Titania nanotiub yang tersusun rapi (TNTs) telah digunakan dalam kajian ini kerana 
diketahui memiliki ciri yang luar biasa termasuk kestabilan kimia dan struktur 
nanotiubnya yang berhujung terbuka menawarkan permukaan yang luas dan boleh 
menyediakan kesalinghubungan yang lebih baik antara bahan aktif dan elektrolit yang 
akan meningkatkan prestasi kapasitans. TNTs telah disediakan melalui elektrokimia 
penganodan dalam sel dua elektrod yang mengandungi larutan NH4F. Parameter yang 
mempengaruhi morfologi, aspek geometri dan prestasi elektrokimia TNTs telah dikaji 
dengan mengubah komposisi elektrolit, voltan penganodan yang digunakan dan tempoh 
masa penganodan. Pembentukan TNTs telah disahkan dengan analisis pembelauan 
sinar-X (XRD) dan mikroskopi medan pancaran pengimbasan elektron (FESEM). 
Prestasi elektrokimia bagi TNTs telah dinilai menggunakan voltametri berkitar, 
galvanostat cas nyahcas dan spektroskopi elektrokimia impedans dalam sistem sel tiga 
elektrod yang terdiri daripada Pt sebagai elektrod kawalan, Ag/AgCl (3 M KCl) sebagai 
elektrod rujukan dan TNTs sebagai elektrod kerja. Ketiga-tiga analisis dilakukan dalam 
larutan KCl (1.0 M).  

Fasa tungal titania telah diindekskan kepada anatase bagi kesemua sampel yang telah 
dikalsin pada suhu 500 oC. FESEM analisis juga menunjukkan bahawa TNTs 5 % 
menghasilkan tiub yang lebih seragam dan bulat. Namun, bentuk tiub menjadi tidak 
seragam dan berkelompok apabila kandungan air meningkat didalam elektrolit. Semua 
sampel TNTs menunjukkan bentuk CV yang tidak simetri dimana bahagian anod 
terherot yang dikaitkan dengan cas nyahcas tidak faraday oleh permukaan oksida. TNTs 
5 % menghasilkan arus yang paling tinggi yang menghasilkan kapasitans yang lebih 
tinggi berbanding sampel lain.  
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Pengubahsuaian TNTs 5 % bagi meningkatkan prestasi kapasitans sampel tersebut telah 
dilakukan melalui kaedah penurunan elektrokimia. Voltan dan masa penurunan yang 
digunakan telah diubah untuk mendapatkan sampel yang optimum. Prestasi elektrokimia 
yang baik bagi sampel TNTs 5 % yang telah diubah suai (dinamakan sebagai R-TNTs) 
dapat diperhatikan melalui lengkung CV yang menunjukkan 18 kali ganda lebih tinggi
dari segi kapasitans tentu berbanding dengan TNTs yang tidak diubah suai. Ciri kapasitor 
ideal dan kestabilan elektrokimia yang baik diperlihatkan bagi sampel yang disintesis 
pada voltan 5 V selama 30 saat. Kapasitans tentu yang tinggi iaitu 11.12 mF cm-2 juga 
diperlihatkan melalui galvanostat cas nyahcas analisis bagi sampel ini iaitu kira-kira 57 
kali ganda lebih tinggi daripada TNTs yang tidak diubah suai.Peningkatan prestasi 
kapasitans ini dikaitkan dengan peningkatan kekonduksian dan prestasi elektrik sampel 
disebabkan oleh adanya kekosongan oksigen hasil daripada penurunan Ti4+ kepada Ti3+

seperti yang dibuktikan oleh sinar fotoelektron-X spekstroskopi (XPS). 

Pengelektroenapan denyut berbalik telah digunakan untuk pengenapan Mn2O3 dan 
Co3O4 nanopartikel ke atas R-TNTs untuk meningkatkan prestasi kapasitans sampel. 
Pparameter pengelektroenapan seperti keupayaan enapan, kitaran kerja, masa enapan, 
kepekatan elektrolit logam, pH elektrolit logam dan suhu pemanasan telah dipelbagaikan 
untuk mendapat sampel yang optimum. Analisis melalui XRD mengesahkan Mn2O3 dan 
Co3O4 nanopartikel telah berjaya dienap ke atas R-TNTs manakala imej daripada 
FESEM dan TEM membuktikan kehadiran Mn2O3 dan Co3O4 nanopartikel disepanjang 
dinding tiub R-TNTs. Kapasitans tentu setinggi 37.00 mF cm-2 diperolehi oleh Mn2O3/R-
TNTs dan 16.89 mF cm-2 oleh Co3O4/R-TNTs disebabkan oleh kapasitans dua lapisan 
yang dimiliki oleh R-TNTs dan pseudokapasitans dimiliki oleh logam oksida. Kesemua 
sampel yang disintesis memaparkan kestabilan elektrokimia yang baik kerana 
mengekalkan lebih daripada 85 % kapasitans selepas melalui cas nyahcas sehingga 1000 
kali. 
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CHAPTER 1

INTRODUCTION

1.1 General Introduction 
 
In response to the rapid development of the global economy, a fast growing market for 
portable electronic devices, the growing human population and the development of 
hybrid electric vehicles, the global energy consumption is accelerating at an alarming 
rate (Arico et al,. 2005; Chu et al., 2012; Wang, et al., 2012). The increasing of energy 
demand becomes unavoidable based on the current energy consumption rate. Therefore, 
the urge to develop energy storage system with high energy, high power, low-cost, and
environmentally friendly have increased to satisfy the needs of modern society. Among 
various energy conversion and storage devices, supercapacitor, which is also known as 
electrochemical capacitor or ultracapacitor have attracted a great deal of attention from 
both industry and academia due to their unique characteristics that fill the gap between 
batteries and capacitors, by delivering higher power burst than batteries and storing more 
energy than capacitors. The device possesses remarkable characteristics as it is robust in 
withstanding hundred thousand of charging/discharging cycles without degrading. 
Supercapacitor has been undergoing rapid developments since the conception was 
proposed by Conway in the 1970s. The uprising of the researches on supercapacitor have 
given new hope in improvement of power of batteries (Simon et al., 2008) which is 
desperately needed for many application such as cameras, cell phones, hybrid and 
electric vehicles.  

Supercapacitor is characterised as electric double layer capacitors (EDLC) and 
pseudocapacitors. In EDLC, the capacitance of the material comes from the adsorption 
of both anions and cations at the electrode/electrolyte interface. Thus, it is strongly 
dependent on the surface area of the electrode materials that is accessible to the 
electrolyte ions (Huang et al., 2015). In contrast to EDLC, pseudocapacitor stores energy 
through a faradaic process that involves fast and reversible redox reaction occurring at 
or near the electrode surface (Conway et al., 2003).

The field of research and development of supercapacitor is currently focusing finding 
new materials which possess high capacitive performance and at the same time required 
minimal cost for the study. Countless effort have been done towards these criteria 
including mixing the oxides to become binary or ternary oxides, incorporating  metal 
oxide with conducting polymer and compositing metal oxide with carbonaceous 
materials such as activated carbon, carbon nanotubes and graphene. Many attempts also 
have been done in adopting nanostructured materials for the use as supercapacitor. It is 
well noted that nanostructured material attributes high surface area which may contribute 
to higher capacitive performance due to the larger contact area between the 



© C
OPYRIG

HT U
PM

2 

electrode/electrolyte. As reported in many literature, nanostructured materials indeed 
possess high electrical conductivity that makes them as a promising energy storage. 
Therefore, many efforts have been put to develop effective yet practical method 
synthesising the nanostructured oxide and hydroxide in various forms such as 
nanoparticles, nanotubes, nanorod, nanowire, nanosheets and others. Different methods 
have been applied by researchers such as precipitation (Chang et al., 2015; Khalil, 2015),
hydrothermal (Holi et al., 2016; Myahkostupov et al., 2011; Zaman et al., 2012), sol-gel 
(Portet et al., 2004), chemical bath deposition (Li et al., 2011), anodisation (Macak et 
al., 2006; Salari et al., 2011a), electrospinning (Kim et al., 2011), electrochemical 
deposition (Adelkhani et al., 2010; Ali et al., 2015; Kung et al., 2012) and others. 

Ever since Iijima discovered carbon nanotubes, (Iijima, 1991) one-dimensional (1D) 
nanostructured material has been widely explored. Although carbon is still the most 
explored nanotube material with fascinating properties, inorganic nanotubes (especially 
metal oxides or sulphides) are also widely studied to exploit their other material-specific 
properties and potential for biomedical, photochemical, electrical and environmental 
applications. Among all transition-metal oxides, titania is the most extensively studied 
material with more than 40 000 publications over the past 10 years, which makes titania
as the most investigated compounds in materials science. Researchers have developed 
different preparative methods in synthesising 1D titania nanostructured including sol-gel 
method (Lakshmi et al., 1997), template-assisted methods (Motonari et al., 2000; Sander
et al., 2004), hydro/solvothermal method (Kasuga et al., 1999), atomic layer deposition 
(ALD) (Shin et al., 2004) and electrochemical anodisation method. Among various 
method introduced to synthesise titania nanotubes (TNTs), electrochemical anodisation 
method has been the most promising method as it offers suitably back-connected 
nanotubes on the Ti foil substrate which can be used directly as a binder-free 
supercapacitor electrode (Salari et al., 2014). 

However, it has been proclaimed that TNTs electrode suffered a very low specific 
capacitance (less than 1 mF cm-2) which resemble conventional electric double-layer 
capacitor (Salari et al., 2011b) due to poor electrical conductivity (Wu et al., 2014).
Therefore, many attempts have been done to improve the capacitive performance of this 
material by thermal treatment (Lu et al., 2012; Salari et al., 2012), electrochemical 
doping approach (Wu et al., 2014; Zhou et al., 2013) and incorporation with metal oxides 
(Lu et al., 2012; Xie et al., 2009a; Xie et al., 2009b) and conductive polymers (Mujawar
et al., 2011; Xie et al., 2012; Xie et al., 2014).

1.2 Problem Statement 
 
The rapid growth of population and global economy has significantly increase the 
demand for energy consumption. Therefore, the urgency to find an energy storage that 
possess high energy, high power, low cost and environmentally friendly have become 
the 21st century problem. The current energy storage such as batteries can hold a large 
amount of power, however it have low cycle life and charge-discharge characteristics, 
while capacitor can charge almost instantly but suffered with low storage. As for our 
electric power future, we need to store and release large amount of electricity quickly 
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and quite likely supercapacitor possess both good values from batteries and capacitor. 
Supercapacitor is a high-capacity capacitor that attempts to combine the high power 
density of the conventional capacitors with the high energy density of a battery. This 
energy storage device also possess long cycle life and fast charge-discharge capability.
Supercapacitor have attract significant attention mainly due to their numerous potential 
application as energy storage system in different field. The development of 
supercapacitor focuses on enhancing the capacitive performance of the material as well 
as power density, energy density and its life cycle.  

Nanostructured material such as titania nanotubes have gain much attention as they 
possess high surface area which may contribute to higher capacitive performance (Lu et 
al., 2012). Many researcher attempt to synthesis titania nanotubes in a powder form as 
they can easily modified by make it to binary or ternary metal oxide during the initial 
synthesis. Nevertheless, powder based sample is not practical to the industry. They 
needed to be further prepared as an electrode by adding binder and coated to a substrate.  
Therefore, in this study titania nanotubes were synthesised using anodisation method 
whereby the nanotubes were grown directly on the Ti substrate surface which make it as 
a binder less electrode and ready to be use. However, titania nanotubes was reported to 
have very low capacitive value which resemble conventional capacitor (Zhou et al.,
2016). To address this obstacle, many strategies have been done to improve the 
capacitive performance of titania nanotubes such as incorporation of metal oxides (Cui
et al., 2016; Kontos et al., 2009; Xie et al., 2008; Xie et al., 2009b). However, some of 
the strategies requires intensive controlled condition, toxic chemical and long 
preparation time which leads to high cost for a large scale production. Therefore, it is 
crucial to find an alternative method that environmentally friendly, energy efficient and 
low cost. Modification through electrochemical technique is known to have these criteria 
and capable of producing surface of desired characteristics.  

Countless efforts have been done using various electrodeposition method to deposit
metal oxides onto the titania nanotubes. However, due to the overlapping of diffusion 
zones of the active ions during the electrodeposition leading to formation of larger metal 
oxide particle size which end up covering the nanotubes opening. In this work, pulse 
reverse electrodeposition method has been adopted to overcome this problem. In this 
method a series of pulse potential referred to as on-time separated by intervals of zero 
current potential (off-time) are applied which leads to formation of nano or quantum dot 
size particles evenly distributed as a compact crystalline structure. The effect of 
operating parameters of pulse reverse deposition of Mn2O3 and Co3O4 into titania 
nanotubes based on the capacitive performance have been performed. Up to this date 
there is no report on pulse reverse electrodeposition of Mn2O3 and Co3O4 into the 
modified titania nanotubes. Modification on titania nanotubes done in this work may 
provide new pathways in order to enhance the capacitive performance of titania 
nanotubes.  
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1.3 Background of Study 
 
TNTs anodised from pure Ti foil are studied extensively as a potential supercapacitor 
electrode material due to its high surface area, high ion accessibility, controllable tube 
structure and relatively low cost. Moreover, vertically oriented TNTs standing directly 
on the current collector (Ti foil) have the advantages of eliminating contact impedance 
and reducing additional weight arising from the addition of conductive agent and binder. 
However, it was widely reported that TNTs possess a low specific capacitance ~ 50 to 
911 µF cm-2 that impede their application on a large scale due to the poorer 
electrochemical activity and lower electronic conductivity (Huang et al., 2016; Hui et
al., 2013). Although it is a transition metal oxide, TNTs are mostly considered as an 
EDLC capacitor due to its semiconducting nature, which limits the conductivity and 
prevents fast electron transfer. In this study, two major methods were adopted to enhance 
the electrochemical capacitance of the TNTs electrode. The first method was by 
electrochemical reduction of TNTs which demonstrates remarkable capacitance 
improvement of 40 to 60 times higher than the sole TNTs. The second method was by 
constructing hybrid arrays by utilising the unique tubular channels of the TNTs, which 
provide a regular architecture for feasible loading of various electroactive materials (for 
this study are Mn2O3 and Co3O4) (Wu et al., 2014; Zhou et al., 2014). This structure 
promotes the utilisation of these electroactive materials because of available large 
species and effective ion diffusion path for the electrochemical reactions. Prior to the 
modification, a study on influence of anodisation parameters to the morphology and 
architecture of the anodised TNTs was done to find the optimum condition for the 
synthesis of TNTs. Anodisation parameters such as electrolyte composition, anodisation 
voltage and time are varied throughout the study. The overview of the study was 
presented in Figure 1.1. Manganese oxide (Mn2O3) and cobalt oxide (Co3O4) are one of 
the pseudocapacitive materials with a large theoretical specific capacitance ~1300 for 
Mn2O3 and ~3560 F g-1 for Co3O4 (Huang et al., 2015). Nevertheless, both metal oxides 
sustain the relatively low electrical conductivity which leads to the poor specific 
capacitance. One promising way is by incorporating the metal oxides into the electrically 
conductive skeleton to enhance its electrochemical performance. Therefore, in this study 
the TNTs was modified by electrochemical reduction method (sample denoted as R-
TNTs) prior the incorporation with the metal oxides. Pulse reverse electrodeposition was 
used for the electrodeposition of Mn2O3 and Co3O4 onto the R-TNTs as it is considered 
a useful technique for the production of novel electroactive materials as it can tune in the 
electrodeposited material to the desired morphology.  
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Figure 1.1: Overview of the study. 

1.4 Objectives of the Study 

The aim of this study is to prepare highly ordered titania nanotubes thin film and 
incorporate it with metal oxides in order to enhance the specific capacitance of the 
electrode. Several objectives were outlined towards the aim. Experimental works have 
been planned and done appropriately to ensure the smooth conduct towards the 
completion of the study. Therefore, the objectives of the study are as follow:  

1. To synthesise highly ordered titania nanotubes thin film (TNTs) via
electrochemical anodisation of titanium in mixture of ethylene glycol and water
containing NH4F solution.

2. To modify the TNTs thin films via electrochemical cathodic reduction.
3. To synthesise the manganese oxide doped modified titania nanotubes thin films

(Mn2O3/R-TNTs) and cobalt oxide doped modified titania nanotubes thin film
(Co3O4/R-TNTs) via pulse reverse electrodeposition method.

4. To evaluate the surface morphology and chemical states of TNTs, R-TNTs,
Mn2O3/R-TNTs and Co3O4/.R-TNTs.

5. To analyse the specific capacitance, power density and energy density of the
prepared samples from galvanostatic charge-discharge tests.

6. To evaluate the electrochemical stability and coulombic efficiency of the
samples through cycle stability tests.

Preparation And Electrochemical Properties Of Titania Nanotubes 
Incorporated With Mn2O3 and Co3O4 For Supercapacitor Application

Synthesis Of TNTs By Electrochemical Anodisation 
Method

UPModification Titania Nanotubes by Electrochemical Reduction Method

Synthesis of Mn2O3/R-TNTs and Co3O4/R-TNTs by
Pulse Reverse Electrodeposition
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