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February 2017 
 
 

Chairman : Rozita Bt. Omar, PhD 
Faculty : Engineering  
 
 
Sago palm bark (SPB) is lignocellulosic biomass feedstock and a by-product of starch 
industry in Malaysia. The complex structure of lignocellulosic materials makes it 
resistant to enzymatic hydrolysis. Current technologies including physical and 
chemical pretreatment methods result in relatively low sugar yields, severe reaction 
conditions and high processing costs. A green and low energy pretreatment process is 
proposed using microwave irradiation. SPB was subjected to microwave-assisted 
pretreatment to assess the effects of pretreatment using diluted acid and alkaline 
solvents on sago palm bark characteristics and inhibitor formation. The effects of 
microwave-assisted pretreatment parameters (operating conditions) was also 
evaluated on glucose and xylose yield via enzymatic hydrolysis. Additionally, an 
estimation model for glucose and xylose yield from the enzymatic hydrolysis of SPB 
based on microwave-assisted pretreatment conditions was developed.  
 
The microwave-assisted pretreatments utilized three solvents which are 0.1 N H2SO4 

(MSA), 0.1 N NaOH (MSH), and 0.01 N NaHCO3 (MSB). The microwave-assisted 
methods were compared to conventional heating pretreatment. The experimental 
design was done using a response surface methodology (RSM) and Box Bekhen 
Design (BBD) was used to evaluate the main and interaction effects of the 
pretreatment parameters on glucose and xylose yield obtained after the enzymatic 
hydrolysis step. The pretreatment parameters ranged from 5-15% solid loading (SL), 
5-15 minutes of exposure time (ET) and 80-800 W of microwave power (MP). The 
enzymatic hydrolysis was carried out using 24 FPU/g of cellulase, 2 UN/g of xylanase 
and 50 U/g of β-glucosidase. An estimation model for glucose and xylose yield from 
the enzymatic hydrolysis of SPB was developed by using artificial neural network 
(ANN) and particle swarm optimization (PSO). The above-mentioned artificial 
intelligent systems were combined to form a hybrid PSO–ANN model.  
 
The MSA pretreatment resulted in higher lignin and hemicellulose degradation giving 
more porous structure of SPB compared to microwave-assisted alkaline and 
conventional pretreatments. No degradation products such as furfural, acetic acid and 
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HMF were found in MSA pretreatment liquor. Conversely, conventional pretreatment 
using 0.1 N H2SO4 produced 0.47 mg/ml of acetic acid. After the enzymatic hydrolysis 
steps, it is revealed that the microwave-assisted pretreatment methods resulted in a 
higher sugar yield than conventional pretreatment methods. The results also show that 
the pretreatment parameters played a crucial role in the trend of the glucose and xylose 
yield from enzymatic hydrolysis of SPB. The results of glucose and xylose yield from 
MSA pretreatment and enzymatic hydrolysis of SPB were selected to develop a hybrid 
PSO–ANN model. The hybrid PSO–ANN model showed a higher regression 
coefficient (R2) for the estimation and the experimental values of glucose and xylose 
at 0.9939 and 0.9479, respectively. Meanwhile, R2 values of the RSM model were only 
0.8901 and 0.8439 for glucose and xylose, respectively. 
 
This study concluded that the SPB has the potentials to be developed as future 
fermentable sugars source and the microwave-assisted pretreatment would be a 
possible route to enhance the release of these sugars.  
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PRA-RAWATAN BERBANTU GELOMBANG MIKRO DAN HIDROLISIS 
ENZIMATIC UNTUK PENGELUARAN GULA DARI KULIT  

POKOK SAGU 
 
 

Oleh 
 
 

SALEEM ETHAIB MOHAMMAD 
 

Februari 2017 
 
 

Pengerusi : Rozita Bt. Omar, PhD 
Fakulti : Kejuruteraan 
 
 
Sago kulit sawit (SPB) adalah lignoselulosa bahan mentah biojisim dan hasil 
sampingna industri kanji di Malaysia. Struktur kompleks bahan lignoselulosa 
menjadikannya tahan hidrolisis enzim. Teknologi terkini termasuk kaedah pra-
rawatan fizikal dan kimia menghasilkan produk gula yang rendah, keadaan tindak 
balas yang teruk dan kos pemprosesan yang tinggi. Proses pra-rawatan hijau dan 
bertenaga rendah dicadangkan dengan menggunakan sinaran gelombang mikro. SPB 
dipra-rawat menggunakan gelombang mikro untuk menilai kesannya menggunakan 
asid dan alkali cair kepada ciri SPB dan penghasilan perencat. Kesan pembolehubah 
pra-rawatan berbantu gelombang mikro (keadaan operasi) juga dinilai pada 
penghasilan glukosa dan xilosa setelah melalui proses enzim hidrolisis. Selain itu, 
model anggaran glukosa dan xilosa yang terhasil daripada hidrolisis enzim SPB 
berdasarkan keadaan pra-rawatan yang dibantu oleh gelombang mikro telah 
dibangunkan. 
 
Pra-rawatan gelombang mikro tersebunt menggunakkan tiga pelarut iaitu 0.1 N H2SO4 

(MSA), 0.1 N NaOH (MSH) dan 0.01 N NaHCO3 (MSB). Metod berbantu gelombang 
mikro ini telah dibandingkan dengan pra-rawatan menggunakan pemanasan 
konvensional. Reka bentuk eksperimen telah dibuat menggunakan Metodologi Balas 
Permukaan (RSM) dan Box Bekhen Design (BBD) telah digunakan untuk menilai 
kesan utama dan interaksi parameter pra-rawatan kepada glukosa dan xilosa yang 
terhasil selepas proses hidrolisis enzim. Parameter pra-rawatan adalah antara 5-15% 
muatan pepejal (SL), 5-15 minit masa pendedahan (ET), dan 80-800 W kuasa 
gelombang mikro (MP). Hidrolisis enzim telah dijalankan dengan menggunakan 24 
FPU/g selulase, 2 UN/g xilanase dan 50 U/g β-glukosidase. Model anggaran untuk 
hasil glukosa dan xilosa daripada hidrolisis enzim SPB berdasarkan keadaan pra-
rawatan berbantu gelombang mikro telah dibangunkan dengan menggunakan 
rangkaian neural tiruan (ANN) dan zarah kumpulan pengoptimuman (PSO). Sistem 
kepintaran buatan yang disebut di atas telah digabungkan untuk membentuk satu 
model PSO–ANN hibrid. 
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Pra-rawatan MSA menyebabkan degradasi lignin dan hemiselulosa yang lebih tinggi 
dan mnghasilkan struktur SPB yang lebih poros berbanding pra-rawatan alkali dan 
pra-rawatan secara konvensional. Tiada produk degradasi seperti furfural, asid asetik 
dan HMF ditemui di dalan produk cecair selepas pra-rawatan MSA. Sebaliknya, pra-
rawatan menggunakan kaedah konvensional menghasilkan 0.47 mg/ml asid asetik. 
Selepas langkah hidrolisis enzim, pra-rawatan microwave telah menghasil gula yang 
lebih tinggi berbanding dengan kaedah pra-rawatan secara konvensional. Hasil kajian 
menunjukkan bahawa parameter pra-rawatan memainkan peranan penting dalam tren 
penghasilan glukosa dan xilosa daripada hidrolisis enzim SPB. Keputusan glukosa dan 
hasil xilosa dari pra-rawatan MSA dan hidrolisis enzim SPB telah dipilih untuk 
membangunkan model PSO–ANN hibrid. Model hibrid PSO–ANN menunjukkan 
pekali regresi (R2) yang lebih tinggi bagi nilai anggaran dan eksperimen glukosa dan 
xilosa pada nilai 0.9939 dan 0.9479, masing-masing. Sementara itu, nilai R2 model 
RSM hanya 0.8901 dan 0.8439 untuk glukosa dan xilosa, masing-masing. 
 
Kajian ini menyimpulkan bahawa SPB mempunyai potensi untuk dibangunkan 
sebagai sumber gula untuk difermentasikan pada masa hadapan dan pra-rawatan 
berbantu gelombang mikro adalah satu laluan yang mungkin boleh digunaan untuk 
meningkatkan pembebasan gula ini. 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 

1.1 Background 
 
Worldwide interest in the sustainable production of energy, fuel, pharmaceutical, and 
nutraceutical products has increased for many reasons in recent decades. There is an 
increasing demand for energy, food and materials due to global population growth and 
depleting reservoirs of raw fossil materials; global climate change and dramatic rises 
in food prices have caused worldwide concern about environmental issues and global 
food security. The use of renewable natural products such as lignocellulosic biomass 
as feedstock in the production of chemicals is considered a first step towards 
‘greening’ the life cycle of chemical products. In recent years, efforts have focused on 
designing the products and processes of various industrial applications. These efforts 
attempt to minimize the use and generation of hazardous substances. Researchers 
focus on the use of technological approaches that utilize green chemical 
transformation into value-added derivatives. Thus, the minimal use of auxiliaries and 
minimal energy requirements e.g. diluted solvents and microwave heating applications 
will provide sustainable and feasible routes for the production of commodities 
specifically in biorefinery and nutraceutical industries. 
 
 
Lignocellulosic biomass is the most abundant and widely available biopolymer on 
earth. Lignocellulosic biomass sourced from forestry, agricultural and agro-industrial 
residues has an estimated annual worldwide yield of 100-500 million dry tons, 
accounting for approximately half the total global biomass produced (Ibraheem and 
Ndimba, 2013). Therefore, it provides a unique and sustainable resource for sugar 
platform based chemicals and organic fuels because of its availability in enormous 
quantities at low cost, its richness in lignocellulose and its lack of competition with 
food crops (Sánchez and Cardona, 2008).  
 
 
Sago palm (Metroxylon sagu) is one of the main commodity crops of Malaysia. The 
trunk of this tree is used as a raw material in the sago starch industry; however, more 
than 20,000 tons of the bark is discarded as a by-product per annum (Wahi et al., 
2014). Therefore, a large quantity of stem residue, low-cost feed stock rich in 
lignocellulose could be recycled or reused for example, converted into useful products 
such as food, pharmaceutical products and other chemicals. 
 
 
Lignocellulosic biomass comprises of three major components; cellulose, 
hemicellulose and lignin in addition to other minor components namely ash, pectin, 
protein and extractives. Both cellulose and hemicellulose comprise of polymeric 
sugars which create the potential to release fermentable sugars such as glucose and 
xylose during the hydrolysis stage which in turn, can be utilized in the manufacture of 
other products. Enzymatic hydrolysis is environmentally friendly because it takes 
place under mild processing conditions in comparison to acid or alkaline hydrolysis 
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which requires further detoxification processes to remove the inhibitory effect of sugar 
by-products.   
 
 
The enzymatic hydrolysis of lignocellulosic biomasses requires a pretreatment step 
due to the recalcitrance nature of cellulose, hemicellulose and lignin (Jorgensen et al., 
2007). Hemicellulose fibers act like a glue that fills the voids between and around 
cellulose and hemicellulose fibers. The carbohydrate-rich cellulose and hemicellulose 
are covered by lignin on the outside, this preventing plant cell destruction, acting as a 
protective sheath against hydrolyzing enzymes (De Vries & Visser, 2001). The 
pretreatment of lignocellulose breaks down this recalcitrant by partially changing the 
matrix structure thereby enhancing accessibility to enzymes, releasing the 
corresponding monomers (fermentable sugars) from both cellulose and hemicellulose 
during the enzymatic hydrolysis step.  
 
 
A pretreatment step is a key to the utilization of lignocellulosic materials and one of 
the most important and cost-prohibitive steps in the production of bio-alcohol 
compounds (Jorgensen et al., 2007). Various technologies, including physical and 
chemical pretreatment methods, have been developed for the pretreatment of 
lignocellulosic such as steam explosion (Öhgren et al., 2007), diluted acid (Kshirsagar 
et al., 2015), alkali (Zhang et al., 2011), hydrothermal pretreatments (Min et al., 2015) 
and ammonia fiber/freeze explosion (Moiser, 2005). Most of these pretreatment 
methods involve high processing costs due to harsh operational conditions e.g. high 
pressure and/or temperature. In addition, highly concentrated chemicals such as acids 
are toxic to the enzymes or the fermentative microorganisms, thus requiring an 
additional processing step. Since pretreatment is the first major unit of operation in the 
bioconversion process, it has a direct effect on the cost and efficiency of the steps 
which follow such as enzymatic hydrolysis and fermentation meaning that creating an 
effective pretreatment is extremely important. It should minimize the need to reduce 
the size of the biomass particles, preserve hemicellulose fractions, produce highly 
digestible pretreated substrates, lower or eliminate the generation of degradation 
products and inhibitory toxic substances and decrease energy requirements. Moreover, 
pretreatment agents such as solvents should be low cost and/or easily recycled (Alvira 
et al., 2010). 
 
 
Microwave treatment of waste has gained more acceptance in recent years, thanks to 
the technological advances that make microwaving cheaper than it was 20 years ago. 
The main advantage of microwave heating is the small amount of time needed 
compared to conventional heating; minutes compared to hours. This is because of the 
fundamental difference between microwave and conventional heating in the heat 
transfer mechanism. Conventional heating requires surface heating first before the 
heat can be transferred inwards through conduction, convection or radiation. In 
microwave heating, the microwave energy interacts not only with the surface material 
but also penetrates the surface coming into contact with the core of the material at the 
same time (Muira et al., 2004). Therefore, microwave heating is a viable alternative 
to conventional heating methods having been widely applied in many fields because 
of its high heating rate and easy operation.  
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Microwave-assisted pretreatment utilizes both thermal and non-thermal effects 
generated by an extensive intermolecular collision as a consequence of the 
realignment of polar molecules such as water with microwave oscillations (Ma et al., 
2009). Azuma et al. (1984) and Ooshima et al. (1984) reported that using microwaves 
for the pretreatment of lignocellulosic biomass has a positive effect on cellulosic 
material digestion for downstream processes such as rice straw. Recent studies on 
microwave-assisted pretreatment of different substrates have included wheat straw 
(Saha et al., 2008), rice straw (Zhu et al., 2006), corncob (Boonsombuti et al., 2013) 
and rice hull (Zhau et al., 2010). Although the operating factors of pretreatment such 
as microwave power (MP), exposure time (ET) and solid loading (SL) are varied 
between studies, the general perception is that microwave can disrupt the matrix 
structure of lignocellulose and enhance fermentable sugar release.  
 
 
The utilization of ‘green’ solvents is encompassed by the overall goal to minimize the 
resulting environmental impact from the use of solvents in chemical production. A 
green and low energy pretreatment process can be achieved using microwave 
irradiation and low concentrates of solvents such as dilutions of sulfuric acid, sodium 
hydroxide and sodium bicarbonate. Using lower level of chemicals will make the 
pretreatment process more feasible and correspond with the general requirements for 
effective pretreatment (Jorgensen et al., 2007). Although the use of sodium hydroxide 
as a solvent has been examined by several research groups, there has been no study on 
sodium bicarbonate. Compared with other alkalis, sodium bicarbonate offers 
advantages such as low cost, safe handling and a high dielectric constant which might 
impact positively on microwave pretreatment via high heat generation at low power.  
 
 
Response surface methodology (RSM) is a compilation of mathematical and statistical 
approaches commonly applied to the design of experiments (DOE) when building an 
empirical model for the experimental data obtained in relation to the experimental 
design. This method eliminates weaknesses associated with the classic one-variable-
at-a-time strategy which fails to recognize the interactive effects of different variables 
on any measured response. Response surface experiments therefore attempt to identify 
the output or response of a system as a function of explanatory variables. This 
technique is capable of estimating the linear or square polynomial functions of input 
variables and the output response. Consequently, it is used to explore modeling and 
displacing experimental conditions until they are optimized (Betiku & Taiwo, 2015). 
 
 
An artificial neural network (ANN) is one of the artificial intelligence techniques 
inspired by the structure and/or functional aspect of biological neural networks. 
Recently, ANN models have been employed to solve biotechnological problems 
related to the area of modeling and optimization to increase process efficiency; it can 
be applied as an alternative to polynomial regression-based model as it is suitable for 
modeling complex non-linear relationships (Armaghani et al., 2015). Although ANNs 
have the capacity to tackle complicated, nonlinear relationships between output 
responses and their affecting parameters, limitations do remain. For example, the 
optimal number of neurons in the hidden layer is not clear. It is determined by using a 
trial and error approach or randomly. This procedure may cause over fitting or under 
fitting problems for the ANN model. The number of neurons in hidden layers is 
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critical. A higher number of neurons in a particular hidden layer can cause over fitting 
of the model where, instead of generalization of patterns in the training data set, the 
network memorizes the pattern. If the number of neurons is lesser, it leads to under 
fitting of model and hence more training time is needed to find optimum number of 
neurons (Hussain et al., 1992). Moreover, the optimum value of learning rate is not 
introduced and in fact often selected randomly causing slow performance in the 
intelligent system (Shi & Eberhart, 1998). Accordingly, the utilization of optimization 
algorithms such as particle swarm optimization (PSO) to solve ANN problems. It can 
determine the best number of neurons in the hidden layers, and select the optimum 
value of the learning rate of ANN, which in turn, can significantly improve ANN 
performance (Dezfouli et al., 2015; Gharghan et al., 2016). PSO algorithms represent 
a powerful iterative search algorithm that can be applied to solve ANN problems and 
increase performance. Recently, a number of researchers have confirmed the positive 
usage of hybrid PSO-ANN models to solve engineering issues such as estimating the 
ultimate bearing capacity of rock-socketed piles and to improve the accuracy of 
wireless sensor localization techniques (Gharghan et al., 2016; Armaghani et al., 
2015). Therefore, a combination of these two artificial intelligent systems forming a 
hybrid PSO–ANN model can be used to improve estimations of the sugar yield for 
pretreatment and enzymatic hydrolysis of lignocellosic biomass. 

 
 

1.2 Problem Statement 
 
The utilization of lignocellulosic biomass as a raw material for fuel, food and 
pharmaceutical components industries is a global concern. Investigations include the 
development of feedstock alternatives using lignocellulosic biomass. Sago palms 
barks, a by-product generated by the sago starch industry, may constitute one of these 
alternatives implying that research into the characteristics and potential of SPB is 
essential. 
 
 
Unfortunately, the complex structure of lignocellulosic materials makes it resistant to 
enzymatic hydrolysis. Therefore, the challenge is to produce a high sugar alcohol yield 
from lignocellulosic biomass in the hydrolysis stage using minimal amounts of energy 
and chemicals during pretreatment to reduce the investment cost. Current technologies 
including physical and chemical pretreatment methods result in relatively low sugar 
yields, severe reaction conditions and high processing costs. A neutralization process 
step is currently required as chemical solvents inhibit the enzymatic process during 
hydrolysis and fermentation steps (Chen et al., 2012a). A green and low energy 
pretreatment process is proposed using microwave irradiation to enhance enzyme 
susceptibility of lignocellolusic materials while the use of selective target heating 
reduces unnecessary waste. This study will investigate the use of low concentration 
solvents, their effect on fermentable sugar yield and the characteristics of the substrate. 
Very diluted solvents of sulfuric acid, sodium hydroxide and sodium bicarbonate will 
be employed to perform microwave-assisted pretreatments.  
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Response surface methodology (RSM) will be applied to the design of experiment 
(DOE) to build an empirical model for the experimental data obtained in relation to 
the experimental design in order to identify the interactive effects of different variables 
on any measured response.  
 
 
An artificial neural network (ANN) will be applied as an alternative to polynomial 
regression-based model for modeling complex, non-linear relationships. Despite the 
fact of the ability of ANNs to render solutions for complicated and nonlinear 
relationship between output responses and its input parameters, limitations remain. 
Limitations such as the selection of the optimum values of the neurons in each hidden 
layer and the learning rate of ANN that play a significant role in optimization of 
estimating or forecasting results, are normally set based on either a trial and error 
procedure or at random. This can result in over fitting or under fitting problems for 
the model and slow performance of the intelligence system. 
 
 
Consequently, particle swarm optimization (PSO) algorithms will be applied to 
determine the optimum values of the neurons in each hidden layer and the learning 
rate of ANN and thereby increase its performance. This study is believed to be the first 
study utilizing ANN coupled with PSO algorithms to estimate sugar yield for 
pretreatment and enzymatic hydrolysis of lignocellosic biomass. 
 
 
1.3 Research Objectives  
 
This study was carried out with the following objectives: 

 
 To assess the effects of microwave-assisted pretreatment using diluted acid 

and alkaline solvents on sago palm bark characteristics and inhibitors 
formation. 

 To evaluate the effects of microwave-assisted pretreatment parameters 
(operating conditions) on glucose and xylose yield via enzymatic hydrolysis. 

 To develop an estimation model for glucose and xylose yield from the 
enzymatic hydrolysis of SPB based on microwave-assisted pretreatment 
conditions. 
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The process flow chart of this is study is shown in Figure 1 below: 
 
 

 
 

Figure 1.1 : The general research layout 
 
 
1.4 Scope and Limitations 
 

1. This research covers two of the major processes of conversion to sugar of 
lignocellulosic biomass, namely pretreatment and hydrolysis. The sample was 
taken through a primary microwave-assisted pretreatment, followed by an 
enzymatic hydrolysis process. 

2. For the microwave-assisted pretreatment, three types of diluted chemicals are 
used as pretreatment solutions; sulphuric acid, sodium hydroxide and sodium 
bicarbonate at a range of concentrations of between 0.01 N and 0.1 N. 

3. The pretreatment parameters (operating conditions) include solid loading, 
exposure time and microwave power. 

4. Since there is no accurate procedure to directly measure the exact temperature 
and pressure of pretreatment in a domestic microwave oven, pretreatment was 
expressed in terms of the microwave power output that can be set on the 
instrument. 

5. Sago palm bark was selected as the main source of lignocellulosic biomass in 
this study. Characterization of this material was carried out to identify the 
chemical components, this including elemental analysis, ash analysis, thermal 
properties, crystallinity analysis and morphology analysis.  

6. Sugar analysis includes identifying the individual components for monomeric 
sugar using HPLC analysis according to the Renewable Energy Laboratory 
(NREL) procedure. 

7. Inhibitors analysis was carried out to detect HMF (5-hydroxymethylfurfural), 
furfural and acetic acid only using HPLC analysis according to the NREL 
procedure. Formic acid is a degradation product of furfural and HMF, while 
levulinic acid is formed by the degradation of HMF (Ulbrich et al., 1984). As 
a result of the absence of HMF and furfural in the pretreatment liquor, analyses 
regarding formic acid and levulinic acid were not conducted. 
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1.5 Thesis Layout 

This dissertation is organized into several chapters. Chapter 1 includes a general 
introduction. Chapter 2 offers a literature review with discussion focusing on 
lignocellulosic biomass as well as an overview of sago palm bark, including the 
pathways of conversion to platform sugars from lignocellulosic biomass. These 
processes include the pretreatment and hydrolysis steps and microwave fundamentals, 
as well as the microwave-assisted pretreatment overview and its governing 
parameters. Chapter 3 presents the impact of the microwave-assisted pretreatment 
method, using acid and alkali solvents, on sago palm bark characteristics and inhibitor 
formation. Chapter 4 reports the enzymatic hydrolysis for the pretreated materials 
using the microwave–assisted pretreatment and the effect of pretreatment parameters 
on sugar yields from sago palm bark via enzymatic hydrolysis using response surface 
methodology. The development of an estimation model for glucose and xylose yield 
from SPB microwave-assisted pretreatment via enzymatic hydrolysis using artificial 
intelligent systems is covered in Chapter 5. Finally, Chapter 6 summarizes the thesis 
with a conclusion and recommendations for future work. 
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