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It is a well-known fact that underground cable loads are affected by many factors 

such as depth of installation, number of parallel circuits of cables, ambient 

temperature, conductor size, duct size, size of backfill (or duct bank), and soil 

thermal resistivity. It is also recognized that resistivity changes with moisture 

migration under loading conditions. One important factor that is usually ignored is a 

harsh environment. In hot countries, extreme environmental conditions exist, where 

the air temperature during the summer season overrides 500C and the dry soil creates 

very high thermal resistivity. 

 

 

This dissertation takes a direct and comprehensive approach to study the effect of 

harsh environment on thermal performance of the buried power cables to evaluate 

the cable temperature rise as well as the effect upon life reduction under constant 

loading conditions, using the dry zone formulation which provides a simple but 

consistent framework to model cables and their installed environment. 

 

 

In this thesis, the effect of a harsh environment on the current-carrying capacity (or 

ampacity) of underground power cables is also presented. 

 

 

The method is given to extend the use of a thermal circuit to cover the entire 

environment rather than just the cable itself. This is because the nodal solutions in 

the environment support the prediction of moisture migration in the steady-state 

adaptation of the two-zone approach to moisture migration employed in the 

standards, where the native soil surrounding cables is assumed to dry out when the 

temperature overrides a predefined critical temperature rise above ambient. 
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The main application of the FEM is to predict conductor temperatures in real time 

from thermal resistivity measurements and a realistic knowledge of the thermal 

environment of a cable. A full thermal analysis of the installed cable system can lead 

to high accuracy in the finite element method and predict the conductor temperature 

from thermal resistivity measurements. 

 

 

The phenomenon of the formation of the dry zone around the cable related to three 

types of soil is considered, when these types of soil are subjected to constant loading 

conditions. 

 

 

The IEC-60287 was taken as a reference, while ANSYS software was used to 

calculate the temperature distribution at the cables with the surrounding environment 

for different types of native soils with some experimental data. The results have 

demonstrated that the ambient temperature in Iraq has a direct impact upon cable life 

temperature and useful life.  
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Beban kabel bawah tanah diketahui adalah dipengaruhi oleh banyak faktor seperti 

kedalaman pemasangan, jumlah litar selari kabel, suhu ambien, saiz konduktor, saiz 

salur, saiz kambus balik (atau bank salur), dan keberintangan terma tanah. 

Keberintangan terma tanah juga diketahui berubah mengikut perubahan kelembapan 

dalam keadaan dengan beban. Salah satu faktor yang diabaikan adalah persekitaran 

terlampau. Keadaan persekitaran terlampau wujud di negara-negara bercuaca panas 

di mana suhu semasa musim panas melebihi 50⁰C dan keadaan tanah yang kering 

akibat cuaca panas terlampau menyebabkan keberintangan haba yang tinggi. 

 

 

Disertasi ini mengambil pendekatan menyeluruh untuk mengkaji kesan persekitaran 

terlampau terhadap prestasi terma yang terdapat pada kabel kuasa bawah tanah. 

Kajian ini juga adalah untuk menilai kesan kenaikan suhu kabel terhadap 

pengurangan jangka hayat kabel dalam keadaan beban malar. Selain itu, kajian ini 

juga menggunakan formulasi zon kering yang menyediakan rangka kerja yang 

mudah dan konsisten untuk merekabentuk model kabel dan persekitaran 

pemasasangan kabel. 

 

 

Tesis ini juga membentangkan kesan persekitaran terlampau terhadap kapasiti arus 

pembawa (atau ampasiti) kabel kuasa bawah tanah. 

 

 

Kaedah yang digunapakai adalah bagi memperluaskan penggunaan litar terma untuk 

meliputi keseluruhan keadaan berbanding hanya kabel sahaja. Ini adalah kerana 

penyelesaian nodal di dalam keadaan sekitar yang dapat menyokong ramalan bagi 

penghijrahan kelembapan di dalam keadaan mantap bagi pendekatan dua zon yang 

digunakan di dalam standard, di mana keadaan asal tanah di sekeliling kabel 
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dianggap terlau kering apabila suhu melebihi kenaikan suhu kritikal di atas suhu 

persekitaran. 

 

 

Aplikasi FEM yang utama adalah untuk meramal suhu sebenar konduktor daripada 

pengukuran keberintangan terma dan pengetahuan realistik tentang persekitaran 

terma di dalam kabel. Analisis penuh terma terhadap sistem kabel yang dipasang 

boleh membawa kepada ketepatan yang tinggi dalam FEM dan meramal suhu 

konduktor dalam pengukuran keberintangan terma – Fenomena formulasi zon kering 

di sekeliling kabel mengambil kira tiga jenis tanah di mana jenis tanah ini adalah 

keadaan beban malar. 

 

 

Standard IEC-60827 dijadikan sebagai bahan rujukan, manakalan perisian ANSYS 

digunakan untuk mengira taburan suhu kabel dalam keadaan jenis tanah yang 

berbeza dengan data eksperimen. Keputusan kajian menunjukkan suhu ambien di 

Iraq mempunyai kesan langsung terhadap suhu kabel hidup dan jangka hayat kabel. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Background to the Study 

For the purpose of transmitting and distributing power to the networks, power 

generating companies depend greatly on power cables. While it is true that the use of 

overhead lines is the common transmission method, there is increasing preference 

for power cables as they offer safety of life, and for also aesthetical and reliability 

considerations.  

Poly vinyl chloride commonly shortened as PVC is widely used polymer in many 

applications like in construction of pipes and cables. PVC insulated cables are used 

as a main link between substation and end user, it also contributes in indoor 

transmission lines between main distribution boards and loads. Underground power 

cables consist usually of several layers. Which are the metal conductor, insulation, 

sheath and jacket for protection against mechanical damage. However, this simple 

construction of underground power cables has become a very complicated structure 

under thermal, environmental and mechanical challenges. 

The main source of heat at the underground power cables is the electrical power 

losses produced through current that flows into conductors with resistance. The 

electrical power losses that occur during the flow of electrical energy into the 

conductor, turns into heat energy within the power cable. Power cables have a 

maximum current carrying capacity. This capacity (ampacity) which cables is 

defined as the maximum current amount the conductor can carry safely and 

uninterrupted without overriding the nominal temperature values of the cable 

components, particularly that of the material that insulates the power cable.  As such, 

it is important that the temperature of the cable insulation material should be 

determined under continuous operation conditions. In other words, what determines 

the maximum current value is the nominal temperature of the cable insulation. 

Otherwise, should the conductor temperature exceed the nominal value, the cable 

will malfunction and be operationally unsafe. The life of the insulator will also 

experience rapid aging or even be damaged and destroyed.  For this reason, the 

insulator is a vital component of the power cable.  Therefore, temperature itself is 

problematic if excessive. On the other hand, power cables are usually installed under 

earth and the soil around the cable operates as an even greater hindrance to heat 

dissipation. Besides the losses in the conductor there are other losses in the cables 

due to circulating currents. These losses are the sheath losses and armor losses. 

Therefore, loss calculation is not an important issue, but the temperature calculation 

is, and it is the focus of this thesis. Consequently, it is important to know, as 

accurately as possible, the temperature distribution around the underground power 

cables that can increase significantly during load.  As insulation of the cable and the 

surrounding soil around the cable are not good thermal conductors, the generated 

heat in the conductor may not be transmitted efficiently away from the cable, which 
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leads to thermal instability in the soil around the cable.  And thus, this leads to the 

eventual thermal failure of the cable. For this reason, transferring the generated heat 

in the conductor to the surrounding atmosphere is a priority [1]. 

The calculation of temperature distribution has traditionally used the formula of 

Neher and McGrath [2] in 1957 which was later officially accepted by the 

International Electrotechnical Commission (IEC). In the case of power cables buried 

underground, several factors can contribute to the limitation of their current ratings: 

installation depth, ambient temperature, existence and number of parallel circuits of 

cables, sheath bonding method, thermal properties of the soil, size of conductor and 

of  backfill and also duct bank. Two of these factors, the ambient temperature and 

surrounding soil characteristics are weather-influenced.  Additionally, it is important 

to note that cable-generated heat due to loading conditions can significantly vary the 

thermal characteristics of the soil. Hence, the cable ratings are invariably dynamic. 

This thesis firstly focuses on the thermal performance of the soil around the cable, 

which is considered the most challenging for prediction as it is usually subjected to 

geographic and seasonal changes in terms of its ability to dissipate heat. Because the 

inclination, which this thesis supports, is toward steady-state rating and temperature 

prediction based on thermal resistivity measurements in harsh environments such as   

the three types of native soil under constant loading conditions. This is in addition to 

the phenomenon of a dry region around the cable, which will minimize the ability of 

the ambient soil to dissipate the generated heat through the cable.  

This thesis investigates these challenges, which lead to thermal instability in the 

ambient environment around the cable, leading to thermal failure of the cable 

insulation. For this reason, correction (de-rating) factors are used in loading with 

respect to the dry region, which should be included at the design stage of the cable 

network.  

In this thesis, the thermal field analysis is based on the standard (IEC 60287, 2006) 

which can be applied in a geometrical structure and in homogeneous soil conditions. 

For example, the thermal circuit parameters of the cable consist of diverse thermal 

properties; formation of ambient environment around the cable, and other heat 

sources adjacent to the cables. Meanwhile, the IEC has adopted a dual-zone model: 

first zone is the moist zone with uniform thermal resistivity and second zone is the 

dry zone while the boundary between the two zones zone is for the purpose of 

synchronizing with the critical temperature. In soil temperatures that exceed the 

critical isotherm, there must be uniformity of the thermal resistivity and similarity 

with that of dry soil. Furthermore, the critical isotherm of 300C higher than the 

ambient soil temperature should be taken into consideration and supported. All these 

situations make the analytical solution very complicated. 

In light of all these factors, the most practical method these days is to estimate the 

simple cable installations, or complicated installations in a pragmatic way by using 

numerical calculation methods as has been followed by many researchers [3-6], 
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especially the finite element method (FEM), which is applied in the analysis and 

calculation of the temperature distribution and the current-carrying capacity of 

buried power cables. The effectiveness of the method to numerically calculate the 

temperature has been proven as it provides superior representation of how the heat 

between different power cables interacts with each other and with other external heat 

sources. Additionally, this approach offers greater modeling accuracy for the region's 

boundaries. On the other hand, in FEM, the current-carrying capacity relies on the 

assumption of values being constant for thermal parameters   such as soil thermal 

resistivity and heat conduction coefficients at the borders. Meanwhile, all the thermal 

circuit parameters are subjected to seasonal and geographical changes which affect 

the permitted loading conditions for all types of cables. In this study, all finite-

element simulations were carried out employing ANSYS Multiphysics to compute 

temperature distribution in the cable with its immediate surroundings for various 

native soil types with some experimental data. 

In addition, cable installations consisting of three single-core cables (flat formation) 

will be modeled as three-phase circuit in a harsh environment as a case study. This 

circuit contains nodes at the conductor, and in each layer of the cable until the outer 

layer, and nodes distributed in every homogenous area of the ambient environment 

to capture the temperature and heat flux density. Also, the distribution of the 

temperature between every node allows the determination of the critical temperature 

that distinguishes the dry zone from the wet zone.  

1.2 Problem statement 

The actual lifetime of PVC cables depends on its operation, environment and its 

service condition. The working of PVC cables in low power transmission lines is 

common, and their degradation can affect the whole system or grid. The biggest 

challenge faced in case of buried PVC cables is temperature. Heat generated in low 

voltage cables should be dissipated through the surrounding soil. Dissipation must 

preserve the cable temperature safely and reliably. The cable working temperature 

relies mainly on the soil’s ability to dissipate the generated heat. The main problem 

faced regarding PVC is thermal ageing over time due to changes in temperature 

which may cause PVC to lose all its insulation properties and render it unsafe for 

commercial use in the long term. 

 In hot countries such as Iraq, extreme environmental conditions exist, where the air 

temperature during the summer season overrides 500C and the dry soil creates very 

high thermal resistivity. The environmental and soil parameters reduce the dissipated 

heat from underground power cables to the surrounding medium due to the high 

thermal resistivity of the soil and ambient temperature. This situation leads rapidly to 

increase the dry zone around the cables which leads to thermal instability of the soil 

around the buried power cable, which leads to thermal failure (aging) of the cable. 

Under such conditions, the environmental and soil parameters significantly influence 

the current-carrying capacity of the power cable. For this reason, derating factors are 

also presented in this work.  
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1.3 Objectives  

The objectives of this study are 

i. To determine the effect of the dry soil and the ambient temperature in summer 

season on the thermal performance of underground power cables for different 

types of soil in hot areas. 

ii. To study the relationship between temperature and PVC cable life under 

extreme soil and environmental conditions for three types of soil.   

iii. To determine the effect of the dry soil and the ambient temperature on 

underground power cables current ratings (ampacity) under constant loading 

conditions to find a suitable correction factor for each type of soil. 

 

 

1.4 Scope of the research work 

This thesis tends to focus on two main scopes. First, the research in this thesis is 

restricted to underground PVC power cables. Second, this work only focuses on the 

ambient temperature and the soil thermal resistivity that influences the current-

carrying capacity of the cable and the cable insulation temperature. Also, this thesis 

deals with the phenomenon the dry region around the cable as related to three types 

of the soil (according to their composition). On the other hand, method of the cables 

installation is directly buried in the soil. The burial depth is usually 0.8m and the 

configuration of the cables is generally flat formation. 

Shortly, the potential implementations of the main objects offered in this thesis are in 

hot areas, which involve the problems of buried power cables, besides other heat 

transfer problems of homogenous soil only, where parameters of the thermal circuit 

are subjected to geographical and seasonal changes. The applications in this thesis 

are certainly limited; however, the focus is on varying soil and harsh environmental 

conditions particularly common in south of Iraq. The study will be only done in the 

areas that the temperature reaches about 50 0C and more. 

1.5 Motivation 

Insulation is a basic part of many power systems. The expected life   of most 

insulation materials is typically many decades in line with standard working 

conditions. However, many insulation materials (organic and inorganic) are 

degraded by fluctuating temperatures that may be higher than the nominal value. 

Besides, the underground cables are more costly than overhead lines. For building 

transmission lines of the same distance at the similar voltage level, underground 

lines cost about four to 14 times more than overhead lines [7]. 

Furthermore, the high cost of underground installation involves time to excavate as 

well as backfill the cable trenches and to install the power cables. The high initial 
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cost associated with cable installations and the cable itself makes it important to 

carefully select the proper cable types and sizes to serve the loads. 

1.6 Contributions of this thesis 

This thesis endeavors  

i. To model changing nominal environmental parameters due to seasonal 

changes in the moisture content of the cable surroundings is embodied into 

the FEM via the dependent variable V.  

ii. To determine the proper size of buried power cables in suitable soil to 

prolong cable life and achieve an acceptable ampacity level of power cables 

in harsh environment. Therefore, the correction factors are used to conserve 

cable life in service.  

iii. And offer greater flexibility in project implementation (numerical 

simulations of heat transfer processes could be an attractive alternative to 

experimental investigations, which are usually costly and time consuming). 

 

 

1.7 Organization of the Thesis 

Chapter 1 introduces the basic system of the cables, methods of installation, the heat 

generation sources, type of environment, and the overall research direction. Also 

presented are the research Objectives and Scope with a discussion of simulations and 

how they are executed. The Research Methodology is also briefly discussed 

indicating the general approach to the research. The methodology is provided to 

better understand the research approach.  Also included is the overview of the 

project contribution to give a clear indication of the research outcomes and their 

implications to planners and practitioners in the field. 

The literature review in Chapter 2 essentially details past research works that are 

related to the field of this current research are presented, studied and discussed. The 

knowledge gained from the study and discussion of previous assists this researcher 

with useful insights into some of the problems faced in the current research which 

have been investigated. 

In Chapter 3, each procedure carried out in the current study is presented, whether as 

flow charts or in textual explanations. Finite-element software package ANSYS 

Multiphysics is used as the tool for simulating three single-core cables to calculate 

and analyze temperature distribution for three types of soil under harsh 

environmental conditions.   

Chapter 4 contains the simulations and data analysis with the findings presented in 

graphs and tables for better comprehension of the significance of particular 
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variables.  The graphic presentations are given in great detail to ensure complete 

understanding of the project and its benefits. 

The final chapter, Chapter 5 consists of conclusions on the overall study including 

how the research objectives have been achieved. This is followed by 

recommendations for other researches to continue investigating areas related to this 

current research to further add new knowledge to the field.      
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