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Spinels are an attracting class of materials that demonstrate rich complex behaviors 

at ground states. Among spinel materials, chromium spinels span an enormous 

range of magnetic exchange strengths and different magnetic ground states. Spinel 

oxides AB2O4 with magnetic B cations have received special attention due to their 

identification by three-dimensional geometrical frustration. The physics of 

frustrated magnetism is a subject of existing interest. Spinel oxides with Cr3+ ions 

on the B sites are good examples to study the frustration.  

 

 

Geometrically frustrated spinel CdCr2O4 has been chosen as a model system to 

study because it has a well-defined magnetic order with a single ordering wave 

vector. Spinel CdCr2O4 is a magnetic compound that crystallizes into a cubic spinel 

structure, and the magnetic properties stem from the Cr3+ magnetic ions, that are a 

three-dimensional network of corner-sharing tetrahedral. 

 

 

In the present work, density functional calculations are performed to investigate the 

effects of magnetic ordering on the electronic structure and bonding properties of 

CdCr2O4 with non-magnetic Cd cations and magnetic Cr cations from a pyrochlore 

lattice, by examining the crystal structure of spinel CdCr2O4 and followed by 

analyzing the electronic and magnetic properties that are important in magnetic 

spinel oxides. The structural, electronic, and chemical bonding properties of 

geometrically frustrated  spinel CdCr2O4 with cubic (Fd3̅̅̅̅ m) and 

tetragonal (I41 amd⁄ ) structures have been calculated using density functional 

method combined with the spin-polarized theory, and compared the results in both 

cubic and tetragonal structures for different magnetic orderings. Density functional 

theory applied with the ground-state theory recovered in the zero temperature limit. 
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In order to optimize the crystal structures of spinel CdCr2O4, the plane-wave 

Ultrasoft pseudopotential technique is used within the generalized gradient 

approximation. XCrySDen graphic software is applied as a crystalline and 

molecular structure visualization program to visualize this system. In order to 

calculate the total energy, the exchange and correlation functional is described 

within the generalized gradient approximation based on exchange-correlation 

energy optimization. The optimization of atomic positions and cell parameters is 

approved through the minimization of energy using Hellman-Feynman forces 

acting on atoms with the Broyden-Flecher-Goldfarb-Shanno scheme and to get the 

actual relaxed atomic positions and cell parameters for each element the PWscf 

(VC-relax) input code is applied.  

 

 

To search for the most stable structure of spinel CdCr2O4 in term of magnetic 

ordering, the lowest energy in each structure with different magnetic ordering is 

calculated. What is important for this work is to converge the parameters by 

applying the scf convergence test, in order to find the actual kinetic energy cutoff 

and k-point in different crystal structures and also to determine the structural 

properties of spinel CdCr2O4, in term of lattice parameters, symmetry properties 

and charge density distributions in different magnetic configurations. Fallowing 

that, the effect of  magnetism is obtained and analyzed on the basis of total density 

of states, projected density of states, and charge density distribution within 

paramagnetic, ferromagnetic and antiferromagnetic orderings using density 

functional calculations and understanding of the principles of Quantum 

ESPRESSO in magnetic materials. In continue, to complete the findings of the 

electronic density of states for spinel CdCr2O4, the density of states for each atom 

is calculated, in order to analyze the band gap in each state, separately.  Finally, the 

electronic charge density distribution in the (1 1 0) crystallographic planes are 

obtained, for both cubic and tetragonal structures, to explain and compare the 

bonding properties of spinel CdCr2O4 in paramagnetic, ferromagnetic and 

antiferromagnetic orderings.  
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Fakulti :  Sains 

 

 

Spinel adalah satu kelas bahan menarik yang menunjukkan sifat kompleks yang 

kaya pada keadaan dasar. Antara bahan spinel, spinel kromium merentangi renj 

kekuatan  tukar ganti magnet yang besar dan mempunyai pelbagai keadaan dasar 

magnet.  Oksida spinel AB2O4 denagan kation magnet B telah menerima perhatian 

khas kerana bahan ini dapat dicam dengan frustrasi geometri tiga dimensi. Fizik 

kemagnetan frustrasi adalah satu subjek yang menarik kini. Oksida spinel dengan 

ion Cr3+ pada tapak B adalah contoh yang baik untuk dikaji frustrasi.  

 

 

Spinel CdCr2O4 berfrustrasi geometri dipilih sebagai sistem model untuk dikaji 

kerana ia mempunyai tertib magnet yang tertakrif rapi dengan vektor gelombang 

bertertib tunggal. Spinel CdCr2O4 adalah sebatian magnet yang terhablur kepada 

struktur spinel kubus dengan sifat magnetnya datang daripada ion bermagnet Cr3+, 

yang berbentuk rangkaian tetrahedron berbucu sepunya. 

 

 

Dalam kajian ini, pengiraan fungsian ketumpatan dibuat untuk mengkaji kesan 

tertiban magnet ke atas struktur elektronik dan ciri ikatan CdCr2O4 dengan kation 

Cd yang tak bemagnet dengan kation Cr bermagnet daripada kekisi piroklor, 

dengan pemeriksaan struktur hablur spinel CdCr2O4 dan diikuti dengan analisis 

ciri-ciri elektronik dan magnet yang penting dalam oksida spinel bermagnet. 

Struktur elektronik, ciri magnet dan ciri ikatan kimia bagi spinel CdCr2O4 

berfrustrasi geometri dengan struktur kubus (Fd3̅̅̅̅ m) dan tetragon (I41 amd⁄ ) telah 

dikira menggunakan kaedah fungsian ketumpatan digabung dengan teori 

pengutuban spin, dan keputusan dibandingkan  bagi kedua-dua struktur kubus dan 

tetragon untuk tertib bermagnet berbeza. Teori fungsian ketumpatan diaplikasi 

bersama teori keadaan dasar dipulih semula dalam had suhu sifar. Bagi 
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mengoptimumkan struktur hablur CdCr2O4, teknik gelombang satah Pseudo-

Keupayaan Ulltralembut (USP) diguna dalam penghampiran kecerunan teritlak 

(GGA). Perisian grafik XCrySDen diguna sebagai program visualisasi struktur 

hablur dan molekul bagi mengvisualisasi sistem ini. Bagi tujuan mengira jumlah 

tenaga, fungsian tukarganti dan korelasi diperihal dalam penghampiran kecerunan 

teritlak berdasarkan pengoptimuman tenaga tukarganti-korelasi. Pengoptimuman 

kedudukan atom dan parameter sel disahkan melalui meminimumkan tenaga 

dengan daya Hellman-Feynman bertindak ke atas atom dengan skema Broyden-

Flecher-Goldfarb-Shanno dan bagi mendapatkan kedudukan atom santaian dan 

parameter sel bagi setiap unsur, kod input PWscf (VC-relax) diaplikasikan. 

 

 

Bagi mencari struktur spinal CdCr2O4 yang paling stabil berasaskan tertib 

bermagnet, tenaga paling rendah bagi setiap struktur dengan tertib bermagnet 

berbeza dikirakan. Apa yang penting bagi kajian ini adalah penumpuan parameter 

dengan aplikasi ujian penumpuan scf, bagi mencari penggalan tenaga kinetic 

sebenar dan titik-k dalam struktur hablur berbeza dan juga bagi menentukan ciri 

struktur spinel CdCr2O4, dalam sebutan parameter kekisi, ciri simetri dan taburan 

ketumpatan cas dalam konfigurasi bermagnet yang berbeza. Seterusnya, kesan 

kemagnetan diperolehi dan dianalisis berasaskan jumlah ketumpatan keadaan, 

ketumpatan keadaan yang diunjurkan, dan taburan ketumpatan cas bagi tertib 

paramagnet, feromagnet dan antiferomagnet menggunakan pengiraan fungsian 

ketumpatan dan kefahaman prinsip Quantum ESPRESSO dalam bahan bermagnet. 

Seterusnya, bagi melengkapkan penemuan ketumpatan keadaan elektronik bagi 

spinel CdCr2O4, ketumpatan keadaan bagi setiap atom dikira untuk tujuan analisis 

jurang jalur bagi setiap keadaan secara berasingan. Akhir sekali taburan 

ketumpatan cas electron dalam satah kristalografi (1 1 0) diperolehi bagi kedua-dua 

struktur kubus dan tetragon, untuk penjelasan dan perbandingan ciri-ciri spinel 

CdCr2O4 dalam tertib paramagnet, feromagnet dan antiferomagnet.  
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CHAPTER 1 

1. INTRODUCTION 

 

1.1 Background of the Study  

For over two decades, one of the major research concerns in both theoretical and 

experimental condensed matter physics has been predicting a novel material, or 

rather producing a simple method that can explain some of the known physical 

properties of these novel materials. Spinels are a captivating class of materials that 

indicate rich complex behavior and novel ground states such as large 

magnetoresistance effects (Ramirez et al., 1997), non-collinear spin configurations 

(Yafet, & Kittel, 1952), magnetodielectric coupling (Lawes et al., 2006), and spin 

liquid states (Kemei et al., 2013). Spinel is the magnesium aluminum oxide 

member of this large group of materials with the following formula, Mg2+Al3+
2O2-

4. 

It gives its name to the family of compounds that are identified by two cation sites: 

an octahedral site and a tetrahedral site (Finger et al., 1986). Any material that have 

the general formula of A2+[B3+]2[X2−]4 which crystallizes in the face-centered cubic 

crystal system and are described by the space group 𝐹𝑑3̅̅̅̅ 𝑚 (No. 227) are labeled as 

a spinel.  

 

Spinel-type compounds  with the general formula of AB2X4 (A, B=transition- 

metal, X=oxides, chalcogenides) have attracted extensive interest  not only due to 

their diverse properties but also wide applications in electronics, catalysis, 

magnetism and electrochemical technologies, these including i.e. batteries, fuel 

cells and electrolysers (Yamasaki et al., 2006; Hemberger et al., 2005; Xie et al., 

2009; Thackeray, 1997). Spinels are traditionally synthesized through solid-state 

methods involving grinding and firing the mixtures of the corresponding metal 

oxides, nitrates or carbonates (Armijo, 1969; Lu et al., 2014), which require 

elevated temperature and prolonged time in order to overcome the reaction energy 

barriers (Stein et al., 1993). The prepared spinels often show irregular shape, large 

particle size and low surface area, all these factors seriously affecting their 

physicochemical properties.  

 

 

Chromium spinel compounds with the general formula ACr2X4 (where A = Cd, Zn, 

Hg, Ga, Cu; X = S, Se, O) have been analyzed during the last decades due to their 

interesting structural, electronic, and magnetic properties (Krok-Kowalski et al., 

2004; Parker et al., 2004; Warczewski et al., 2003) . The spinels are perfect 

materials for many current technological applications such as magnetic sensors 

used as the read-write heads in the computer hard discs or as the temperature 

sensors. 
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Since many of the spinels are common minerals, they also have great geological 

and geophysical interest; especially chromium spinel is regarded as important 

petrogenetic indicator in ultramafic to mafic rocks (Fan et al., 2008). It is also 

known fact that some chromium spinels, e.g. HgCr2S4 and CdCr2S4 exhibit 

multiferroic behavior. Chromium spinels with a specific formula ACr2X4, where 

A= Zn, Cd, or Hg is a divalent nonmagnetic cation and X = O, S, or Se is a 

divalent anion are investigated. The Cr3+ ion is in the 3d3 configuration, its three 3d 

electrons occupy the t2g levels with total spin S=3/2. The Cr-sublattice is designed 

by corner sharing tetrahedral named as pyrochlore lattice which displays a highly 

frustrated geometry of antiferromagnetically coupled spins. Although charge and 

orbital degrees of freedom in the ACr2X4 spinels are frozen out because electrons 

are localized by a strong Coulomb repulsion, and only spin degrees of freedom 

remain in the ground and lowest excited states, these compounds show a wide 

variety of magnetic properties ranging from those of a strongly frustrated 

antiferromagnet to a Heisenberg ferromagnet. In the ACr2O4 spinels, 

antiferromagnetic nearest-neighbor interactions between Cr spins residing on a 

pyrochlore lattice are geometrically frustrated. The magnetic ground state of a 

frustrated antiferromagnet is highly degenerate which leads to infrequent low-

temperature properties.  

 

Electron correlation in condensed matter always seems to throw up a plethora of 

novel, exotic, and complex phenomena that routinely destabilizes every attempt to 

formulate or formalize understanding. In the last few decades several challenges 

are posed by the high temperature superconductors, colossal magneto resistance 

materials, spin glasses, and frustrated systems, just to name few. Experimental and 

theoretical tools have been stretched to their limits to comprehend the 

complexities, but the horizon of convergence appears to recede further and further. 

Amongst the complex, correlated condensed matter systems, ‘frustrated systems’ 

are a class in itself and they exhibit novel ground states like spin liquids, spin ice, 

and valence bond solids. The spinel compounds amongst these are unique in 

exhibiting such unconventional ground states. Ordering of the charge degree of 

freedom in a spinel system is a rare and contested phenomenon. Very few spinel 

compounds have shown coupling of the charge degree of freedom with the lattice 

as against a number of those that have shown frustration and ordering of spin 

degrees of freedom.  

 

Investigations of electronic structures of different functional materials using 

quantum mechanical simulation has become a practically optional tool in present 

day science.  This understanding is a key feature behind the tailoring of new 

materials for specific applications such as spin based electronics, energy 

applications, drug designs, and catalysis being just few worth mentioning. Besides 

the  physical  and  life  science  contributions  in  this  field  it is  valuable  to  

remark the  existing advancement of computer hardware and software which also 

acts as a motivation to the magnificent growth in this field. To deal with a larger 

molecular system one needs to make a compromise between the computational cost 

and the accuracy of results. In this respect, density functional theory has become 

the preferred method for electronic structure theory, as its cost scales favorably 
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with system size in comparison to the cost of other expensive quantum mechanical 

method that is based on wave function theory. In addition to reasonable 

computational cost, it also competes well in terms of accuracy. 

 

A breakthrough in these computational efforts was recognized in 1964 when 

Walter Kohn et al. developed the density functional theory; a theory based on 

electron density, which is a function of only three spatial coordinates (Hohenberg, 

& Kohn, 1964; Kohn, & Sham, 1965). The Kohn–Sham equations of density 

functional theory cast the intractable complexity of the electron–electron 

interactions into an effective single-particle potential determined by the exchange-

correlation functional. This exchange-correlation functional (i.e. a function whose 

argument is another function) explains the complex kinetic and energetic 

interactions of an electron with other electrons.  

 

In the present work, it is mainly focused on frustrated magnetism, which is formed 

by the simple and unique geometry of the spinel structure. The spinel structure 

with the chemical formula AB2X4 (X=O, S, Se), is one of the most frequently 

stabilized amongst the wide variety of structural categories in complex transition-

metal oxides and chalcogenides. Due to the existence of many antiferromagnetic 

spinels preferring the oxide state rather than chalcogenides state, the major 

considerations is restrict basically to oxides. Materials with the spinel structure 

have provided physicists with a surprisingly rich variation of phenomena, few of 

these being ferromagnetism, ferrimagnetism, and Jahn-Teller transitions (Kugel, & 

Khomskii, 1982; Feiner et al., 1997). More recently, the spinels have attracted 

increasing interest as a playground for the physics of frustration. 

 

Study on spinel materials such as ZnCr2O4 and CdCr2O4 with frustrated crystal 

structures are among the best options when it comes to energy source as this is a  

clean and non-polluted way of energy generation (Chung et al., 2005; Lee et al., 

2004). With the help of theoretical study based on density functional calculations, 

the detailed properties of such novels energy based materials are provided for more 

experimental research. For the present study purpose, CdCr2O4 has been chosen as 

a model system. While its frustration factor is smaller than that of ZnCr2O4, 

CdCr2O4 is preferred as it has a well-defined magnetic order with a single ordering 

wave vector. In the case of CdCr2O4, the first-principles calculation for these 

systems can provide valuable information about structural, electronic structure, and 

magnetic properties of CdCr2O4 by using density fuctional calculatation method.  

 

1.2 Problem Statement of the Research 

Within the past 20 years, there has been an explosion of attention in the magnetic 

behavior of pyrochlore oxides of the type AB2O4 in which A is a rare-earth ion and 

B is generally a transition metal. Both A and B sites produce a network of corner 
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sharing tetrahedral, which is the quintessential framework for a geometrically 

frustrated magnet. In these systems, the expected tendency to form long-range 

ordered ground states in accord with the third law of thermodynamics at absolute 

zero temperature is frustrated, resulting in some original short-range ordered 

alternatives such as spin ices, spin glasses, and spin liquids. This research aims to 

analyze and evaluate some of the properties found in pyrochlore oxides, essentially 

from a materials perspective with an applicable theoretical context. 

 

In the search for complex oxide materials incorporating technologically functional 

properties, one of the most studied structural families is spinels. In fact, the earliest 

discovery of magnetism itself can be attributed to the discovery of the mineral 

lodestone, which contains naturally polarized magnetite: a spinel with the 

composition Fe3O4. Investigation into spinels, whose general formula is AB2X4, 

began in 1915 when Bragg and Nishikawa published the first descriptions of the 

structure via X-ray diffraction (Bragg, 1915; Nishikawa, 1915). Barth and Posnjak 

presented a more detailed description of the cation distribution between the sites 

and introduced the idea of the inverse spinel in 1932 (Barth, & Posnjak, 1932). 

Early work on potential technological applications for spinels such as in ferrite 

cores was led by Lotgering, Jonker, and Blasse at the Philips Research Lab in 

Eindhoven throughout much of the 1950’s and 60’s. The list of related physical 

phenomenon that have been discovered since then has grown to include 

magnetoresistance (LiMn2O4 (Basu et al., 2000), FeCr2S4 (Lang et al., 2000; 

Ramirez et al., 1997)), superconductivity (CuRh2S4 (Bitoh et al., 1992; Dawes, & 

Grimes, 1975), LiTi2O4 (Johnston et al., 1973)), spin driven Jahn-Teller distortions 

(MCr2O4, M = Zn (Lee et al., 2000; Lee et al., 2007), Cd  (Matsuda et al., 2007)) 

and metal-insulator transitions (Fe3O4 (Verwey, & Haayman, 1941; Verwey et al., 

1947)). 

 

 

It has been known for over 40 years that chromium spinels (ACr2X4) span an 

enormous range of magnetic exchange strengths and different magnetic ground 

states (Baltzer et al., 1966). As a function of lattice constant, or equivalently as a 

function of Cr-Cr separation, these compounds are categorized by Curie-Weiss 

temperatures from -400 K to 200 K and, at low temperatures, expose both complex 

antiferromagnetism and ferromagnetism with different crystal structures. The 

chromium oxide-spinels undergo antiferromagnetic ordering with the transition of 

order 10 K, in spite of the fact that the exchange interactions, as deduced from the 

paramagnetic Curie-Weiss temperatures, are one order of magnitude larger. This 

can be clarified by the fact that the Cr spins reside on a pyrochlore lattice revealing 

strong geometrical frustration. 

 

 

Meanwhile, CdCr2O4 is a magnetic compound that crystallizes into what is 

recognized as a cubic spinel structure, and the magnetic properties stem from the 

Cr3+ ions that create a network of corner-sharing tetrahedral (Lee et al., 2000; 

Tchernyshyov et al., 2002). Despite the presence of relatively strong 

antiferromagnetic, nearest-neighbor interactions between these ions, the peculiar 
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spatial arrangement of the Cr atoms within the spinel structure serves to suppress 

magnetic order. Actually, true long-range, elastic magnetic order is set up just after 

cooling to the Néel temperature (TN = 7.8 K), which is one order of magnitude 

smaller than the Curie-Weiss temperature (|θCW | = 88 K), the temperature at which 

magnetic order is predicted. Moreover, a structural transition, where the 

dimensions of the cubic unit cell distort tetragonally such that c > a = b, occurs at 

the same temperature as the onset of long-range magnetic order at TN . Below TN, 

CdCr2O4 displays standard spin wave excitations, which are inelastic features 

characteristic of ordered magnetic phases (Chung et al., 2005).  

 

 

Furthermore, the modeling of materials has become a very useful tool to make 

reliable predictions of the electronic, structural, and magnetic properties of novel 

hard materials. Several approaches are used in the computational modeling of 

materials. In addition, the density of states and charge density investigations play a 

significant role to establish crystalline and electronic structures of several 

compounds. There are many publications concerning the magnetic crystals 

(spinels), especially with respect of their potential for industrial applications. For 

example, the electronic companies, such as IBM, undertake major research efforts 

in order to understand in more detail such effects as e.g. magnetoresistance. 

 

 

The goal of this research is to investigate and explain the magnetic effects in the 

crystal structure and electronic properties of spinel CdCr2O4, using first-principle 

density functional calculations. The magnetism and related properties is considered 

for spinel CdCr2O4 that have magnetic transition metal cations exclusively on B-

sites. Therefore, possible effects of magnetism on the electronic properties of a 

geometrically frustrated spinel are broadly investigated. As a conclusion of this 

study, the following hypothetical research questions have risen with the demand of 

seeking appropriate answers: 

1. Does the change of crystal structures from cubic to tetragonal show 

different magnetic orderings? 

 

2. What are the effect(s) of magnetization on the ground state energy and 

what are the effect(s) of magnetization on electronic properties of spinels? 

 

3. Do different magnetic configurations affect on the type of chemical 

bonding in spinels? 

 

 

1.3 The Objective of the Study  

Following the above questions, this research has been done based on the following 

objectives: 

1) To identify the most stable structure of spinel CdCr2O4 with different 

magnetic orderings through geometry optimization procedure. 
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2) To determine the structural properties of spinel CdCr2O4, in term of lattice 

parameters, symmetry properties and charge density distributions in 

different magnetic configurations. 

3) To analyze the electronic properties (i.e. density of states, projected 

density of states, and chemical bonding properties of spinel CdCr2O4 with 

different magnetic orderings. 

4) To investigate the magnetic properties in the geometrically frustrated 

spinel CdCr2O4 using density functional theory and understanding the 

principles of Quantum ESPRESSO in magnetic materials. 

 

1.4 The Significances of the Study 

Just recently, it has been predicted that many spinel-type compounds of transition 

metal materials can be used for a different number of technological applications. 

For example, chromium spinels have been theoretically predicted and proved to be 

of a fundamental significance for analysis of a numeral theory of condensed matter 

physics as well as chemistry. This compound may perhaps be used in different 

technological application. 

 

 

Motivation for selecting materials with spinel structure (AB2X4) stems from its 

ability to accept many d-series ions, allowing many different oxidation states, and 

its manifestation of strong geometrical frustration (Lacroix et al., 2011). These 

characteristics of materials within the spinel family of structures give rise to a rich 

and diverse catalogue of low temperature magnetic states. Chemically, the spinel 

structure is rather accommodating, with many different combinations of available 

transition metal ions. The variation is further enhanced due to O, Se, and S allowed 

for the ligand X. Oxides tend to be insulating while sulphides generally have better 

conductive properties due to better overlap of the p and d orbitals between the 

ligand and metal ion. 

 

 

In addition, transition-metal compounds (mainly oxides) are the most studied 

compounds in condensed matter physics due to their motivating physical 

phenomena, such as a high-Tc superconductivity, Mott insulating state, charge 

ordering, ferromagnetism, antiferromagnetism, ferroelectricity, antiferroelectricity 

etc. The major role in these phenomena is played by the d-orbital valence electrons 

of the transition metal ions. The strong electronic-correlations due to the spatial 

confinement in narrow d-orbitals play an essential role in the properties of these 

materials. The internal degrees of freedom of d-electrons, i.e. charge, spin, and 

orbital angular momentum and the lattice degrees of freedom make a refined 

balance and hence d-electron systems are highly susceptible to any external impact 

such as temperature, pressure, magnetic field, or doping, which can shift materials 

to the new phases. Besides, the orbital degeneracy in d-electron system is a main 

and obligatory foundation of their complex behavior. Also, lots of compounds of 
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the AB2X4 category, specifically oxides (X = O), crystallize at ambient conditions 

in the spinel structure. 

 

 

There are several groups of magnetic materials in spite of the conventional 

magnets such as ferromagnets, antiferromagnets, and ferrimagnets, which occupy 

various three dimensions, ranges, and signs of interactions and reveal the 

anisotropy of the magnetic spin. The different ground states of the magnetic system 

are characterized with the evaluation of frustration and disorder in the lattice. 

Geometrical frustration is an important feature in magnetism, where it stems from 

the topological arrangement of spins. The term frustration, in the microscopic 

sense, characterizes a system with competing interactions that cannot be 

simultaneously satisfied (Lacroix et al., 2011). Much interest has been generated in 

frustrated materials as they have been shown to have a variety of unique ground 

states such as spin glasses (Binder, & Young, 1986; Fischer, & Hertz, 1993; 

Mydosh, 2015), and spin ices (Harris et al., 1997).  

 

 

Chromium spinels are one of the most widely investigated materials among spinels 

classes of materials. They belong to the frustrated magnetic family (geometrical 

and bond frustrated) and at low temperatures, they show ferromagnetic and 

antiferromagnetic orders. The investigated Cr-spinels compounds with formula 

ACr2X4, have A-site nonmagnetic divalent cation (Zn, Cd, or Hg) and B-site (Cr3+) 

magnetic trivalent cation. The Cr3+ ions are octahedraly coordinated with various 

elements of group VI (i.e., O, S, and Se). As mentiond before, our focus is only on 

oxides. Oxides with spinel structure are geometrically frustrated, and their 

frustration causes extensive degeneracy in the ground state of the system, 

frequently and avoid any ordering down to low temperatures, e.g. CdCr2O4 endures 

the antiferromagnetic ordering only at 7.8 K.  

 

1.5 Research Hypothesis  

From the above listed significances, it is clearly seen that predicting similar 

material such as CdCr2O4 along with exploring some of the properties (e.g. 

magnetism and frustration) will not be only a key importance of the technological 

applications, but also to the fundamental understanding of some numerous theories 

in condensed matter physics and materials science.   

 

 

In the field of predicting a better material for technological use and also 

understanding some of the physical laws, quantum mechanical simulation within a 

density functional theory have been the most reliable method for over a decade. 

Therefore, this study will not be significant to the predicting a spinel material, but 

to show how density functional calculation as well as spin-polarized theory play a 

role in understanding many properties of these spinel compounds as an excellent 

transition metal materials. The fallowing research hypothesis is proposed in this 

research work: 
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1. Considering the spin-lattice coupling for small deformations which is 

favorable for tetragonal phase of geometrically frustrated structure, the 

tetragonal structure of spinel CdCr2O4 with antiferromagnetic ordering 

would be more stable after geometry optimization. 

2. The most stable tetragonal phase of CdCr2O4 would have the symmetry of 

I41 amd⁄  with experimentally comparable lattice constant since Cr-site 

and Cd-site cations in the geometrically frustrated network formed 

tetraheral and diamond like lattice, which are all situated at the center of 

oxygen tetrahedral. They would equally have mixed bonding nature with 

ionic and covalent behavior. 

 

3. Depending on the favorable magnetic ordering, the structures would have 

electronic ground state ranging from metallic to semiconductor electronic 

character. 

4. Due to coupling between Cr-site and Cd-site in different charge states and 

high-spin configuration in Cr-site as compared to Cd-site, the 

antiferromagnetic ordering with reasonable magnetic moment would be 

favorable in tetragonal stable phase of CdCr2O4. 

 

1.6 Scope of the Research Work  

This research work is limited to employing a theoretical framework (i.e. no 

experimental methods), to formulate and implement density functional theory for 

spin-polarized systems (this approach goes under the name of Local Spin-Density 

Approximation, or LSDA), and to investigate the ground state properties of 

geometrically frustrated spinel CdCr2O4 compound at zero temorature. Also it is 

limited to predict the effect of magnetization and  magnetic fluctuations on the 

electronic properties as well as chemical bonding properties of this compound 

based on the density functional calculation.The structural parameters used in this 

study have been obtained using the crystal parameters reported in the literature 

(Chung, & Matsuda, 2005; Kumar et al., 2012; Kemei et al., 2013). Moreover, the 

study attempts to examine the properties that arise during the formations of these 

compounds. 

 

 

However, as it is well-known, the density functional theory method have limited 

accuracy for predicting an accurate van der Waals forces and strong body 

correlations (Neumann, & Perrin, 2005; Bucko et al., 2010).  Also, in order to 

apply density functional theory for spin-polarized systems, the exact exchange-

correlation functional should be able to predict the magnetic ground states and the 

corresponding charge densities. Knowing this, the effect of temperature on this 

compound is not investigated in this study. 
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1.7 Outline of the thesis  

This thesis is organized as follows: in the first chapter, a general introduction 

which provides a description of the origin of spinel material, its properties and 

brief area of the technological applications, as well as short outline of the proposed 

method is presented. Fallowing that, the main aims and objectives, the problem 

statement, the significance of the study, the hypothesis and the limitations of this 

research work are arranged in the chapter. 

 

 

In the second chapter, a general review of the relevant literature on spinel materials 

as well as transition metal compounds with the geometrically frustrated magnetic 

structure has been presented and discussed, including the reported experimental 

and theoretical results in the electrical and magnetic property investigations. 

Emphasis is mainly on chromium spinels structural characteristics. To continue, a 

review of density functional theory applications to transition metal compounds is 

highlighted.  

 

 

The third chapter reflects on the theoretical foundations of the research. Electronic 

structure methods, solving many body problems by using density functional theory 

and Kohn-Sham method is presented and discussed. Particularly, the local density 

approximation and the generalized gradient approximation are outlined for the 

exchange and correlation functionals and the treatment of the plane wave basis set 

and the pseudopotential approximation. The explanation of spin-polarized system 

within density functional theory is highlighted. . Fallowing that, the description of 

magnetism, crystal field and spin fluctuations in spinels is discussed.  

 

 

In the fourth chapter, the computational model applied in our research is presented 

in details, followed by the given description of the Quantum ESPRESSO method 

and its capabilities for density functional calculations. 

 

 

The fifth chapter is devoted to the discussion of the results of the calculations, as 

well as the new findings relevant to the data obtain. The stability of crystal 

structure, convergence test calculation, magnetic and electronic properties as well 

as chemical bonding properties are given in this chapter.  

 

In the sixth chapter, the conclusions drawn from this work are given along with 

explanations, and finally, several ways to expand this work in future are stated 

together with some recommendations is presented. 
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