SURFACE PLASMON RESONANCE SENSORS USING REDUCED GRAPHENE OXIDE-MAGHEMITE COMPOSITE MATERIAL FOR PLUMBUM ION DETECTION

ALI ABDULKHALEQ ABDULHADI ALWAHIB

FK 2017 5
SURFACE PLASMON RESONANCE SENSORS USING REDUCED GRAPHENE OXIDE-MAGHEMITE COMPOSITE MATERIAL FOR PLUMBUM ION DETECTION

By

ALI ABDULKHALEQ ABDULHADI ALWAHIB

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Doctor of Philosophy

February 2017
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the Degree of Doctor of Philosophy

SURFACE PLASMON RESONANCE SENSORS USING REDUCED GRAPHENE OXIDE-MAGHEMITE COMPOSITE MATERIAL FOR PLUMBUM ION DETECTION

By

ALI ABDULKHALEQ ABDULHADI ALWAHIB

February 2017

Chairman : Professor Mohd Adzir Mahdi, PhD
Faculty : Engineering

As industries rapidly expand to meet the demands of massive dynamic development around the globe, plumbum contamination persists to be among the unsettled environmental issues we have today. The exposure to plumbum is known to cause severe systemic disease even at very low concentrations. The fears from close of Pb²⁺ sources such as plumbing components to clinical applications and healthy environment are the motivating for developing sensors. Over the past few years, researchers have shown enormous interest in surface plasmon resonance (SPR) based sensors due to its sensitivity and fast response for chemical, biological and environmental sensing applications. The attached nanocomposite-sensing layer to a plasmonic material has created vast integration for sensitivity and selectivity enhancement in detection of heavy metals. This research work focuses on plumbum (Pb²⁺) ion detection using SPR sensor have a new nanocomposite called reduced graphene-maghemite (rGO/γ-Fe₂O₃) as a sensing layer. The main aspects of the study are the sensing potentiality of rGO/γ-Fe₂O₃ in prism based SPR sensor technique, protect the rGO/γ-Fe₂O₃ from degradation in water environment and finally detect plumbum in water using rGO/γ-Fe₂O₃ at sub ppb detection limits. Preliminary studies of the sensing layer when tested with hydrocarbon vapor show that it is sensitive towards acetone as compared to ethanol, propanol and methanol, which highlights the first demonstration of rGO/γ-Fe₂O₃ nanomaterial in optical sensing applications. For heavy metal ion detection, its main challenge is the erosion of graphene-based nanomaterial when the layer interacts with aqueous analyte. Therefore, a special matrix material is required to enhance the adhesiveness of rGO/γ-Fe₂O₃ to the gold (Au) layer on SPR and the combination of Au-rGO/γ-Fe₂O₃ sensing layer and 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide/ N-Hydroxysuccinimide/ (EDC/NHS) as a protection layer is used in the sensor structure. The optimized thicknesses of Au, rGO/γ-Fe₂O₃ and EDC/NHS are 41, 8.75 and 4 nm, respectively and its limit of detection for Pb²⁺ ions is 0.001 ppm in static water conditions. The limit of detection is further enhanced to 0.3 ppb by adopting the water circulation method. Selectivity of Pb²⁺ ions is greatly enhanced, by replacing EDC/NHS with polyvinylchloride (PVC).
This work highlights the advantages of rGO/γ-Fe$_2$O$_3$ nanocomposite as the sensing layer on an SPR based sensor for the detection of Pb$^{2+}$ ions in water. Its sensing performance has shown great potential in matching the need for a robust, cheap, sensitive and selective sensing method to detect heavy metals and help curb the environmental problem. The quantitative research findings are 1.1-degree angle shift in 10% concentration vapor acetone, EDC/NHS enhanced the sensing layer to work under water circulation for 50 experiments and detection of plumbum ions in water at concentration 0.3 ppb.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Doktor Falsafah

SENSOR PENGESANAN PLUMBUM DENGAN MENGGUNAKAN RESONANS PLASMON PERMUKAAN DISELAPUTI GRAPHENE OKSIDA-MAGHEMITE

Oleh

ALI ABDULKHALEQ ABDULHADI ALWAHIB

Februari 2017

Pengerusi : Profesor Mohd Adzir Mahdi, PhD
Faculti : Kejuruteraan

Dalam era perkembangan industri pesat untuk memenuhi pembangunan dinamik antarabangsa, pencemaran logam berat merupakan antara isu alam sekitar yang belum diselesaikan sehingga hari ini. Pendedahan terhadap logam berat merosot kesihatan sistemik meskipun pada kepekatan yang rendah. Oleh itu, pemantauan konsisten terhadap logam berat menjadi amat penting. Walau bagaimanapun, kaedah untuk mengesan bahan cemar secara konvensional sangat rumit dan mahal. Kebelakangan ini, penyelidik telah menunjukkan minat yang tinggi dalam teknologi Permukaan Plasmon Resonans (SPR) yang menunjukkan sensitiviti tinggi dan tindak balas yang cepat terhadap bahan kimia, biologi dan aplikasi melibatkan alam sekitar. Kawasan penderiaan terhadap konfigurasi SPR untuk menguji sampel telah memberi peluang untuk melibatkan integrasi dengan bahan lain demi kepekaan dan mempelbagaikan pemilihan. Kerja penyelidikan ini memberi tumpuan kepada pengesanan komposit nano baru iaitu reduced graphene-maghemite (rGO/γ-Fe2O3) sebagai lapisan penderiaan. Aspek-aspek utama dalam kajian ini melibatkan penilaian rGO/γ-Fe2O3 sebagai lapisan aktif pengesanan dalam SPR berdasarkan prisma, sementara kebolehan SPR dengan integrasi lapisan rGO/γ-Fe2O3 untuk pengesanan plumbum. Kajian awal lapisan penderiaan tehadawap hidrokarbon membuktikan bahawa rGO/γ-Fe2O3 lebih sensitif terhadap aseton, berbanding dengan etanol, propanol dan metanol. Di samping itu, penemuan ini menunjukkan kajian pertama yang melibatkan rGO/γ-Fe2O3 dalam aplikasi penderiaan optik. Cabaran utama dalam mengesan ion logam berat merupakan masalah hakisan bahan nano berunsur graphene ketika bahan ini berinteraksi dengan analit dalam keadaan akues. Sehubungan itu, matriks bahan khas amat diperlukan untuk melekatkan lapisan penderiaan rGO/γ-Fe2O3 terhadap lapisan emas (Au). Penyelidikan ini telah membuktikan bahawa N-Hidrooksuccinimide/1-etil-3-(3-dimethylaminopropyl) carbodiimide (EDC/NHS) boleh bertindak sebagai lapisan perlindungan yang berkesan dalam struktur penderiaan. Keterbaian optimum lapisan Au, rGO/γ-Fe2O3 dan EDC/NHS ialah 41, 8.75 dan 4 nm masing-masing dan had
pengesanan lapisan penderiaannya terhadap ion Pb2+ menunjukkan kepekatan 0.001 ppm dalam eksperimen air statik. Walau bagaimanapun, had pengesanan ini dapat dipertingkatkan dengan menggunakan kepekatan 0.3 ppb dengan kaedah peredaran air. Pemilihan terhadap ion Pb2+ boleh ditingkatkan dengan menggantikan EDC/NHS dengan polyvinylchioride (PVC). Kerja ini menonjolkan kelebihan komposit nano rGO/\(\gamma\)-Fe\textsubscript{2}O\textsubscript{3} sebagai lapisan penderiaan dalam penderia berasaskan SPR bagi mengesan ion Pb2+ dalam air. Prestasi penderiaannya menunjukkan potensi besar dalam teknik penderiaan yang teguh, murah, sensitif dan memilih terhadap pengesan logam berat, di samping memainkan peranan dalam mengatasi masalah alam sekitar.

Keputusan kajian kuantitatif menunjukkan peredaran sudut pada 1.1 darjah dalam wap aseton berkepekatan 10 %, EDC/NHS mempertingkat lapisan penderiaan untuk berfungsi di bawah peredaran air untuk 50 eksperimen dan pengesan ion plumbum dalam air pada kepekatan 0.3 ppb.
ACKNOWLEDGEMENTS

First and foremost, Alhamdulillah, all thanks and praise is due to the most gracious Allah for granting me the required good health guidance, spiritual comfort and steadfastness throughout my research journey.

Big thanks to my Iraqi government represented by different joints (Eng. of Laser and Optoelectronics Department, Head of university of technology, scholarship and cultural relations, Iraqi embassy as well as Iraqi cultural attaché in Malaysia) nothing can be done without their support, help and friendly assistance. Special thanks for senior supervisor Prof. Mohd Adzir Mahdi for his valuable support, guidance, encouragement, intellectual input and friendship in conducting this research to its success as well as I should deeply thank to the Universiti Putra Malaysia represented by the staffs of the Department of Computer and Communication Systems Engineering for their continuing support. Special thanks to my Father and my Mother for love and highly support, I also would like to take this opportunity to express my sincerest love to my family and my lovely children; for unconditional love, support and patience. I thank my beloved brothers, sister and all relatives for their continuous support and encouragement. A special gratitude as well to Dr. Mohd Hanif Yaacob and Dr. Janet Lim Hong Ngee as my co-supervisors for making my PhD program a truly fruitful experience. Their helpful suggestions and advice on various aspects of my research work have certainly been very constructive.

I wish to thank to my colleagues and friends especially Yasmin Mustapha Kamil at the Photonic Lab and WIPNET their help, providing a friendly work and inspiring environment for conducting research. May our friendship last forever.

I would also like to pass my special thanks to Dr. Ahmad Ashrif A. Bakar, Dr. Muhammad Z. Ahmad, Dr. Huang Nay Ming and for their support.
I certify that a Thesis Examination Committee has met on 1 February 2017 to conduct the final examination of Ali Abdulkhaleq Abdulhadi on his thesis entitled "Surface Plasmon Resonance Sensors using Reduced Graphene Oxide-Maghemit Composite Material for Plumbum Ion Detection" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Syed Abd Rahman Al-Haddad bin Syed Mohamed, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Ahmad Shukri bin Muhammad Noor, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Mohd Nizar bin Hamidon, PhD
Associate Professor
Institute of Advance Technology
Universiti Putra Malaysia
(Internal Examiner)

Boon S. Ooi, PhD
Professor
King Abdullah University of Science and Technology
Saudi Arabia
(External Examiner)

\[\text{Signature}\]

NOR AINI AB. SHUKOR, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 22 March 2017
This thesis was submitted to the Senate of the Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Mohd Adzir Mahdi, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Mohd Hanif Yaacob, PhD
Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Janet Lim Hong Ngee, PhD
Senior Lecturer
Faculty of Science
Universiti Putra Malaysia
(Member)

ROBIAH BINTI YUNUS, PdD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software

Signature: ___________________________ Date: ________________

Name and Matric No.: Ali Abdulkhaleq Abdulhadi Alwahib, GS34510
Declaration by Members of Supervisory Committee

This is to confirm that:
- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) were adhered to.

Signature:
Name of Chairman of Supervisory Committee: Professor Dr. Mohd Adzir Mahdi

Signature:
Name of Member of Supervisory Committee: Dr. Mohd Hanif Yaacob

Signature:
Name of Member of Supervisory Committee: Dr. Janet Lim Hong Ngee
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvi</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Background</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Problem Statement</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Research Objective</td>
<td>2</td>
</tr>
<tr>
<td>1.4 Research Hypothesis</td>
<td>3</td>
</tr>
<tr>
<td>1.5 Scope of Research</td>
<td>3</td>
</tr>
<tr>
<td>1.6 Thesis Layout</td>
<td>5</td>
</tr>
</tbody>
</table>

2 LITERATURE REVIEW

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Introduction</td>
<td>6</td>
</tr>
<tr>
<td>2.2 Heavy Metals and Sensing Techniques</td>
<td>6</td>
</tr>
<tr>
<td>2.3 Graphene-based as Sensing Layer in Heavy Metal Detections</td>
<td>10</td>
</tr>
<tr>
<td>2.4 Surface Plasmon Resonance</td>
<td>11</td>
</tr>
<tr>
<td>2.5 Theoretical Model of Prism-based SPR</td>
<td>15</td>
</tr>
<tr>
<td>2.6 Methods of Deposition Graphene Based Material.</td>
<td>23</td>
</tr>
<tr>
<td>2.7 Summary</td>
<td>25</td>
</tr>
</tbody>
</table>

3 PRISM BASED SURFACE PLASMON RESONANCE

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRAPHENE/MAGHEMITE NANOCOMPOSTIE MATERIAL</td>
<td>26</td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>26</td>
</tr>
<tr>
<td>3.2 Experimental Setup of Kretschmann Configuration</td>
<td>26</td>
</tr>
<tr>
<td>3.3 Sensing layer rGO/γ-Fe2O3 Characterization</td>
<td>28</td>
</tr>
<tr>
<td>3.3.1 Surface Morphology</td>
<td>28</td>
</tr>
<tr>
<td>3.3.2 Raman Scattering</td>
<td>30</td>
</tr>
<tr>
<td>3.3.3 X-Ray Powder Diffraction (XRD) Results</td>
<td>31</td>
</tr>
<tr>
<td>3.4 Deposition of Layers</td>
<td>32</td>
</tr>
<tr>
<td>3.4.1 Gold Deposition</td>
<td>32</td>
</tr>
<tr>
<td>3.4.2 Deposition of rGO/γ-Fe2O3</td>
<td>33</td>
</tr>
<tr>
<td>3.5 Measurements of Material Thickness</td>
<td>35</td>
</tr>
<tr>
<td>3.6 Evaluation of rGO/γ-Fe2O3 Nanomaterial as Hydrocarbons Vapor Sensor</td>
<td>37</td>
</tr>
<tr>
<td>3.6.1 Fabrication of sensing layer</td>
<td>37</td>
</tr>
<tr>
<td>3.6.2 Sensing Performance</td>
<td>39</td>
</tr>
<tr>
<td>3.6.3 Sensor Stability and Recovery</td>
<td>42</td>
</tr>
</tbody>
</table>
3.7 Investigation of EDC/NHS as a Protective Layer 45
3.8 EDC/NHS Coating Procedure 45
3.8.1 Reliability Test of EDC/NHS Coated Sensor Chip 46
3.9 Summary 50

4 PRISM-BASED SURFACE PLASMON RESONANCE WITH rGO/γ-Fe₂O₃ AND EDC/NHS LAYER 51
4.1 Introduction 51
4.2 Preparation of Analyte 51
4.3 Optimization of SPR Sensor 52
4.4 SPR Signal Characterization 58
4.4.1 Pb²⁺ Ion Detection 58
4.4.2 Selectivity of Sensor to Pb²⁺ Ion 61
4.4.3 Sensogram 62
4.4.4 Relationship between the thickness of Au 64
4.5 Limit of Detection Enhancement 66
4.6 Enhancement of Sensor Selectivity on Pb²⁺ ions 70
4.7 Summary 73

5 CONCLUSIONS AND FUTURE WORK 74
5.1 Conclusion 74
5.2 Contributions 74
5.3 Future Works 75
5.4 Summary 75

REFERENCES 76
APPENDICES 88
BIODATA OF STUDENT 113
LIST OF PUBLICATIONS 114
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>A comparison of the conventional analytical techniques with SPR for detection of heavy metal ions</td>
</tr>
<tr>
<td>2.2</td>
<td>Heavy metals concentration and sensing layer applied in SPR technique</td>
</tr>
<tr>
<td>2.3</td>
<td>Comparison of deposition technique for graphene based material</td>
</tr>
<tr>
<td>3.1</td>
<td>Hydrocarbon properties arranged according to the higher angle shift</td>
</tr>
<tr>
<td>4.1</td>
<td>Different heavy metals used in comparison with Pb$^{2+}$</td>
</tr>
<tr>
<td>4.2</td>
<td>Complex refractive index, resonance angle and reflectivity of rGO/γ-Fe$_2$O$_3$, the refractive index and thickness of gold are 0.1726+3.421i and 41 nm, respectively</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Scope research diagram</td>
</tr>
<tr>
<td>2.1</td>
<td>Kretschmann prism configuration in SPR technique</td>
</tr>
<tr>
<td>2.2</td>
<td>Dispersion curve for direct light wave in metal-dielectric interface</td>
</tr>
<tr>
<td>2.3</td>
<td>Resonance signal of angular modulation method</td>
</tr>
<tr>
<td>2.4</td>
<td>Schematic diagram of 60° prism</td>
</tr>
<tr>
<td>2.5</td>
<td>Field vectors of the incident, transmitted, and reflected waves in case the electric and magnetic field vectors lie within the plane of incidence (P polarization)</td>
</tr>
<tr>
<td>2.6</td>
<td>Schematic diagram of prism-based Kretschmann configuration</td>
</tr>
<tr>
<td>2.7</td>
<td>General solution for N-layer model</td>
</tr>
<tr>
<td>2.8</td>
<td>Schematic of surface plasmon waves at the interface between a metal and a dielectric. The plasmon propagates into the x-direction and it decays exponentially into the z-direction</td>
</tr>
<tr>
<td>3.1</td>
<td>Prism-based SPR setup utilizing Kretschmann configuration</td>
</tr>
<tr>
<td>3.2</td>
<td>FESEM images; (a) rGO sheet with Fe₂O₃, (b) rGO alone, (c) rGO/γ-Fe₂O₃ powder and (d) rGO/γ-Fe₂O₃ in ethanol</td>
</tr>
<tr>
<td>3.3</td>
<td>(a) TEM image of rGO/γ-Fe₂O₃ composite, (b) distribution of particle size analysis of TEM image using UTHSCSA image tool software program</td>
</tr>
<tr>
<td>3.4</td>
<td>Raman spectrum of rGO/γ-Fe₂O₃</td>
</tr>
<tr>
<td>3.5</td>
<td>UV/visible spectrum of rGO/γ-Fe₂O₃ nanocomposite layer</td>
</tr>
<tr>
<td>3.6</td>
<td>XRD patterns of (a) Fe₂O₃, (b) GO and (c) rGO/γ-Fe₂O₃</td>
</tr>
<tr>
<td>3.7</td>
<td>Sputter coater equipment used to deposit Au layer</td>
</tr>
<tr>
<td>3.8</td>
<td>rGO/γ-Fe₂O₃ nanomaterial suspended in ethanol</td>
</tr>
<tr>
<td>3.9</td>
<td>Manual spraying apparatus (a) hand tool airbrush and (b) its motor</td>
</tr>
<tr>
<td>3.10</td>
<td>Setup for preparation of rGO/γ-Fe₂O₃ layer thorough airbrushing technique</td>
</tr>
</tbody>
</table>
3.11 Experimental results of SPR signal for different deposition times of Au layer

3.12 (a) Comparison between theoretical and experimental SPR signals, and (b) AFM image of the deposited Au layer

3.13 Fitting between experiment and Fresnel reflection model Au-rGO/γ-Fe2O3 sensor

3.14 Details of trilayer SPR sensor

3.15 Theoretical SPR signals of tri-layer sensor with variation of thickness for the second Au layer

3.16 (a) SPR signals of the acetone vapor detection using rGO/γ-Fe2O3 sensing layer, and (b) its resonance angle shift at variation of concentrations with different hydrocarbon liquids

3.17 Variation of SPR response to 10% acetone for (a) bilayer and (b) trilayer sensor

3.18 Sensogram curve SPR signal as function of time

3.19 SPR curves of Au-rGO/γ-Fe2O3 (a) without EDC/NHS, and (b) with EDC/NHS

3.20 Microscope images at 1µm show the effect of water on (a) rGO/γ-Fe2O3, (b) rGO/γ-Fe2O3 + EDC/NHS

3.21 (a)rGO/γ-Fe2O3 structure (b) coupling agent EDC/NHS can be created on any carboxyl-containing molecule

3.22 FTIR spectrum of (a) Au/ rGO/γ-Fe2O3 and (b) Au- rGO/γ-Fe2O3 - EDC/NHS

4.1 Measured SPR signal for sensor using Au layer only, its thickness is 50 nm

4.2 SPR response at 15 ppm for Au-EDC/NHS sensing layer at different deposition times, the thickness of Au layer is 50 nm

4.3 Fitting between experimental and Fresnel equations model of Au-EDC/NHS layer, the thickness of Au layer is 50 nm and the immersed time of EDC/NHS is 15 minute

4.4 AFM image of rGO/γ-Fe2O3 thickness at spray time, (a) 30 second and (b) 60 second
4.5 Resonance angle shift with variation of rGO/γ-Fe₂O₃ thickness, the thickness of Au and EDC/NHS layers are 50 nm and 4 nm, respectively

4.6 Simulation of variation of gold layer according to the other layers, the thickness of rGO/γ-Fe₂O₃ and EDC/NHS layers are 8.75 nm and 4 nm, respectively.

4.7 FESEM image of the Au layer thickness on the glass slide

4.8 Measured SPR signal for different Pb²⁺ ion concentrations, more than 1 ppm

4.9 Measured SPR signal for different Pb²⁺ ion concentrations, 1 ppm and lower

4.10 Measured resonance angle shift with different heavy metals and concentrations individually

4.11 Response of resonance angle shift with time for different concentrations of Pb²⁺ ion; (a) 0.1 ppm and above, and (b) 0.01 and 0.001 ppm

4.12 Simulation result of minimum reflectivity against thickness of rGO/γ-Fe₂O₃ sensing layer at different Au layer thickness

4.13 Relationship between gold thickness and rGO/γ-Fe₂O₃ sensing layer at the 0.16 minimum reflectivity

4.14 (a) Water circulation chamber and (b) its integration with prism during the experiment

4.15 Illustration of the flow rate near to the sensing layer surface (boundary layer) for laminar and turbulent effects

4.16 Measured SPR signal form water circulation experiment at Pb²⁺ ion concentration of (a) 1 ppm and (b) 5 ppm

4.17 Measured SPR response at 0.3 ppb Pb²⁺ ion concentration using water circulation method

4.18 Chemicals used in the experiment

4.19 SPR angle shift with variation of PVC compositions

4.20 Selectivity of Au- rGO/γ-Fe₂O₃ -PVC towards different heavy metals measured individually
LIST OF ABBREVIATIONS

\[\theta_R \] Resonance angle

[a.u.] An arbitrary unit

AAS Atomic absorption spectroscopy

ATR Attenuated total reflection

AFM Atomic-force microscopy

Ar Arsenic

ASV Anodic stripping voltammetry

Au Gold

BCAT P-Tert-butycalix[4]arene-textrakis

CdCl\textsubscript{2} Cadmium chloride

CNT Carbon nano tube

cp Centipoise

CuSO\textsubscript{4} Copper sulfide

CVD Chemical Vapor Deposition

DI Deionized

EDC 1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimide

E\textscript{i} Incident electric filed

E\textscript{r} Reflected electric filed

FESEM Field Emission Scanning Electron Microscope

G Graphene

GO Graphene Oxide

HgCl\textsubscript{2} Mercuric chloride

ICPMS Inductively coupled plasma mass spectrometry

INAA Instrumental neutron activation analysis
ITO Indium tin oxide
1/min liter/minute
MOS Mercury Specific Oligonucleotide
NHS N-hydroxysuccinimide
Pb Plumbum element
ppb Part per billion
ppm Part per million
ppt Part per trillion
PPy-ChI Polypyrrole chitosan
PVC Polyvinyl chloride
rGO Reduced Graphene
RI Refractive index
sc chitosan
SEM Scanning Electron Microscope
SPR Surface Plasmon Resonance
TEM Transmission electron microscopy
TIR Total internal reflection
TM Transverse magnetically
UTHSCSA UT Health Science Center San Antonio
XRF X-ray fluorescence spectrometry
δ Phase shift
ε Dielectric of medium
ε_m Dielectric constant of metal
θ_res resonance angle
CHAPTER 1

INTRODUCTION

The first chapter of this thesis outlines the work carried out in this PhD research project. This includes the research motivation, objectives, the author’s achievements as well as the organization of this thesis.

1.1 Background

Heavy metal contamination around the world is becoming an alarming issue, as it continues to challenge the environmental sustainability today. The Department of Environment Malaysia has reported that out of 1,705,308.14 metric tons of waste generated in 2009, 4.9 % of the contents alone was heavy metal sludge [1]. A more pressing issue is the uncontrolled accessibility of these contaminants to migrate into drinking water sources as reported in India, Thailand, Nepal, Bangladesh, and China [2].

Heavy metals are metallic elements which density exceeds 5 g/cm³ [3]. It is due to their heaviness that they are known to cause severe toxicity, even at minimal concentrations. The presence of heavy metals in the environment can be from both natural processes and industrial activities. Among the heavy metals that have been threatening human health include Plumbum (Pb²⁺), Cadmium (Cd²⁺), Mercury (Hg²⁺), and Arsenic (As³⁺).

Case studies reported damage of the central nervous system, lungs, liver, endocrine glands, kidneys and bones due to acute intoxication of the aforementioned heavy metals [4]. Chronic exposure towards the elements, on the other hand, implicated high risk of cancer and degenerative diseases[5], [6].

There are a number of powerful conventional methods available for the determination of heavy metals. Among the procedures include atomic absorption spectroscopy (AAS), total reflection X-Ray fluorimetry (TXRF), inductively coupled plasma mass spectrometry (ICP-MS) and anodic stripping voltammetry (ASV) [7]. Yet, despite the wide linear ranges and good limit of detection these methods offer, the procedures are laborious and require sophisticated facilities that are expensive. With the escalating number of cases related to heavy metal pollution, it has become a necessity to find an excellent continuous monitoring system that can be a useful tool in managing the issue.
1.2 Problem Statement

Contamination of Pb$^{2+}$ in water sources is among the severe threats to human health associated with heavy metals. Published studies have documented that young children are most vulnerable towards Pb$^{2+}$ toxicity and may suffer adverse effects like growth retardation and neurological development [8].

Common sources of Pb$^{2+}$ contamination may come from old structures built using plumbing alloys and also the continuation usage of plumbum components such as water valves and water meters [9] [10]. Reviews reported a geometric mean of plumbum levels in drinking water to be less than 10 parts per billion (ppb) [11]. Therefore, the optimal way of monitoring plumbum traces in water sources is with a sensing setup that has a very low limit of detection. However, no portable sensors have the ability to work within the ppb region efficiently and continuously.

Surface plasmon resonance (SPR) based sensors have shown reliable performance in various sensing applications [12]. The fundamental concept relies on the effect of refractive index change within the external surrounding towards the optical properties of the plasmonic waves created on the sensing region of the SPR, which would produce a measurable shift in the output spectrum. Prism based SPR has reported a detection limit of 1 ppb for the detection of Pb$^{2+}$ using a combined differential SPR and anodic stripping voltammetry approach [13]. To the best of our knowledge, this method has achieved the lowest limit of detection for the sensing of Pb$^{2+}$. However, the sensing mechanism of the sensor is complicated as compared to the conventional SPR technique.

Over the decade, extensive investigations of additional sensing layers onto SPR have diversified in terms of not only application, but also performance of the sensor. The exposed sensing region of the SPR creates a platform of integration with other materials for the enhancement of both sensitivity and selectivity of the sensor. Ni (II) ion detection by using nanoparticle enhanced SPR managed to obtain good selectivity with a limit of detection as low as 0.05 ppb[14]. We have yet to find any thorough reports on nanoparticle enhanced SPR for the detection of Pb$^{2+}$ with comparable performance.

1.3 Research Objective

The main objective of this research is to propose new SPR sensors, which has low detection limit and selectivity to Pb$^{2+}$ ions. The following specific research objectives are to be fulfilled in this research work;

a) To investigate the feasibility of reduced graphene-maghemite (rGO/γ-Fe$_2$O$_3$) nanomaterial as a sensing layer in prism-based SPR sensors using hydrocarbon vapors as test sample.
b) To study N-(3-dimethylaminopropyl)-N-ethylcarbodiimide hydrochloride/hydroxysuccinimide (EDC/NHS) as a protection layer against the adverse effects of water towards the rGO/γ-Fe2O3 nanomaterial-sensing layer.

c) To develop SPR prism-based sensors with the integration of rGO/γ-Fe2O3 and EDC/NHS that aims to detect Pb2+ ions in concentration of less than 1 part per billion.

1.4 Research Hypothesis

The present study was performed under the hypothesis that the ability of SPR technique to have excellent detection limits in range of sub part per billion for Pb2+. This task will be accomplished by using rGO/γ-Fe2O3 new sensing layer, Au layer as plasmonic material, EDC/NHS as protection layer and finally PVC to enhance the selectivity to Pb2+.

Reduced Graphene oxide and nanomaterial each of them has their own properties however at same time contradict between them. The ability of using one material in two different processes under SPR theory can create a big challenge due to varying in modulation method. In sensor application, the low detection limit and selectivity are depending directly on the sensing material and the detection process. Therefore, that composite material can play a vital role in detection because composite materials have properties which is found most difficult in one material.

1.5 Scope of Research

In this research study, the focus is to investigate an SPR based optical sensor for the detection of Pb2+, as depicted in Figure 1.1. A prism-based SPR is chosen as the main sensor platform.
Figure 1.1 : Scope of research diagram

The work introduces an investigation on the integration of a new nanocomposite material known as reduced graphene oxide (rGO) and maghemite (γ-Fe₂O₃) to the SPR setup. Up until today, rGO/γ-Fe₂O₃ nanocomposite has yet to be utilized for any sensing applications. The rGO/γ-Fe₂O₃ integrated SPR setup will be introduced to samples of two different phases: gas phase and liquid phase. For gas phase, the feasibility of graphene nanocomposite material for detection hydrocarbon vapors will be investigated and tested. Then, this nanocomposite will be used to detect the presence of Pb²⁺ in both static water and water circulation, which the core of the work.

For all experimental works, the thickness optimization of gold and sensing layers will be performed using a theoretical model. Limit of detection and selectivity of the sensor will be analyzed.
1.6 Thesis Layout

This thesis is consists of six chapters and is outlined as follows:

a) Chapter 1 discusses on the introduction, overview of the undertaking research in SPR-based heavy metals sensors.

b) Chapter 2 focuses on the literature review that describes the rationale behind the research work. This includes a thorough discussion on the fundamental concept of SPR as a sensor. Prism based SPR techniques and the performance in heavy metal detection is reviewed, followed by a comparison on different type of active sensing layers.

c) Chapter 3 shows the design and fabrication process of the prism based SPR sensor for the detection of hydrocarbon vapors. This includes the preparation and deposition of the transparent substrates used in this research.

d) Chapter 4 shows the design and fabrication process of the prism based SPR sensor for the detection of Pb^{2+} ions. This includes the preparation and deposition of transparent substrates used in this research. Results and discussion of prism based SPR are presented and analyzed according to three different experiments. The thickness analysis of the gold layer, the sensing layer and the protection layer are discussed and fitting are made between experimental results and Fresnel equations model.

e) Chapter 5 concludes the work with a brief summary of the research findings made during the study and its contribution, as well as recommendations, for future work.
REFERENCES

