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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of 
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PARAMETER ESTIMATION OF KUMARASWAMY BURR TYPE X 
MODELS BASED ON CURE MODELS WITH OR WITHOUT 

COVARIATES

By

MADAKI UMAR YUSUF

June 2017

Chairman : Mohd Rizam Abu Bakar, PhD
Faculty : Science

In the last few years, many attempts have been made to define new models that extend
well known Beta Kumaraswamy-G (BK-G) and Kumaraswamy-G (K-G) families of
distribution that can provide a greater flexibility in modeling real-life data. Further-
more, one of the weakness of Beta distribution is that it is not fairly tractable and in a
particular case, its cumulative distribution function (CDF) involves the incomplete beta
function ratio.

Kumaraswamy distribution has a closed form of probability density function (PDF) and
CDF, which makes it tractable. This motivated us to extend the BK-G family which has
four shape parameters and K-G family which has two shape parameters. The Burr Type
X (BX) distribution was chosen because of its PDF and CDF are of a closed form. As
a consequence of this, it can be used suitably for censored data.

Based on the problem stated, we develop a new model using the method of confounding
the existing parametric models by adopting the BX model as the baseline distribution.
This proposed model is called Beta Kumaraswamy Burr-Type X (BKBX) distribution
with six parameters. Due to the intricacy and non-close form solution of the BKBX
model, we provide the modified better version of the model by reducing its parameters
to four and called this as Kumaraswamy Burr-Type X (KBX) distribution.

In this thesis, we considered two methods via the classical maximum likelihood esti-
mation (MLE) and the Bayes estimation using the Gibbs sampling (G-S) algorithm to
estimate the parameters of BKBX, KBX and Beta-Weibull (BWB) models. We obtai-
ned the posterior summaries considering the cure models with covariates by the method
of Gibbs sampling of the Markov Chain Monte Carlo (MCMC). Series of simulation
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studies were conducted to evaluate the performance of the proposed estimation appro-
aches. The two common types of cure fraction models, namely; mixture and the non-
mixture models for the survival data based on the BKBX, KBX and BWB distributions
were provided.

Hence, to obtain effective results for the cure models with censored data and covariates,
the estimation of the parameters was done under a Bayesian approach using G-S met-
hod. The comparison was done between the BKBX, KBX and BWB models to validate
the usefulness of the modified distributions. The KBX signifies and proves to be less
time consuming, have a close form solution of both its survival and hazard function
unlike BKBX and BWB models and yet have similar features as the Kumaraswamy
Weibull (KWB) distribution. Based on the results of the cure models, with or without
covariates for the censored dataset used at all levels of comparison, the KBX model ok
to be the best choice.

The application of real datasets which are uncensored and not cure model of right ske-
wed, left skewed and approximate symmetry were considered. Based on the results
obtained, the KBX distribution has provided a better fit compared to the BKBX, the
baseline BX, and non-nested models based on the model selection criteria using the
MLE.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 
memenuhi keperluan untuk ijazah Doktor Falsafah

PENGANGGARAN BERPARAMETER MODEL KUMARASWAMY BURR 
JENIS X BERDASARKAN MODEL SEMBUH DENGAN ATAU TANPA 

KOVARIAT

Oleh

MADAKI UMAR YUSUF

Jun 2017

Pengerusi : Mohd Rizam Abu Bakar, PhD
Fakulti : Sains

Dalam beberapa tahun kebelakang ini, terdapat banyak percubaan dibuat untuk mem-
bentuk model baharu dengan meluaskan taburan famili terkenal Beta Kumaraswamy-G
(BK-G) dan Kumaraswamy-G (K-G) yang mampu membuat pemodelan lebih fleksibal
terhadap data sebenar. Selain itu, salah satu kelemahan taburan Beta adalah ia tidak
mudah dikawal dan dalam kes tertentu fungsi taburan kumulatif (CDF) nya melibatkan
fungsi nisbah Beta tak lengkap.

Taburan Kumaraswamy memiliki bentuk fungsi kepadatan kebarangkalian (PDF) dan
CDF yang tertutup dan mudah dikawal. Ini mendorang kami untuk meluaskan famili
BK-G yang mempunyai empat parameter bentuk dan famili K-G yang mempunyai dua
parameter bentuk. Taburan Burr jenis X (BX) dipilih kerana PDF dan CDF nya adalah
dalam bentuk tertutup. Susulan itu, ia sesuai untuk digunakan pada data tertapis.

Berdasarkan masalah yang dinyatakan, kami membina model baharu menggunakan ka-
edah pembauran terhadap model berparameter sedia ada dengan mengambil model BX
sebagai taburan dasar. Model yang dicadangkan ini dinamakan dengan taburan Beta
Kumaraswamy Burr jenis X (BKBX) dengan enam parameter. Oleh kerana penyele-
saian terhadap model BKBX ini rumit dan berbentuk tak tertutup, kami menghasilkan
model terubahsuai yang lebih baik dengan mengurangkan parameter kepada empat dan
memanggil model ini dengan taburan Kumaraswamy Burr jenis X (KBX).

Dalam tesis ini, kami mempertimbangkan dua kaedah melalui penganggaran kebo-
lehjadian maksimum klasik (MLE) dan penganggaran Bayes yang menggunakan al-
goritma persampelan Gibbs (G-S) untuk menganggar parameter model BKBX, KBX
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dan Beta-Weibull (BWB). Kami memperoleh ringkasan posterior berdasarkan angga-
pan model sembuh dengan kovariat menggunakan kaedah pensampelan Gibbs rantai
Markov Monte Carlo. Siri kajian simulasi dijalankan untuk menilai prestasi pende-
katan penganggaran yang disaran. Dua jenis model pecahan sembuh yang lazim iaitu
model campuran dan tak campuran bagi data mandirian berdasarkan taburan BKBX,
KBX dan BWB disediakan.

Oleh yang demikian, untuk mendapatkan hasil yang berkesan untuk model sembuh den-
gan data tertapis dan kovariat, penganggaran parameter telah dilakukan melalui pende-
katan Bayes menggunakan kaedah G-S. Perbandingan telah dilakukan antara BKBX,
KBX dan BWB untuk mengesahkan kebergunaan taburan terubahsuai. KBX menun-
jukkan dan membuktikan penggunaan masa yang rendah, memiliki bentuk penyele-
saian tertutup bagi kedua-dua fungsi mandirian dan bahaya tidak seperti model BKBX
dan BWB dan malah memiliki ciri yang hampir sama dengan taburan Kumaraswamy
Weibull (KWB). Berdasarkan kepada keputusan model sembuh, sama ada dengan kova-
riat atau tidak untuk data tertapis pada semua tahap perbandingan, model KBX terbukti
satu pilihan terbaik.

Penggunaan data sebenar yang tidak tertapis dan bukan model sembuh yang pencong
kanan, pencong kiri dan hampir simetri telah dilakukan. Berdasar kepada keputusan
yang dicapai, ternyata taburan KBX lebih sesuai berbanding dengan BKBX, asas BX
dan model tak tersarang pada kriteria pemilihan model menggunakan MLE.
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CHAPTER 1

INTRODUCTION

1.1 Background of the Study

The general conceptual ideology of probability distribution theory of a newly developed
models, by confounding and modifying existing distributions which is also apply by the
method of Bayesian survival data analysis by estimating the unknown parameters using
iterative algorithm which refers to as an approach which simply define to be a process
that corresponds to the time to event of a study, meaning a time assigned for a period
until the occurrence of an event of interest, the end or terminal points.

It is very important to decide what actually the event and how far or long it will take
the follow-up period would be in the case of what we called censoring study event. In a
cancer research base on clinical trials, the time origin mostly maintained with the time
of patients into a trial while on the other hand the endpoint is the death time of patient
which experience different event or simply end of the trial.

A time to event data generally violates the assumptions of normality which makes them
rarely follow the normal (Gaussian) distribution and also on the other hand they are ske-
wed in nature mostly follows the assumption of Weibull and Burr Type X distributions.
It is very uncommon to include many conjugate prior distributions for an event in the
study to obtain the posterior distribution.

Base on the above issues that its generally makes it necessary to the particular methods
of survival analysis. The major challenges that comes into consideration regarding
the time to event data analysis, normally arises base on the fact that the lifetimes of
the target group subset will always be an unknown after follow-up and only some few
(susceptible) patients may experience the event. It is define in survival data analysis as
an incomplete observation or censoring, which varies in many ways as mention below:

1. When a patient does not experienced the event (death) or is terminated.

2. An insufficient or irregular follow-up of a patient between the period of trial, and

3. A patient or individual experiences of some other different study event other than
event of interest.

Frequently, the period of survival time for a given group of cancer patients which can
be seen as a time line where the event is exempted, at least in a theoretical aspect to ter-
minate the follow-up time. This is an example of what we called right censoring which
is the most common among all the types of censoring in the survival data analysis.

1



© C
OPYRIG

HT U
PM

Alternatively, the second type of censoring which is the interval censored data which
consist the general case of the left and right censoring which are the special cases of
the interval censored data. These type of censoring can be generated when the hazard
or failure time for the observed patients data that includes the trial is not the same or
exactly known but it lies between an interval of two successive assigned time.

Generally, in the presence of censored data to make it necessary for analyzing the sur-
vival data using the statistical techniques for the data exploration cannot be used. In
many trials related to cancer studies, the environment and cohort of the individuals
which are included in the study are called ”heterogeneous cohorts ” which are divided
into two groups, the first group constitute of individual patients who become those that
will not experience the event (insusceptible ones) to the cancer disease and included to
be cured.

On the other hand, the second group which contains the individuals that do not respond
to treatments while on the follow-up time period and also remain for their lifetime as
uncured. One of the major interest of the clinical trials in estimating the cured patients
proportion is more importantly by determining the survival cancer trends patients of
the cohort. Moreover, the models that normally takes the cure fraction is accounted and
widely used in survival modeling.

The most familiar and attentive models are the mixture otherwise known as (standard
parametric cure) and the bounded cumulative hazard (BCH) models. In recent years
these models received more attention in the literature. This model mostly proposed to
be a class or group of a cancer patients that attend a clinical trials and at the initial stage
process of a follow-up to treatment, while some cancer patients still be left uncured.

These cancer cells are called clonogens, which grows rapidly and replaces the normal
tissue in human body tissue. Moreover, the BCH model base on the number of the
cancer cells assumes that it follows a Poisson model. The estimation base on the cure
fraction model generally depends on estimating the survival function of the model. Its
gives clear view and clue to the probability of the time-to-event of interest.

The major approach used for estimating the hazard and survival functions, also the
parametric and non-parametric models. The parametric method of estimation involves
models like: beta, exponential, gamma and Weibull distributions etc, are represented as
the distribution function of the survival data analysis.

Additionally, in this process sometimes it attracts more incorporation to some cova-
riates in the function to which leads to knowledge gain about a particular prognostic
factors that might probably affect the decision of a cure probability base on the as-
sumption of parametric models.
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On the other hand, we have the non-parametric approach which involves some methods
that does not follow any existing distributional function but rather where a parametric
estimation might not be suitable it applies to that by simply violating the assumption of
normality and other skewed models like: Weibull and Burr Type X distributions. This
approach simply leans on by estimating the survival and hazard functions by the means
of some wide range of usage estimators, depends on the censoring type.

In the presence or case with censored data where an information is partially completed,
its generally one of the primary role and most basic function of survival data analysis
which does not work without censoring. For example, in the case of right censoring the
most commonly used method for estimating the functions is called Kaplan-Meier esti-
mator or a product limit estimator is the limit of the life-table estimator when intervals
are taken so small that only at most one distinct observation occurs within an interval.

Kaplan-Meier estimator is a maximum likelihood estimate, while in the interval cen-
soring case, the Turn-bull estimator is very common and had been widely used for the
time been in recent years. Though, with some important limitations it is very much ob-
vious to develop a method and implement it using Kaplan-Meier estimator with interval
and left censored survival data.

1.1.1 Motivations for Choosing Beta Generated Kumarawamy-G and
Kumaraswamy-G Families

Furthermore, the basic motivations for the Beta Generated Kum-G and Kum-G families
in practice are the following:

1. To make the kurtosis more flexible compared to the baseline model;

2. To produce a skewness for symmetrical distributions;

3. To construct heavy-tailed distributions for modeling real data;

4. To generate distributions with symmetric, left-skewed and right-skewed.

5. To define special models with all types of the hazard rate function;

6. To provide consistently better fits than other generated models under the same
underlying distribution.

1.1.1.1 Motivations for Choosing Burr Type X as a Baseline Distribution

The motivations for choosing Burr Type X distribution are:

1. It is quite common to the two parameter gamma, Weibull and generalized expo-
nential distributions.
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2. The density function of Burr Type X has close form.

3. The Burr Type X can be used very conveniently even for censored data.

4. Unlike gamma, Weibull and Generalized exponential distributions, it has non-
monotone hazard form which can be very useful in many practical applications.

5. The Burr Type X hazard function is monotonically increasing, monotonically
decreasing and bathtub shapes unlike Unlike gamma, Weibull and Generalized
exponential distributions with only monotonically increasing, monotonically de-
creasing shapes respectively.

6. The Burr Type X model, as a special case to the due to the relative flexibility of
its hazard function and the ease for estimation of its parameters, ever since it has
been widely used for analyzing reliability and agricultural lifetime data.

1.1.1.2 Motivations for BKBX and KBX Distributions

The motivations for choosing BKBX and KBX distribution are:

1. Model flexibility due to number of shape parameters provided.

2. Ability to tackle and solve an old problem by proposing a joint models.

3. We were motivated to introduced a new model called BKBX with six parameters
(θ = ν ,κ,ϕ,ψ,ϑ ,τ) and also the modification of BKBX called the KBX model
with four (θ = ϕ,ψ,ϑ ,τ) parameters, which generalized many of its baseline
distributions, sub-models with their properties respectively

4. The fact that, this new models consists of several varieties of model fitting many
areas of applied statistics, engineering, medicine and agriculture.

5. These two models serve as a generalization to other existing models which are
very flexible and versatile models with properties of their densities which can
be expressed as a mixture of many sub-models of Beta-G and Kumaraswamy-G
families. For example, Burr Type X, Beta exponential, generalized exponential
and Rayleigh distributions respectively.

Beta Kumaraswamy Burr Type X model is a very large family sub-model with quite a
lot great properties of three most efficient models (Beta, Kumaraswamy and Burr Type
X), which interest me to choose this flexible parametric high family of distribution with
varieties of data fittings based on the shapes of the models parameters (right and left
skewed datasets).

Reference to Kumaraswamy model as he fails to accept the fact that beta distribution
does not fit hydrological datasets while Burr Type X model fits Reliability, survival and
medical datasets.
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This is the main reason we adopt this three models to fit one or more large datasets
in different areas, as such, this model (BKBX) is actually very intricate model to use
for simple cases, this needs a big data to fit it well and also we suggest academici-
ans, researchers, doctors and nurses etc, which are use in modeling general datasets in
agriculture, medical and engineering fields.

1.2 General Formulation of Survival Model

The survival analysis normally involves censored data, which makes the regression ana-
lysis techniques unsuitable with case of incomplete data. Censoring generally occurs
when recorded survival times are only known for a proportion of the duration of the
experiment and the remainder are known only to exceed certain times. This partial ob-
servations are too precious to be ignored and certain informations an be gained from
knowledge of their existence. The most common in survival analysis are the right-
censored data. However, the left censored data is theoretically possible but generally
uncommon in these application. The basic problems in survival studies are determine
by:

• The sampling distribution,

• The likelihood function, and

• The properties of any statistical methods derived.

We shall encounter the right-censored data in our analysis and we rely on large-sample
methods.

1.2.1 Survival Distributions

Let T be a positive continuous random variable representing the survival time of an
individual from a homogeneous population. Suppose f (t) is the probability density
function of the survival time T , of any specific individual which is defined by:

f (t) = lim
t→0

Pr(t < T ≤ t +∆t)
∆t

. (1.1)

From Equation (1.1) above represents the probability of failure in a small interval (t, t+
∆t) upon the unit time, which has the following properties:

•
∫

∞
0 f (v)dv = 1, and

• f (t)≥ 0 for all t ≥ 0.
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It is assume that m f (t)≥ 0 for all t ≥ 0, and the cumulative distribution function F(t)
is defined by:

F(t) = Pr(T ≤ t) =
∫ t

0
f (v)dv.

By the fundamental theorem of calculus, (t) = f (t). The cumulative distribution
function F(t) is monotonically increasing function of t such that F(0)=0 and F(∞) =
limt→0 F(t) = 1.

1.2.2 Survival Function S(t)

S(t) is the probability that an individual is still alive at any time t, and is defined as
follows:

S(t) = Pr(T > t) =
∫ t

0
f (v)dv.

Thus, S(t) = 1−F(t) and S(t)=-F’(t). It s generally assumed that S(t) = 1 for all t ≥ 0,
and that the survival function satisfies these three conditions below:

• S(0) = 1.

• limt→∞ S(t) = 0 and

• S(t) is monotonically non-increasing in t.

1.2.3 Hazard Function h(t)

The h(t) is defined as an instantaneous conditional probability of failure immediately
after t, given survival until time t and is defined by:

h(t) = lim
∆t→0

Pr(t ≤ T < t +∆t | T ≥ t)
∆t

,

= lim
∆t→0

∫ t+∆t
t f (v)dv∫

∞
t f (v)dv

× 1
∆t

,

= lim
∆t→0

F(t +∆t)−F(t)
S(t)

,

= lim
∆t→0

F(t +∆t)−F(t)
S(t)

,

h(t) =
Probability Density Function

Survival Function
,

h(t) =
f (t)
S(t)

. (1.2)
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Thus, the hazard h(t), is the ratio of the f (t) to the survival function S(t). It is positive
and also satisfies

∫
∞
0 h(v)dv = ∞, for all small value of ∆t,h(t)∆t is the conditional

probability of failure in the time interval (t +∆t) given that the individual has survived
until time t. The hazard or failure time is variously known as the force of mortality, age
specific failure rate and instantaneous failure rate. From Equation (1.2) above in terms
of the following:

h(t) =
f (t)

1−F(t)
,

since,

h(t) =
f (t)
S(t)

,

then,∫
∞

0
h(v)dv =

∫
∞

0

f (v)
S(v)

dv =− lnS(t).

Therefore, the S(t) can also be written as:

S(t) = exp
[
−
∫ t

0
h(v)dv

]
. (1.3)

We can write the distribution function in terms of the hazard function as:

F(t) = 1− exp
[
−
∫ t

0
h(v)dv

]
, (1.4)

and by using equation (1.2) above, the density function can also be written as:

f (t) = h(t)exp
[
−
∫ t

0
h(v)dv

]
.

The cumulative hazard function (known as the integrated hazard function) can be defi-
ned by:

H(t) =
∫ t

0
h(v)dv. (1.5)

Where t ≥ 0. It has the following properties:

• S(0) = 0.

• limt→∞ H(t) = ∞, and

• S(t) is monotonically non-decreasing in t.

Using Equation (1.3) and Equation (1.4), we can write the integrated hazard function
as:

H(t) =− lnS(t).
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Other representations of the survival time distribution function include the mean resi-
dual life function which is the expected remaining life (T − t), given the individual has
survived to time t. It is defined as:

µ(t) =
[
T − t|T > t

]
,

=
∫

∞

t
(v− t)

f (v)
S(t)

dv, ,

=
1

S(t)

∫
∞

t
v f (v)dv− t.

Where 0≤ t < ∞ from Equation (1.5), above

µ(t)S(t) =
∫

∞

t
(v− t) f (v)dv,

Let, u = v− t, and integrating by parts,

µ(t)S(t) =
∫

∞

t
S(u)du,

where, S(0) =0,

µ(0) =
∫

∞

t
S(u)du,

=
∫

∞

t
u f (u)du = E[T ].

Let,

Q(t) =
∫

∞

t
S(u)du.

This implies that :

Q́(t) =−S(t),Q(0) = µ(0),
and also,

d
dt
(lnQ(t)) =

Q́(t)
Q(t)

,

=
S(t)∫

∞
t S(v)dv

=
−1
µ(t)

,

Hence,

ln Q́(t)− lnQ(0) =−
∫ t

0

du
µ(u)

,

This implies that,

Q(t)
Q(0)

= exp
[
−
∫ t

0

du
µ(u)

]
,

therefore,

µ(t)S(t) = Q(0)exp
[
−
∫ t

0

du
µ(u)

]
.
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Finally, the survival function can be expressed as:

S(t) =
µ(0)
µ(t)

S(t) =exp
[
−
∫ t

0

du
µ(u)

]
(1.6)

Mathematically, all six distributed representations above, namely:

f (t),F(t),S(t),h(t),H(t) and µ(t),

are equivalent. Any one distributional representation implies the other five functions.
Discrete survival times distribution are applied less frequently than continuous distri-
butions. It is applicable for example where a grouped data are involved. The previous
distribution representations.

1.2.4 Bounded Cumulative Hazard (BCH) and Cure Fraction Models

The BCH model initially was introduced by Yakovlev et al. (1993), assuming that,
cancer patients on clinical trial and also after the initial treatment have some active cells
in their body called ”clonogens”, these cancer cells grow simultaneously and produces
a detectable cancer mass later on called cancer relapse.

Yakovlev et al. (1993), assume that the number of clonogens denoted by N, follows a
Poisson distribution with mean θ . Let Zi, i = 1,2,3, ...,N be the time needed by the ith

clonogen to reproduce a detectable cancer mass. Where, the time it takes the cancer to
relapse can be defined by the random variable T=min{Zi, i = 1,2,3, ...,N} and Zi are
identically independently distributed iid. The survival function of the entire population,
So(t), conditional on N can be obtained as follows:

So(t) =P[There is no detectable cancer by time t/N],

=P[N = 0]+P[t1 > t, t2 > t, ..., tN > t/N ≥ 1],

=exp(−θ)+
N=1

∑
∞

(S(t))N
[exp(−θ)θ N

N!

]
.

=exp(−θF(t)).

Where, F(t) is a proper cumulative distribution function that represents the time to de-
velopment of detectable tumor mass. The parametric BCH model comes up when some
of the common parametric choices of F(t), for example like: Weibull and exponential
models we employed. Moreover, an alternative for the non parametric models for the
F(t) can be considered. The cure fraction, which is denoted by p, based on this model
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is defined as:

p = lim
t→∞

So(t)≡ P(N = 0) = exp(−θ).

Consequently, the estimation of the cure fraction with censored data can be achieved by
the population methods of complexity Markov Chain Monte Carlo (MCMC) methods
because of suitability and flexibility in co-ordinating highly complex models like: Beta
Kumaraswamy Burr Type X (BKBX) and Beta-Weibull (BWB) distributions which
produces a stable computations and faster than expectation maximization (EM) algo-
rithm in term of convergence of the posterior summaries. An important property of the
BCH model is that it can be written in the shape of mixture model as follows:

Su(t) =exp(−θF(t)),

=exp(−θ)+ exp(−θF(t))− exp(−θ),

=exp(−θ)+ [1− exp(−θ)]
[exp(−θF(t))exp(−θ)

1− exp(−θ)

]
,

=p+[1− p]
[exp(−θF(t))exp(−θ)

1− exp(−θ)

]
,

which is equals to the mixture model formula given as:

Su(t) = p+[1− p]So(t),

where, So(t) is the survival function of the uncured patients.

1.2.5 Kaplan-Meier (KM) Estimator

Kaplan-Meier or simply (KM) estimator, otherwise called the product limit estimate of
the survival function from life-time datasets. It is the limit of the life-time table when
intervals constructed in the life tables are taken so small that at most one only individual
dies within each interval. An important property of this estimator, is that the results for
the survival function estimates do not depend on the intervals of the survival data.

The Kaplan-Meier estimate of the survival function is an empirical or non-parametric
method of estimating S(t) from non- or right-censored data. It is extremely popular as
it requires only very weak assumptions and yet utilizes the information content of both
fully observed and right-censored data.

It drops only at times when a failure has been observed. If we write t(i) as the ith

ordered event time, and d(i), q(i) and n(i−) accordingly, the Kaplan-Meier formula can
be written as:

ˆS(t) = ∏ t(i)≤t
n(i−)−d(i)

n(i−)
. (1.7)
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Note: that the Kaplan-Meier estimate in Equation (1.7) above does not change between
events, nor at times when only censoring

1.3 Censoring

1.3.1 Right Censored Data

It is often called the suspended censoring, which the data are mostly the common type
in the incomplete population, otherwise called censored data. In this case of censored
survival data, the right censoring generally occurs when some when some individuals
have their future time past the final observed time.

As such, we may be interested to know for how long cancer patients will survive after
cancer diagnosis. In such situation we subject the group of cancer patients to a clinical
treatment trial at time t, follow-up for sufficient and regular periods of time, and record
the patients’ times to failure. The commonest form of censoring is right censoring.
Here, the subject is followed until some time, at which the event has yet to occur, but
then takes no further part in the study. This may be because:

1. The subject dies from another cause, independently of the cause of interest;

2. The study ends while the subject survives; or

3. the subject is lost to the study, by dropping out, moving to a different area, etc.

Some patients may take long time to experience the event of interest and nothing wrong
happens to them during the experiment. Let T ∗i and Ci denote the survival and right
censoring times for the ith individual, where δi is a censoring indicator variable, that
is, δi =1 for an observed life time and δi =0 for censored lifetime given as: observe
Ti = min{T ∗i ,Ci} censoring indicator

δi =

{
1 if failure Ti = T ∗i
0 if right censored Ti =Ci

observe (Ti,δi) for i = 1,2, . . . ,n.

1.3.2 Left Censored Data

This type of censoring occurs normally when the time of entry into study for some
individuals is unknown. Left censoring is much rarer. This occurs when the event of
interest has already occurred at the observation time, but it is not known exactly when
it occur. Examples of left censoring include:

1. Infection with a sexually-transmitted disease such as HIV/AIDS;
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2. Onset of a pre-symptomatic illness such as cancer; and

3. Time at which teenagers begin to drink alcohol, later forgotten.

1.3.3 Interval Censored Data

This type of censoring arises when the failure time cannot be observed, but can only
be determined to lie in an interval obtained from a sequence of examination times.
However, interval censoring for cancer patients arises when the time to the event of
interest T can be known that it lies within a random interval of time when a group of
cancer patients involved in a clinical trial have periodic follow ups. In this case, the
inly information we have is that the lifetime T lied between two points of time left (L)
and right (R), where L < R.

Among the three main types of censored data, right censoring received more attention,
because of the availability and vast of its datasets in all areas of research makes it
famous among all, on the other hand both the left and right censored data are special
case of the interval censored data which stated in the literature that the failure time
based on interval censored cannot be directly observed, which only lies between a limit
interval. Interval censoring is both extremely common and very rare. This oc- curs
when the exact time the event occurs is not known precisely, but an interval bounding
this time is known. Examples of interval censoring include:

1. Infection with a sexually-transmitted disease such as HIV/AIDS with regular
testing (e.g. annually); and

2. Failure of a machine during the Chinese new year.

1.4 Scope of the Study

This thesis focuses mostly on developing new models, estimation of parameters and
also applying the cure models (mixture and non-mixture) comparison and application of
datasets by employing a powerful simulation algorithms, collectively known as Markov
Chain Monte Carlo (MCMC) methods. These algorithms, largely developed during the
nineties and have have revolutionized the practice of statistics by allowing us to tackle
problems of real complexity that were impossible (or extremely difficult) to handle
before.

This means that we can now be much more realistic in our modeling, in which is ex-
tremely important when dealing with a real world applications. These methods are
particularly well suited to computing the posterior distribution (via simulation) in Bay-
esian inference and are to a large extent responsible for the great upsurge in popularity
of Bayesian statistics during the last decade. Thus, we shall make some remarks about
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the use of MCMC algorithms in other contexts, this thesis will be focused on the appli-
cation of MCMC methods to Bayesian inference and probability theory.

1.5 Problem Statement

In recent years there has been a renewed interest in constructing new statistical lifetime
distributions. We proposed a new six and modified four- parameters distribution by
using the Burr Type X distribution as the baseline model in the Beta Kumaraswamy-G
and Kumaraswamy-G versatile families of distribution respectively. The new lifetime
are interesting and potentially good as a theoretical contribution to the literature on
distributions.

The model proposed by Kumaraswamy (1980), is an old time probability distribution
two random processes with applications to hydrological data. The Kumaraswamy dis-
tribution with two parameters ϕ and ψ received quite few attention for decades which
fits hydrological and climatological lifetime datasets.

In reliability and life testing experiments, many times the data are modeled by finite
range distributions. We start with the Kumaraswamy model on the interval (0,1), having
the probability density function and the cumulative distribution function with two shape
parameters ϕ,ψ > 0 defined by Kumaraswamy distribution which fails to accept the
fact that beta does not strictly fit hydrological data such as daily rainfall etc.

This model is unimodal, increasing, decreasing and constant based on the values of
its parameters. It has shown that both the beta and Kumaraswamy distribution have
same shape properties. The Kumaraswamy model is not as famous as beta model to
statisticians over the years. Also, Kumaraswamy (1980), emphasize some advantages
of Kumaraswamy model over the beta model and also stated that:

• The normality assumption constant is easy.

• It has an easy formula for the model.

• A quantile probability functions does not consist any special functions.

• A simplicity formula in generating a random numbers and moments of order
statistics and L-moments.

Jones (2009), mentioned that the beta model has some influence over the Kumara-
swamy model:

1. An easy procedure for moments, MGF and the normality assumption.

2. It has a single parameter of symmetric models in its sub-family.
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3. An easy estimation process of parameter.

4. It has a simple formula for random generator.

5. It has many ways of generating data of the distribution.

Kumaraswamy model approximates the beta distribution with two parameters ν and κ ,
but is easier to work with in some ways. The Kumaraswamy distribution, apparently it
came out of hydrology (water). In general the main limitation of the parametric cure
fraction models are sometimes hard to find a distribution flexible enough to fit the data.
on these context, the non-parametric techniques are considered to be more attractive
under the violation of parametric assumptions.

One of the limitation of BKBX model is that the survival and hazard functions can-
not be expressed in a closed form and KBX model can be expressed in a closed form,
specifically when more covariates are considered, thus numerical approach that is the
integration techniques are required to determine the estimate of parameters in the mo-
del.

In medical and health studies, the concept of cured patients refers to one who will
never experience the event of interest (fail) within the pre-assigned follow-up time.
Estimation of the probability of cure, especially in different cancer clinical trials, is
badly needed. The survival models which incorporate patients who are expected to
be cured are growing rapidly since these models addressed the proportion of cured
patients which is important in understanding prognosis in potentially hard diseases and
also serve to expose unknown healthy issues related to the studied population.

Many common and survival models are available for this purpose, such as the mixture
cure model, developed by Boag (1949), which is the most widely used model in survival
data analysis. It has been extensively employed by a large number of researchers in
many different fields. However, this model has some drawbacks as was highlighted and
proposed by Chen et al. (1999). These limitations are:

• Chen et al. (1999), suggested that when covariates are included in the analysis,
on the other hand mixture model does not require a proportional hazard context.

• Mixture model provides improper posterior distributions for some types of non-
informative improper priors when covariates are included through the parameter
π via a standard regression model.

• Mixture model does not seems to outline the biological process for obtaining the
failure time, in a situation where cancer relapse is involved.
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1.6 Research Objectives

This research will be carry out with the following objectives, as follows:

1. To introduce a new model Beta Kumaraswamy Burr-Type X (BKBX) with pro-
perties.

2. To develop a modified new model Kumaraswamy Burr-Type X (KBX) with pro-
perties.

3. To propose a Bayesian parameter estimation and simulation studies on the new
models (BKBX and KBX) using the long-term survival models with censored
data and covariates.

4. To applied a real life data on the new proposed models using maximum likelihood
estimator.

1.7 Contribution

The main contribution of this work to the existing vast literature regarding the family of
probability distribution by constructing a credible models and baselines which enable
and also motivate us to fill some gap in the benchmark of some useful numerous models.

1. Demonstrating that are inadequate and insufficient to model some kind of da-
tasets in different area of research like: agriculture, engineering and medicine
etc.

2. Proposing a new flexible models (BKBX and KBX) and comparing with existing
ones and validating the results with a simulation study.

3. Providing a gap in the literature by proposing a new model and use it to in-
corporate covariates in cure models by solving censored and uncensored data
respectively.

4. The BKBX and KBX are very good in modeling right skewed, left skewed and
symmetric datasets.

5. We provide some contributions based the literature that no researcher developed
a new model, incorporate it with cure fraction and covariates by checking the
importance of the proposed methodology.

1.8 Outline of the Thesis

This thesis comprises of two parts dealing with the probability distribution theory and
parametric approaches to model the cure rate estimation with censored data and cova-
riates.
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The first part is about developing a new model using the method of joining two or mo-
del existing parametric models and employed an empirical simulation studies. On the
other part it handles the estimation of the cure fraction using the Bayesian analysis ap-
proaches via Markov Chain Monte Carlo (MCMC) methods using the Gibbs sampling
algorithm to obtain the posterior summaries.

Chapter 1: This chapter, provides some introduction based of the new models Beta
Kumaraswamy Burr-Type X and Kumaraswamy Burr-Type X, with their respective
properties and application as well as the Bayesian survival analysis with censoring
respectively.

Chapter 2: This chapter, presents a review of the literature related to the main themes
of this research is presented. The probability theory, survival data analysis and cure
fraction models.

Chapter 3: In this chapter, we present and describes the new model (BKBX) distri-
bution with six parameters its properties where a simulation study which was done
to compare and contrast, also check the efficiency and suitability of the new (BKBX)
model.

Chapter 4: In this Chapter, we also proposed the second new modified model (KBX)
distribution with four parameters and its properties which is also the modified version
of the (BKBX) where a simulation study which was done to compare and contrast, also
check the efficiency and suitability of the new (KBX) model.

Chapter 5: This chapter involves the parametric estimation based on cure models with
or with-out covariates and also a simulation study was done using MCMC algorithm.

Chapter 6: In this chapter, we provide an application of real data sets to the new and
existing models by different criterion of model selections as well as the likelihood ratio
and goodness-of-fit tests respectively.

Chapter 7: This chapter, contains the summary, conclusion, recommendations and
future research work.
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