THEORETICAL AND EXPERIMENTAL MODELS OF CATALYSTS FOR SELECTIVE SYNTHESIS OF METALLIC SINGLE-WALLED CARBON NANOTUBES AND THEIR ELECTROCHEMICAL CAPACITANCE

DANLAMI UMAR ZURU

FS 2017 52
THEORETICAL AND EXPERIMENTAL MODELS OF CATALYSTS FOR SELECTIVE SYNTHESIS OF METALLIC SINGLE-WALLED CARBON NANOTUBES AND THEIR ELECTROCHEMICAL CAPACITANCE

By

DANLAMI UMAR ZURU

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Doctor of Philosophy

May 2017
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
DEDICATION

This research work is dedicated to my late parents, Mr. and Mrs. Umar Ajaye, for setting the right footing towards my educational career, may Almighty ALLAH forgive all your sins, accept your good deeds and grant you al-jannah firdaus, amen.
Abstract of the thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the Degree of Doctor of Philosophy

THEORETICAL AND EXPERIMENTAL MODELS OF CATALYSTS FOR SELECTIVE SYNTHESIS OF METALLIC SINGLE WALLED CARBON NANOTUBES AND THEIR ELECTROCHEMICAL CAPACITANCE

By

DANLAMI UMAR ZURU

May 2017

Chairman : Professor. Zulkarnain Zainal, PhD
Faculty : Science

A major challenge in the field of carbon nanotubes (CNTs) synthesis via Chemical Vapour Deposition (CVD) method is lack of established theoretical model for the selection and design of metal/support catalysts to grow single wall carbon nanotubes (SWCNTs) of desired electronic types. This has limited the application of these materials in electronics, specifically as electrodes for supercapacitor. In the current report, Theoretical Model 1 (DH1) was proposed and developed via kinetic theory, by correlating decompositions of carbon precursors with active metal electrons and applied in the selection of carbon feedstock and metal catalyst matrix. Theoretical Model 2 (DH2) was a proposed modification of the Extended Tight Binding (ETB) model equations, developed by introducing circumferential and axial distortions to diameter and chiral angles of SWCNTs, respectively, which was then applied in predicting the selection and design of metal/support catalyst matrix. Outcomes of these models conformed with advances in heterogeneous catalysis and CNT synthesis, and were employed in the design and preparation of four Fe₂O₃/Al₂O₃ catalyst samples each, with compositions A (11, 8), B (10, 4), C (10, 7) and D (8, 8) where (n, m) are the chiral index of each SWCNT. This was achieved via impregnation of Fe(NO₃)₃.9H₂O and Al(NO₃)₃.9H₂O precursor salts, calcined at 450°C. Optimized parameters of the CVD processes for the synthesis of the corresponding CNTs were achieved at 1000°C working temperature, 0.5 g catalyst loading and 30 min pyrolysis of C₆H₁₄/N₂ feedstock. Field Emission Scanning Electron Microscopy (FESEM) images of the catalyst samples showed spherical nano sized particles and resulting Energy Dispersive Spectroscopy (EDS) indicated the presence of only Fe, Al, and O elements. X-ray Diffraction (XRD) analysis revealed α-Fe₂O₃ phases in which Al₂O₃ were incorporated, with average crystallite size of 27 nm. BET surface area analysis of catalysts A, B, C and D revealed surface area (m² g⁻¹) of 170, 205, 172 and 153, respectively, with average pore diameter of 4 nm, suggesting mesoporosity. Transmission Electron Microscopy (TEM) and FESEM images of the as-grown CNTs shows densely entangled bundles, while High Resolution Transmission Electron
Microscopy analysis (HR-TEM) confirmed arrangement of SWCNTs in the bundles. XRD analysis indicated peaks of highly graphitized carbon atoms, Fe₃C, FeN and Al₄C₃, suggesting that CNT growth might have occurred on reduced metal atoms, as predicted in DH2. Raman analysis of the CNT samples revealed that the Radial Breathing Modes (RBMs), diameter and energy band gaps of the samples were in conformity with those of ETB model. Fourier Transformed Infra-Red (FT-IR) analysis of the four samples confirmed the stretching and bending vibrations of amide carbonyl (-C=ONHR) and carboxylic (-COOH) functional groups, respectively, in all the samples, indicating that the samples were successfully functionalized.

Highest electrochemical abilities of the SWCNT samples were observed in 0.1 M KCl electrolyte, tested from -1.0 to 1.0 V potential window and from scan rate of 0.01 to 0.2 V s⁻¹. Specific capacitance (F g⁻¹) of 242, 207, 284 and 259 were recorded for SWCNTs A4, B4, C4 and D4, respectively. All samples showed stable pseudocapacitive cyclic voltammograms, straight charge-discharge profiles, sustained 1000 cycle test and enhanced current-potential responses which suggested good potential for pseudocapacitor electrodes.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PEMODELAN TEORI DAN EKSPERIMEN PEMANGKIN BAGI SINTESIS KARBON NANOTIUB BERCIRI LOGAM DAN KAPASITANS ELEKTROKIMIANYA

Oleh

DANLAMI UMAR ZURU
Mei 2017

Pengerusi : Profesor Zulkarnain Zainal, PhD
Fakulti : Sains

Cabaran utama dalam sintesis karbon nanotiub (CNTs) melalui Kaedah Pengenapan Wap Kimia (CVD) adalah kelemahan model teori sedia ada bagi pemilihan dan reka bentuk pemangkin logam/sokongan untuk penghasilan karbon nanotiub berdinding tunggal dengan sifat elektronik yang diperlukan. Ini telah menghadkan penggunaan bahan ini dalam sektor elektronik, khususnya sebagai elektrod di dalam superkapasitor. Dalam laporan ini, Model Teori 1(DH1) telah dicadangkan dan dibangunkan melalui teori kinetik, dengan menghubungkaitkan penguraian prekursor karbon dengan elektron logam aktif dan digunakan dalam pemilihan bahan suapan karbon dan matrik logam pemangkin. Model Teori 2 (DH2) adalah pengubahsuaian yang dicadangkan untuk model persamaan ikatan ketat (ETB), yang dibangunkan dengan memperkenalkan herotan lilitan dan paksi terhadap diameter dan sudut kiral SWCNT, yang kemudiannya digunakan dalam meramalkan pemilihan dan reka bentuk matrik pemangkin logam/sokongan. Model-model yang terhasil ini bertepatan dengan perkembangan dalam bidang pemangkinan heterogen dan sintesis CNT, digunakan dalam mereka bentuk dan penyediaan empat sampel pemangkin Fe2O3 / Al2O3 iaitu A (11, 8), B (10, 4), C (10, 7) dan D (8, 8), dimana (m, n) adalah indeks kiral setiap SWCNT. Ini dicapai melalui pengisitepuan garam pelopor Fe(NO3)3.9H2O dan Al(NO3)3.9H2O dan pengkalsinan pada suhu 450°C. Parameter optimum bagi proses CVD untuk sintesis CNTs yang berkaitan dicapai pada suhu 1000°C, muatan pemangkin 0.5 g dan 30 min pirolisis suapan C6H14/N2. Imej mikroskopi pengimbasan elektron pancaran medan (FESEM) sampel pemangkin menunjukkan zarah bersaiz nano-sfera dan analisis spektroskopi penyerakan tenaga (EDS) menunjukkan kehadiran unsur Fe, Al, dan O sahaja. Analisis pembelauan sinar-X mendedahkan fasa α-Fe2O3 di mana Al2O3 dipadukan bersama, dengan purata saiz kristal 27 nm. Analisis luas permukaan BET pemangkin A, B, C, dan D menunjukkan masing-masing mempunyai luas permukaan (m² g⁻¹) 170, 205, 172 dan 153, dengan purata diameter liang 4 nm, menunjukkan mesoporisiti. Imej mikroskopi pancaran elektron (TEM) dan FESEM menunjukkan SWCNT terikat padat secara berkelompok, manakala analisis
resolusi tinggi mikroskopi pancaran elektron (HR-TEM) mengesahkan susunan secara berkelompok dengan ruang untuk setiap SWCNT. Analisis XRD menunjukkan kehadiran puncak atom karbon yang bergrafit, Fe₃C, FeN dan Al₄C₃ dengan purata saiz kristal 17.4 nm, membuktikan pertumbuhan CNT berlaku melalui atom logam terturun, seperti yang diramalkan dalam DH2. Analisis Raman sampel CNT mendedahkan bahawa Mod Pernafasan Radial (RBMs), diameter dan tenaga ruang jalur sampel sepadan dengan model ETB yang lain. Analisis Infra-merah Transformasi Fourier (FT-IR) daripada mengesahkan kewujudan getaran regangan dan lenturan kumpulan berfungsi amide dan karbonil (-C=ONHR) dan karbosilik (-COOH), dalam semua sampel, menunjukkan bahawa sampel tersebut telah berjaya ditambah kumpulan berfungsi.

Kebolehan elektrokimia tertinggi sampel SWCNT dicerap di dalam elektrolit 0.1 M KCl pada tingkap keupayaan di antara -1.0 hingga 1.0 V dan kadar imbasan 0.01 to 0.2 V/s. Kapasitas spesifik (F g⁻¹) dengan nilai 242, 207, 284 dan 259 direkodkan untuk SWCNT A4, B4, C4 dan D4. Semua sampel menunjukkan kitar voltammogram yang stabil, profail cas-discas yang lurus, kestabilan pada 1000 ujian kitaran dan peningkatan respons arus-keupayaan menunjukkan potensi yang baik sebagai elektrod pseudo kapasitor.
ACKNOWLEDGEMENTS

All the beautiful praises and gratitudes are due to AllAh (SWTA), the Creator, Originator, Controller and Sustainer of all that is in the heavens, earth and what lies between them, for His guidance, protection and sustenance through out this work.

I wish to acknowledge the invaluable contribution of my supervisor, Professor Dr Zulkarnain Zainal for his intellectual motivation, patience, guidance, constructive comments and infinite attention despite his tight academic and administrative schedules. My best regards to my co-supervisors, Professor Dr. Mohd Zobir Hussein, Associate Professor Dr. Hong-Ngee Lim and Dr. Adila Mohamad Jaafar for their numerous attention, constructive criticisms and observations which has greatly influenced the re-structuring and impact of this research work. I sincere thank Dr. Sook-Keng Chang, who despite her tight commitments was patient and always helpful in providing laboratory necessities. Warmest regards to all students of Lab. 2 for the numerous attention and selfless help they rendered to me during the research work.

I also wish to appreciate the invaluable contributions of the Administrative and Academic Board of Adamu Augie College of Education, Argungu, for their numerous support; the HOD and academic staff of Chemistry Department, for the additional burden they shouldered during my absence. Iam indebted to Dr. Muhammad Gidado Liman of Usmanu Danfodiyo University, Sokoto, as a mentor in several stages of my educational career.
I certify that a Thesis Examination Committee has met on 8 May 2017 to conduct the final examination of Danlami Umar Zuru on his thesis entitled "Theoretical and Experimental Models of Catalysts for Selective Synthesis of Metallic Single-Walled Carbon Nanotubes and their Electrochemical Capacitance" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Tan Yen Ping, PhD
Senior Lecturer
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Suraya binti Abdul Rashid, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Taufiq Yap Yun Hin, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Shaobin Wang, PhD
Associate Professor
University of Technology
Australia
(External Examiner)

NOR AINI AB. SHUKOR, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 4 September 2017
This thesis was submitted to the Senate of the Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Zulkarnain Zainal, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Moh’d Zobir Hussein, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

Hong-Ngee Lim, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

Adila Mohammad Jaafar, PhD
Senior Lecturer
Faculty of Science
Universiti Putra Malaysia
(Member)

ROBIAH BINTI YUNUS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced; this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ___________________________ Date: ___________________________

Name and Matric No: Danlami Umar Zuru, GS38264
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) were adhered to.

Signature: __
Name of Chairman of Supervisory Committee: Professor Dr Zulkarnain Zainal

Signature: __
Name of Member of Supervisory Committee: Professor Dr Moh’d Zobir Hussein

Signature: __
Name of Member of Supervisory Committee: Associate Professor Dr Hong-Ngee Lim

Signature: __
Name of Member of Supervisory Committee: Dr Adila Mohammad Jaafar
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxii</td>
</tr>
</tbody>
</table>

CHAPTER

1 **INTRODUCTION**
 1.1 Research Background
 1.2 Statement of Research Problems
 1.3 Research Aim and Objectives

2 **LITERATURE REVIEW**
 2.1 Types and Structure of CNTs
 2.2 Methods of CNT Synthesis
 2.2.1 Chemical Vapour Deposition method
 2.2.2 Arc-discharge Technique
 2.2.3 Laser Ablation
 2.2.4 Comparison between the three Methods
 2.3 CNT Growth Mechanism via CVD Process
 2.4 Effects of Material and Reaction Parameters on CNT Synthesis
 2.4.1 Effect of Catalyst
 2.4.2 Effect of Carbon Precursor
 2.4.3 Effect of Catalyst Supports
 2.4.4 Effect of Vapor Pressure
 2.4.5 Effect of Temperature
 2.5 Metal-Support Interaction (MSI)
 2.6 Applications of CNTs
 2.6.1 Electronic Devices
 2.6.2 Composite Materials
 2.6.3 Sensors and Probes
 2.6.4 Energy Storage
 2.6.5 Biological Materials
 2.7 Recent Advances in the Selective Synthesis of SWCNTs using Metal-Nano Particle Catalysts for Chirality Control
 2.8 Methods of CNT Characterization
 2.8.1 Electron Microscopy
 2.8.2 X-Ray Diffraction (XRD) Spectroscopy
 2.8.3 Raman Spectroscopy
 2.8.4 Thermogravimetry Analysis (TGA)
 2.8.5 Electrochemical Analysis
2.9 Challenges and Future Prospects of CNT Synthesis
2.10 Types of Supercapacitors and the Principles of Electrostatic and Electrochemical Charge Storage
2.11 Effect of Electrolytes on the Performance of a Supercapacitor
2.12 Aqueous Electrolytes
2.13 Carbon Nanotubes as Electrodes for Supercapacitor

3 THEORETICAL MODELS 1 (DH1) AND 2 (DH2) FOR SELECTION OF CARBON SOURCE/METAL AND METAL/SUPPORT CATALYST MATRIX, RESPECTIVELY
3.1 Introduction
3.2 Methodology for Development of Theoretical Model 1
3.2.1 Basic assumptions
3.2.2 Development of Theoretical Model 1
3.3 Application of Theoretical Model (1) to Heterogeneous Catalysis
3.3.1 Estimation of V_e values
3.3.2 Estimation of Values for Hydrogenation and Oxidation Processes
3.4 Application of Theoretical Model 1 in the Prediction of Decomposition of Carbon Precursors
3.4.1 Methodology for Development of Theoretical Model 2
3.4.2 Basic assumptions
3.4.3 Development of Theoretical Model (2)
3.4.4 Application of Modified Equations (3.26) and (3.27) in Estimation of Diameter and Chiral Angle of SWCNTs
3.5 Results and Discussion
3.5.1 Correlation of V_e values with number of molecular bonds
3.5.2 Correlation of N_0 values to hydrogenation and oxidation processes
3.5.3 Correlation of N_0 values with decomposition of carbon precursors
3.5.4 Comparison between Values of Diameter and Chiral Angle obtained with Modified Equations and the ETB Equations
3.6 Conclusion

4 CATALYST PREPARATION AND SELECTIVE SYNTHESIS OF SWCNTs OF THE TYPES A (11, 8), B (10, 4), D (10, 7) AND E (8, 8)
4.1 Introduction
4.2 Materials and Methodology
4.2.1 Materials
4.2.2 Methodology
4.2.2.1 Estimation of Precursor salts for catalyst preparation 54
4.2.2.2 Catalyst preparation 54
4.2.2.3 CNT Syntheses 55
4.2.2.4 Effect of temperature, catalyst loading and pyrolysis time on the structure and quality of CNTs 55
4.2.2.5 Purification/Functionalization of CNTs 56

4.3 Catalyst and CNT Characterization 57
4.3.1 X-Ray Diffraction (X-RD) Analysis 57
4.3.2 Field Emission Scanning Electron Microscopy (FESEM) and Electron Dispersive Spectroscopy (EDS) Analyses 57
4.3.3 Transmission Electron Microscopy (TEM) and High Resolution Electron Microscopy (HR-TEM) Analysis 57
4.3.4 BET Surface Area Analysis 57
4.3.5 Thermogravimetric (TGA) and Derivative thermogravimetric (DTG) Analyses 58
4.3.6 Raman Spectroscopy Analysis 58
4.3.7 Fourier Transformed Infra-Red (FT-IR) Analysis of Purified CNTs 59

4.4 Results and Discussion 59
4.4.1 X-ray Diffraction Analysis of Cats. A, B, C and D 59
4.4.2 Field Emission Scanning Electron Microscopy (FESEM) and Energy Dispersive Spectroscopy (EDS) Analyses of Cats. A, B, D and E 61
4.4.3 BET surface area analysis of Cats. A, B, C and D 64
4.4.4 Thermogravimetric (TGA) analysis of Cats. A, B, C and D 65
4.4.5 Percentage Carbon Yield 66
4.4.6 Field Emission Scanning Electron Microscopy (FESEM) and Transmission Electron Microscopy (TEM) Analysis of CNTs C1, D1, B2 and B3 67
4.4.7 Transmission Electron Microscopy (TEM) Analysis of CNTs D1, E1, B2 and B3 70
4.4.8 X-ray Diffraction (XRD) Analysis of CNTs C1, D1, B2 and B3 72
4.4.9 Raman Analysis of CNTs D1, E1, B2 and B3 76
4.4.10 Field Emission Scanning Electron Microscopy (FESEM) CNTs A4, B4, C4 and D4 79
4.4.11 High Resolution Transmission Electron Microscopy (HR-TEM) Analysis of CNTs A4, B4, C4 and D4 82
4.4.12 X-ray Diffraction (XRD) Analysis of CNTs A4, B4, C4 and D4 84
4.4.13 FESEM Analysis of Purified CNTs 88
4.4.14 XRD Analysis of Purified CNTs A4, B4, C4 and D4 89
4.4.15 Fourier-Transformed Infrared (FT-IR) Analysis of Functionalized CNTs A4, B4, D4 and E4
4.4.16 BET Surface Area Analysis of CNTs. A4, B4, C4 and D4, before and after Purification
4.4.17 Raman Analysis of CNTs A4, B4, D4 and E4
4.4.18 Thermogravimetric (TGA) Analysis of CNTs A4, B4, C4 and D4
4.4.19 Raman and FESEM Analyses of re-produced CNTs C5 and D5

4.5 Conclusion

5 ELECTROCHEMICAL ANALYSIS OF THE FUNCTIONALIZED CNTs.
5.1 Materials and Methodology
5.1.1 Materials
5.1.2 Methodology
5.1.2.1 Effect of electrolyte concentration and CNT mass on the specific capacitance of the CNT electrode
5.1.2.2 Effect of Sonication Time on Specific Capacitance of the CNT Electrode
5.1.2.3 Effect of dispersing solvent on Specific Capacitance of the CNT Electrode
5.1.2.4 Effect of Electrolyte chemical nature on Specific Capacitance of the CNT Electrodes
5.1.2.5 Cycle stability test

5.2 Results and Discussion
5.2.1 Effect of electrolyte concentration on specific capacitance of CNT electrode
5.2.2 Effect of electrode mass on specific capacitance of CNT electrodes
5.2.3 Effect of solvent dispersant on specific capacitance of CNT electrode
5.2.4 Effect of sonication time on specific capacitance of CNT electrode
5.2.5 Effect of widening potential window on specific capacitance of CNT electrode
5.2.6 Effect of electrolyte chemical nature on specific capacitance of working electrode
5.2.7 Cycle Stability Tests

5.3 Conclusion

6 GENERAL SUMMARY, CONCLUSIONS AND RECOMMENDATIONS
6.1 General Summary and Conclusion
6.2 Recommendations for Future Research

xiii
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Comparison between the three CNT synthesis methods</td>
</tr>
<tr>
<td>2.2</td>
<td>List of some aqueous electrolytes ions</td>
</tr>
<tr>
<td>3.1</td>
<td>Values of L, Z_1, Z_{11}, α and β for the probe gas molecules</td>
</tr>
<tr>
<td>3.2</td>
<td>Bond enthalpies of the probe gas molecules</td>
</tr>
<tr>
<td>3.3</td>
<td>V_e numerical values for H$_2$, N$_2$ and O$_2$ gas molecules</td>
</tr>
<tr>
<td>3.4</td>
<td>N_o values and suspected metal catalysts for hydrogenation and oxidation processes</td>
</tr>
<tr>
<td>3.5</td>
<td>N_o values for decomposition of common carbon precursors and predicted metal catalysts</td>
</tr>
<tr>
<td>3.6</td>
<td>Highest deviations recorded of modified equations from ETB equations on correlating chiral index (n, m) of SWCNTs to metal/support catalyst matrix</td>
</tr>
<tr>
<td>3.7</td>
<td>Comparison between values of diameter and chiral angle of SWCNTs estimated using ETB equations and Modified equations</td>
</tr>
<tr>
<td>3.8</td>
<td>Comparison between values of diameter and chiral angle of SWCNTs estimated using ETB equations and Modified equations</td>
</tr>
<tr>
<td>4.1</td>
<td>List of chemicals used in this research work</td>
</tr>
<tr>
<td>4.2</td>
<td>Amounts of precursor salts needed for preparation of the required Fe$_3$O$_4$/Al$_2$O$_3$ oxide catalysts</td>
</tr>
<tr>
<td>4.3</td>
<td>BET surface area, BJH pore radius and pore volume of the catalysts</td>
</tr>
<tr>
<td>4.4</td>
<td>Percentage carbon yield recorded for the CNT samples under different CVD synthesis parameters</td>
</tr>
<tr>
<td>4.5</td>
<td>BET surface area, pore radius and pore volume of CNTs A4, B4, D4 and E4 before purification</td>
</tr>
</tbody>
</table>
4.6 BET surface area, pore radius and pore volume of CNTs A4, B4, D4 and E4 after purification

4.7 Comparison between RBMs, diameter and E_{11} of CNTs A4, B4, C4 and D4, estimated using ETB equations and those obtained using modified equations

4.8 Comparative summary of RBMs, diameter and E_{11} for CNTs C4, E4, C5, and D5

5.1 List of chemicals used in this research work

5.2 Specific capacitance of 5 uL CNTs A4, B4, C4 and D4 tested in 1.0 M and 0.1 M KCl at different scan rate

5.3 Specific capacitance of 10 uL CNTs A4, B4, C4 and D4 tested in 1.0 M and 0.1 M KCl at different scan rates

5.4 Specific capacitance of 10 uL CNTs A4, B4, C4 and D4 dispersed in acetone and water and tested in 0.1 M KCl, at different scan rates

5.5 Specific capacitance of 10 uL CNTs A4, B4, C4 and D4 sonicated for 30 min. and 45 min. and tested in 0.1 M KCl, at different scan rates

5.6 Specific capacitance of 10 uL CNTs A4, B4, C4 and D4 tested in 0.1 M KCl, in the -1.0 to 1.0 V, 0.0 to 1.0 V and 0.3 to 1.0 V potential windows, at different scan rates

5.7 Values of specific capacitance obtained for 10 uL of the four samples in 1.0 M and 0.1 M H_2SO_4, and for CNT C4 and D4 in 1.0 M and 0.1 M KOH, at different scan rates
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Rolling of graphene sheets to form CNTs (a) SWCNT (b) MWCNT</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Classification of SWCNTs based on chiral index (n, m) (a) Armchair (b) Zig-zag (c) Chiral</td>
<td>6, 8</td>
</tr>
<tr>
<td>2.3</td>
<td>A typical CVD set-up</td>
<td>8</td>
</tr>
<tr>
<td>2.4</td>
<td>Schematic diagram for Arch-discharge synthesis of carbon nanotubes</td>
<td>9</td>
</tr>
<tr>
<td>2.5</td>
<td>Diagrammatic illustration set-up apparatus for Laser Ablation synthesis of carbon nanotubes</td>
<td>10</td>
</tr>
<tr>
<td>2.6</td>
<td>Most-accepted CNT growth mechanism (a) tip-growth (b) base-growth</td>
<td>12</td>
</tr>
<tr>
<td>2.7</td>
<td>A summary of material and reaction parameters for CNT synthesis</td>
<td>14</td>
</tr>
<tr>
<td>2.8</td>
<td>Types of supercapacitors</td>
<td>22</td>
</tr>
<tr>
<td>2.9</td>
<td>Principles of energy storage (a) electrostatic and (b) electrochemical</td>
<td>24</td>
</tr>
<tr>
<td>2.10</td>
<td>Principle of charge storage in the pores of CNT</td>
<td>28</td>
</tr>
<tr>
<td>3.1</td>
<td>Gas-metal interaction showing minimum volume lost by a gas Molecule</td>
<td>32</td>
</tr>
<tr>
<td>3.2</td>
<td>Gas-metal atom interaction</td>
<td>33</td>
</tr>
<tr>
<td>3.3</td>
<td>General illustration of the theoretical conception</td>
<td>34</td>
</tr>
<tr>
<td>4.1</td>
<td>XRD patterns of (a) Cat. A and (d) Cat. B, showing different phases of α-Fe₂O₃</td>
<td>60</td>
</tr>
<tr>
<td>4.2</td>
<td>XRD patterns of (c) Cat. C and (d) Cat. D showing different phases of α-Fe₂O₃</td>
<td>61</td>
</tr>
<tr>
<td>4.3</td>
<td>FESEM images of (a) Cat. A and (b) Cat. B, showing enhanced dispersion of the oxides with few agglomerations</td>
<td>62</td>
</tr>
<tr>
<td>4.4</td>
<td>FESEM images of (c) Cat. C and (b) Cat. D, showing enhanced dispersion of the oxides in the former than the later</td>
<td>63</td>
</tr>
</tbody>
</table>
4.5 EDS profiles of (a) Cat. A (b) Cat. B (c) Cat. C and (d) Cat. D, revealing iron-rich compositions

4.6 N$_2$ adsorption-desorption isotherms for (a) Cat. A (b) Cat. B (c) Cat.C and (d) Cat. D

4.7 N$_2$ adsorption-desorption isotherms for (a) Cat. A (b) Cat. B (c) Cat.C and (d) Cat. D

4.8 FESEM images of CNTs (a) C1 and (b) D1 synthesized at 1000°C with 1 g catalyst loading and one hour pyrolysis time showing cup-like MWCNTs

4.9 FESEM images of CNTs (a) B2 and (b) B3 synthesized at 1000°C with 0.5 g catalyst loading, one hour and 40 min. pyrolysis time, respectively, showing cup-like MWCNTs

4.10 TEM images of (a) CNT C1 and (b) CNT D1, showing lumps of catalyst particles on the matrix of samples

4.11 TEM images of (a) CNT B2 and (b) CNT B3, showing lumps of catalyst particles on the matrix of samples

4.12 XRD patterns of (a) CNT C1 and (b) CNT D1, showing iron carbide and nitride, suggesting CNT growth occurred on the metal atoms

4.13 XRD patterns of (a) CNT B2 and (b) CNT B3, showing iron carbide and nitride, suggesting CNT growth occurred on the metal atoms

4.14 Raman spectra of (a) CNT C1 (b) CNT D1, showing important features

4.15 Raman spectra of (c) CNT B2 (d) CNT B3, showing important features

4.16 FESEM images of (a) A4 and (b) CNT B4 synthesized at 1000°C with 0.5 g catalyst loading and 30 min. pyrolysis time showing bundles of entangled CNTs

4.17 FESEM images of (c) CNT C4 and (d) CNT D4, synthesized at 1000°C with 0.5 g catalyst loading and 30 min. pyrolysis time showing bundles of entangled CNTs

4.18 EDS profiles of CNTs (a) A4 (b) B4 (c) C4 and (d) D4

4.19 HR-TEM images (a) CNT A4 (b) CNT B4 (c) CNT C4 and (d) CNT D4, showing rigidly bounded SWCNTs
4.20 XRD profiles of (a) CNT A4 and (b) CNT B4, showing patterns of CNTs, metal carbides and nitrides

4.21 XRD profiles of (c) CNT C4 and (d) CNT D4, showing patterns of CNTs, metal carbides and nitrides

4.22 FESEM images of alkali-acid treated CNTs, showing rough surfaces suggesting attachment of functional groups

4.23 XRD patterns of CNTs (a) A4 (b) B4 (c) C4 and (d) D4 showing significant decrease in Al2O3 content due to alkali treatment and increase in CNT moieties due to acid removal of Al and Fe metals from corresponding carbides

4.24 FT-IR profiles of CNTs (a) as-grown showing no functional groups (b) A4 (c) B4 (d) C4 and (e) D4 showing attached functional groups. Inset is the key for the various functional groups

4.25 N2 adsorption-desorption isotherms for CNTs (a) A4 and (b) B4 before (left) and after (right) purification, respectively

4.26 Raman spectra of (a) CNT A4 (b) CNT B4, showing important features

4.27 Raman spectra of (c) CNT C4 (d) CNT D4, showing important features

4.28 TGA/DTG profiles of sample of (a) CNT A4 (b) CNT B4 (c) CNT C4 and (d) CNT D4

4.29 Raman profiles for CNTs (a) C5 and (b) D5

4.30 FESEM images of CNTs (a) C5 and (b) D5, showing densely entangled CNTs

5.1 Comparative plots of specific capacitance vs. scan rate of 5 μL CNTs A4, B4, C4 and D4 tested in (a) 1.0 M KCl (b) 0.1 M KCl, at potential window of 0.0 V to 1.0 V

5.2 Plots of cyclic voltamagrams of 5 μL CNT electrodes and bare electrode tested in 1.0 M KCl at various scan rates, in the potential window of 0.0 V to 1.0 V

5.3 Plots of cyclic voltamagrams of 5 μL CNT electrodes and bare electrode tested in 0.1 M KCl at various scan rates, in the potential window of 0.0 V to 1.0 V
5.4 Plots of current vs. scan rate of 5 μL CNT electrodes and bare electrode in (a) 1.0 M KCl (b) 0.1 M KCl, suggesting almost a straight line for the bare electrode in both cases.

5.5 Galvanostatic charge-discharge profiles for 5μL CNTs A4, B4, C4 and D4 in (a-d) 1.0M KCl and (e-f) 0.1 M KCl.

5.6 Comparative plots of specific capacitance vs. scan rate of 10 μL CNTs A4, B4, C4 and D4 tested in (a) 1.0 M KCl (b) 0.1 M KCl, at potential window of 0.0 V to 1.0 V.

5.7 Plots of cyclic voltamograms of 10 μL CNT electrodes and bare electrode tested in 1.0 M KCl at various scan rates, in the potential window of 0.0 V to 1.0 V.

5.8 Plots of cyclic voltamograms of 10 μL CNT electrodes and bare electrode tested in 1.0 M KCl at various scan rates, in the potential window of 0.0 V to 1.0 V.

5.9 Plots of current vs. scan rate of 10 μL CNT electrodes and bare electrode in (a) 1.0 M KCl (b) 0.1 M KCl, suggesting almost a straight line for the bare electrode.

5.10 Charge-discharge plots of 10 μL CNTs A4, B4, C4 and D4 in 1.0 M KCl (a-d) and 0.1 M KCl (e-h), respectively, showing good charge-discharge potentials in an average of 200 min.

5.11 Comparative plots of specific capacitance vs. scan rate of 10 μL CNT electrodes dispersed in acetone (Ac.) and in water (W) tested in 0.1 M KCl.

5.12 Plots of cyclic voltamograms of acetone dispersed 10 μL CNT electrodes and bare electrode tested in 0.1 M KCl at various scan rates, in the potential window of 0.0 V to 1.0 V.

5.13 Comparative plots of specific capacitance vs. scan rate of 10 μL CNTs A4, B4, C4 and D4 electrodes in 0.1 M KCl, after (a) 30 min. sonication and (b) 45 min. sonication.

5.14 Plots of cyclic voltamograms of 30 min. sonicated 10 μL CNT electrodes and bare electrode tested in 0.1 M KCl at various scan rates, in the potential window of 0.0 V to 1.0 V.

5.15 Plots of cyclic voltamograms of 45 min. sonicated 10 μL CNT electrodes and bare electrode tested in 0.1 M KCl at various scan rates, in the potential window of 0.0 V to 1.0 V.
5.16 Comparative plots of specific capacitance vs. scan rate of 10 μL CNTs A4, B4, C4 and D4 electrodes in 0.1 M KCl in the -1.0 V to 1.0 V, potential window

5.17 Comparative plots of specific capacitance vs. scan rate of 10 μL CNT electrodes (a) C4 and (b) D4, tested in 0.1 M KCl in the -1.0 V to 1.0 V, 0 V to 1.0 V and 0.3 V to 1.0 V potential windows

5.18 Cyclic voltamograms of 10 μL CNT electrodes (a) A4 (b) B4 (c) C4 and (d) D4 tested in 0.1 M KCl at the -1.0 V to 1.0 V potential window

5.19 Cyclic voltamograms of 10 μL CNT (a) C4 and (b) D4 electrodes tested in 0.1 M KCl in the 0.3 V to 1.0 V potential window

5.20 Comparative plots of specific capacitance vs. scan rate for 10 μL CNTs A4, B4, C4 and D4 electrodes tested in (a) 1.0 M H₂SO₄ (b) 0.1 M H₂SO₄, from 0.0 V to 1.0 V potential window

5.21 Comparative plots of specific capacitance vs. scan rate for 10 μL CNTs C4 and D4 electrodes tested in (a) 1.0 M KOH and (b) 0.1 M KCl from -0.2 V to 0.5 V potential window

5.22 Cyclic voltamograms of 10 μL CNTs (a) A4 (b) B4 (c) C4 and (d) D4 electrodes tested in 1.0 M H₂SO₄ from 0.0 V to 1.0 V potential window

5.23 Cyclic voltamograms of 10 μL CNTs (a) A4 (b) B4 (c) C4 and (d) D4 electrodes tested in 0.1 M H₂SO₄ from 0.0 V to 1.0 V potential window

5.24 Charge-discharge plots of 10 μL CNTs C4 and D4 in 1.0 M H₂SO₄ and 0.1 M H₂SO₄, showing completion in 200 sec. and 300 sec., respectively

5.25 Cyclic voltamograms of 10 μL CNTs C4 and D4 electrodes, respectively, tested in 1.0 M KOH (a and b) and 0.1 M KCl (c and d). (e) and (f) were the charge-discharge plots for the respective electrolytes, showing time lag of 600 sec. before discharging

5.26 Plots of 1000 cycle stability charge-discharge curves for 10 μL CNT D4 in 0.1 M KCl in the first (a) 100 (b) 500 and (c) 1000, cycles, showing decrease in discharging time
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BET</td>
<td>Brunauer-Emmett-Teller</td>
</tr>
<tr>
<td>CNTs</td>
<td>Carbon Nanotubes</td>
</tr>
<tr>
<td>CV</td>
<td>Cyclic Voltammetry</td>
</tr>
<tr>
<td>CVD</td>
<td>Chemical Vapour Deposition</td>
</tr>
<tr>
<td>DH1</td>
<td>Theoretical Model 1</td>
</tr>
<tr>
<td>DH2</td>
<td>Theoretical Model 2</td>
</tr>
<tr>
<td>ECP</td>
<td>Electrically Conducting Polymer</td>
</tr>
<tr>
<td>EDLC</td>
<td>Electrochemical Double Layer Capacitor</td>
</tr>
<tr>
<td>EDS</td>
<td>Electron Dispersive Spectroscopy</td>
</tr>
<tr>
<td>EIS</td>
<td>Electrochemical Impedance Spectroscopy</td>
</tr>
<tr>
<td>ES</td>
<td>Electrochemical Supercapacitor</td>
</tr>
<tr>
<td>ESR</td>
<td>Equivalent Series Resistance</td>
</tr>
<tr>
<td>ETB</td>
<td>Extended Tight Binding</td>
</tr>
<tr>
<td>FESEM</td>
<td>Field Emission Scanning Electron Microscopy</td>
</tr>
<tr>
<td>FETs</td>
<td>Field-Effect Transistors</td>
</tr>
<tr>
<td>FT-IR</td>
<td>Fourier Transformed Infra-Red</td>
</tr>
<tr>
<td>HR-TEM</td>
<td>High Resolution Transmission Electron Microscopy</td>
</tr>
<tr>
<td>IEA-PVPS</td>
<td>International Energy Agency-PV Power Systems</td>
</tr>
<tr>
<td>OBES</td>
<td>Office of Basic Energy Sciences</td>
</tr>
<tr>
<td>MWCNTs</td>
<td>Multi Wall Carbon Nanotubes</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>OHP</td>
<td>Outer Helmholtz Plane</td>
</tr>
<tr>
<td>RBM</td>
<td>Radial Breathing Mode</td>
</tr>
<tr>
<td>SETs</td>
<td>Single-Electron Transistors</td>
</tr>
<tr>
<td>SWCNTs</td>
<td>Single-Walled Carbon Nanotubes</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission Electron Microscopy</td>
</tr>
<tr>
<td>TGA/DTG</td>
<td>Thermogravimetric Analysis/Derivative Thermal Gravimetry</td>
</tr>
<tr>
<td>XRD</td>
<td>X-Ray Diffraction</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Research Background

The need for energy storage has invoked the need for intensive research in search of suitable and efficient materials to augment the use of batteries and conventional capacitors as energy storing devices in the field of electronics. Supercapacitors have been reported as promising candidates for this purpose because they possess several advantages over conventional capacitors such as high power density, very long life, quick mode of operation and excellent reversibility (Burke & Miller, 2000 P. 519). They are reported to store electrical energy many folds greater than electrolytic capacitors. A supercapacitor can store electric energy in two ways: electrostatically via charge adsorption between the surface of a conductive electrode and an electrolyte, usually referred to double-layer capacitance, and through electron transfer which is achieved by redox reactions, a process known as pseudocapacitance (Conway, 1999, P. 67). These excellent electrochemical properties of supercapacitors made them suitable for various applications, including consumer applications where they stabilize the power supply for fluctuating loads such as laptop computers and portable media player; in industries to provide back up or emergency shutdown power to low-power equipment such as RAM, SRAM and PC cards; in medicine where they are used to deliver power energy for shocking the heart (IEA-PVPS, 2011, P. 124). This might be the reason why research advances are ongoing in the field of electronics, in search of suitable materials that may find application in the design of electrodes for supercapacitors.

Among the various forms of carbon materials, carbon nanotubes (CNTs) have been receiving outstanding considerations as promising materials for nanotechnology, since their discovery in 1991, by Lijima. A CNT is a cylindrical tube of hexagonal matrix formed by rolling a graphene sheet: it is called single wall carbon nanotube (SWCNT) if it consist of one tube and multi wall carbon nanotube (MWCNT), if it has more than two walls. A SWCNT can exhibit metallic or semiconducting character, depending on a unique chiral index (n, m), which determines the thermal, optical, mechanical, electronic and magnetic properties of the material. They are generally one-dimensional carbon materials with excellent mechanical properties, and are therefore applied in composite materials to enhance physical and chemical properties such as toughness, durability, conductivity and strength; their sensing abilities enabled them have potential applications in environmental, medical and agricultural studies; they also possesses good electrical conductivity and pore sizes suitable for storing electrolyte ions, which made them attractive in the field of electronics (Azam & Rosle, 2013, P. 3905; Jiang, Meng & Wu, 2011, P. 155). It is therefore evident that these materials (CNTs) affect all part of our lives: health, transport, media, communication and environment. These unique properties possessed by CNTs have invoked the need for intensive research in order to exploit and explore their synthesis, characterization and applications through theoretical
and experimental means. However, despite all research advances in the field of CNT synthesis, the problem of producing these essential materials in mass, with the desired electronic properties, using a low-cost method, is still a persistent challenge (Kumar & Ando, 2010, P. 3749).

Currently, Chemical Vapour Deposition (CVD) method of CNT synthesis is regarded as the best of the three methods, others being laser ablation and arched discharge methods. The former method is said to be easy in handling and the most economical for large scale production of CNTs (Ward, Wei & Ajayan, 2003, P. 721); most efficient for yielding pure and quantitative CNT products and the most suitable in terms of CNT architecture, purity and yield (Jacques, 2009, P. 68). Among the various material parameters involved in this process, the catalyst and the precursor carbon source are the most influential; the metal catalysts mostly used are nano particles of nickel (Ni), iron (Fe) and cobalt (Co), mainly because they serve as better media for effective carbon solubility and diffusion (Ding et al., 2008, P. 465); common carbon precursors include methane, ethane, propane, butane, pentane, hexane, ethylene, benzene, methanol, ethanol, sucrose, kerosene (dodecane) and tripropylamine (Kumar & Ando, 2010, P. 3751). Their molecular structures play a very significant role on the structural architecture of CNTs, for instance, methane and benzene can form straight and curved CNTs, respectively. (Schneider et al., 2008, P. 1773; Maruyama et al., 2010, P. 4097).

The unique optical and electronic properties exhibited by SWCNTs made them more attractive materials for future electronics than MWCNTs and theoretical results has confirm that metallic SWCNTs can carry electric current density many folds greater than metals. Therefore, recent advances in the field of selective synthesis of these carbon materials are receiving greater attention and were mostly achieved through manipulation of the catalyst shape and composition (Yang et al., 2014, P. 524).

1.2 Statement of Research Problems

The structural architecture of SWCNTs were reported to depend on their chirality index (n, m), which determines their diameter and chiral angle. Authors are unanimous that the most determinant parameter for chirality control of SWCNT growth is the catalyst nano particles; therefore, modern researches were based on the epitaxial model of SWCNT growth, which attributed chirality growth control to the crystal structure and thermal stability of the catalyst nano particles. This model therefore, recommends that the catalyst nano particles must be in solid crystalline form and of high thermal stability. A breakthrough in the selective synthesis of (12, 6) SWCNTs was reported by Yang et al., (2014), in which molecular clusters of W_{39}Co_{6}O_{x} were used to prepare nano particles of W-Co catalyst supported on SiO_{2}/Si substrates and synthesis of (12, 6) SWCNTs were achieved via CVD pyrolysis of ethanol (P. 526). Raman RBM of the as-grown SWCNTs conformed with RBM of (12, 6) SWCNTs. The authors attributed the success of selective growth to the enhanced structural similarities between the atomic arrangement of the catalyst nano particles and the
circumference (diameter) of the (12, 6) SWCNT. Stability of the nano-sized catalyst particles during reaction processes was attributed to high thermal stability (2400°C) of W-Co alloy. This work was complemented two years later by An et al., (2016) who selectively grow (12, 6) SWCNTs with Co-W catalyst prepared by magneton sputtering of W and Co metals on SiO$_2$ followed by annealing at 400°C in air (P. 14525). Here, selective synthesis was attributed to the formation of an intermediate structure of Co$_6$W$_6$C as revealed by in-plane transmission electron microscopy, while stability of the catalyst was due to anchoring nature of W.

However, despite advances in this field, the ultimate aim of obtaining a desired type of SWCNT by structural growth control of chirality through manipulation of catalyst composition, shape and structure has posed a major challenge for over 20 years (Yang et al., 2014, P. 530). There are two main reasons for this difficulty (1) it has not been possible to prepare identical nano particles of catalyst of the same sizes, compositions or shapes (2) it is even more challenging to control the stability of these nano-sized particles at higher temperatures of growth processes. This has necessitated the need for new innovative approaches, different from attribution of chirality to catalyst crystal sizes, in order to solve the problem of SWCNT chirality control growth (Liu, Wu, Gui, Zheng, & Zhou, 2017, P. 38).

It was based on this persistent challenge that Theoretical Model 2 of the current report was a proposed attempt to correlate the magnitudes of the chirality index (n, m) of each SWCNT directly to the weight percent fractions of the metal/support catalyst matrix, respectively, which may be used to select and design suitable metal/support catalyst to selectively grow SWCNTs of desired chirality, without the use of tedious in situ experimental control.

1.3 Research Aim and Objectives

The aim of this research work is to selectively synthesize metallic SWCNTs of the types A (11, 8), B (10, 4), D (10, 7) and E (8, 8), via CVD method, and evaluate their capacitances. To achieve this aim, the following specific objectives were designed:

1. Development of Theoretical Model 1 (DH1) using the kinetic theory of gases and its applications in the selection of carbon precursor/metal catalyst matrix.
2. Development of Theoretical Model 2 (DH2), a comparative study with the Extended Tight Binding (ETB) results, and its application in the selection and design of Metal / Support catalyst matrix.
3. Application of DH1 and DH2 in the design and preparation of sample catalysts with compositions A (11, 8), B (10, 4), C (10, 7) and D (8, 8) by chemical impregnation method, and their analysis using X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Electron Dispersive Spectroscopy (EDS), Thermogravimetric Analysis (TGA) and BET surface area analysis.
Synthesis of the corresponding CNTs of the types A (11, 8), B (10, 4), D (10, 7) and E (8, 8) via thermal CVD process and characterization of the as-grown CNTs using XRD, FESEM, EDS, Transmission Electron Microscopy (TEM), High-Resolution Transmission Electron Microscopy (HR-TEM), TGA and Raman analyses.

Evaluation on the effects of catalyst loading, working temperature and pyrolysis time on the structure of the as-grown CNTs.

Comparison of the electronic properties of the as-grown CNTs with those established by the Extended Tight Binding (ETB) Model, based on Raman spectroscopy analysis.

Evaluation of the electrochemical properties of the CNTs using Cyclic Voltammetry (CV) analysis and galvanostatic charge-discharge tests.
REFERENCES

