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A major challenge in the field of carbon nanotubes (CNTs) synthesis via Chemical 

Vapour Deposition (CVD) method is lack of established theoretical model for the 

selection and design of metal/support catalysts to grow single wall carbon nanotubes 

(SWCNTs) of desired electronic types. This has limited the application of these 

materials in electronics, specifically as electrodes for supercapacitor. In the current 

report, Theoretical Model 1 (DH1) was proposed and developed via kinetic theory, by 

correlating decompositions of carbon precursors with active metal electrons and 

applied in the selection of carbon feedstock and metal catalyst matrix. Theoretical 

Model 2 (DH2) was a proposed modification of the Extended Tight Binding (ETB) 

model equations, developed by introducing circumferential and axial distortions to 

diameter and chiral angles of SWCNTs, respectively, which was then applied in 

predicting the selection and design of metal/support catalyst matrix. Outcomes of 

these models conformed with advances in heterogeneous catalysis and CNT synthesis, 

and were employed in the design and preparation of four Fe2O3/Al2O3 catalyst samples 

each, with compositions A (11, 8), B (10, 4), C (10, 7) and D (8, 8) where (n, m) are 

the chiral index of each SWCNT. This was achieved via impregnation of 

Fe(NO3)3.9H2O and Al(NO3)3.9H2O precursor salts, calcined at 450oC. Optimized 

parameters of the CVD processes for the synthesis of the corresponding CNTs were 

achieved at 1000oC working temperature, 0.5 g catalyst loading and 30 min pyrolysis 

of C6H14/N2 feedstock. Field Emission Scanning Electron Microscopy (FESEM) 

images of the catalyst samples showed spherical nano sized particles and resulting 

Energy Dispersive Spectroscopy (EDS) indicated the presence of only Fe, Al, and O 

elements. X-ray Diffraction (XRD) analysis revealed α-Fe2O3 phases in which Al2O3 

were incorporated, with average crystallite size of 27 nm. BET surface area analysis 

of catalysts A, B, C and D revealed surface area (m2 g-1) of 170, 205, 172 and 153, 

respectively, with average pore diameter of 4 nm, suggesting mesoporosity. 

Transmission Electron Microscopy (TEM) and FESEM images of the as-grown CNTs 

shows densely entangled bundles, while High Resolution Transmission Electron 
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Microscopy analysis (HR-TEM) confirmed arrangement of SWCNTs in the bundles. 

XRD analysis indicated peaks of highly graphitized carbon atoms, Fe3C, FeN and 

Al4C3, suggesting that CNT growth might have occurred on reduced metal atoms, as 

predicted in DH2. Raman analysis of the CNT samples revealed that the Radial 

Breathing Modes (RBMs), diameter and energy band gaps of the samples were in 

conformity with those of ETB model. Fourier Transformed Infra-Red (FT-IR) analysis 

of the four samples confirmed the stretching and bending vibrations of amide carbonyl 

(-C=ONHR) and carboxylic (-COOH) functional groups, respectively, in all the 

samples, indicating that the samples were successfully functionalized. 

 

 

Highest electrochemical abilities of the SWCNT samples were observed in 0.1 M KCl 

electrolyte, tested from -1.0 to 1.0 V potential window and from scan rate of 0.01 to 

0.2 V s-1. Specific capacitance (F g-1) of 242, 207, 284 and 259 were recorded for 

SWCNTs A4, B4, C4 and D4, respectively. All samples showed stable 

pseudocapacitive cyclic voltammograms, straight charge-discharge profiles, sustained 

1000 cycle test and enhanced current-potential responses which suggested good 

potential for pseudocapacitor electrodes.  
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Cabaran utama dalam sintesis karbon nanotiub (CNTs) melalui Kaedah Pengenapan 

Wap Kimia (CVD) adalah kelemahan model teori sedia ada bagi pemilihan dan reka 

bentuk pemangkin logam/sokongan untuk penghasilan karbon nanotiub berdinding 

tunggal dengan sifat elektronik yang diperlukan. Ini telah menghadkan penggunaan 

bahan ini dalam sektor elektronik, khususnya sebagai elektrod di dalam 

superkapasitor. Dalam laporan ini, Model Teori 1(DH1) telah dicadangkan dan 

dibangunkan melalui teori kinetik, dengan menghubungkaitkan penguraian prekursor 

karbon dengan elektron logam aktif dan digunakan dalam pemilihan bahan suapan 

karbon dan matrik logam pemangkin. Model Teori 2 (DH2) adalah pengubahsuian 

yang dicadangkan untuk model persamaan ikatan ketat (ETB), yang dibangunkan 

dengan memperkenalkan herotan lilitan dan paksi terhadap diameter dan sudut kiral 

SWCNT, yang kemudiannya digunakan dalam meramalkan pemilihan dan reka 

bentuk matrik pemangkin logam/sokongan. Model-model yang terhasil ini bertepatan 

dengan perkembangan dalam bidang pemangkinan heterogen dan sintesis CNT, 

digunakan dalam mereka bentuk dan penyediaan empat sampel pemangkin Fe2O3 / 

Al2O3 iaitu  A (11, 8), B (10, 4), C (10 , 7) dan D (8, 8), dimana (m, n) adalah indeks 

kiral setiap SWCNT. Ini dicapai melalui pengisitepuan garam pelopor Fe(NO3)3.9H2O 

dan Al(NO3)3.9H2O dan pengkalsinan pada suhu 450°C. Parameter optimum bagi 

proses CVD untuk sintesis  CNTs yang berkaitan dicapai pada suhu 1000°C, muatan 

pemangkin 0.5 g dan 30 min pirolisis suapan C6H14/N2. Imej mikroskopi pengimbasan 

elektron pancaran medan (FESEM) sampel pemangkin menunjukkan zarah bersaiz 

nano-sfera dan analisis spektroskopi penyerakan tenaga (EDS) menunjukkan 

kehadiran unsur Fe, Al, dan O sahaja. Analisis pembelauan sinar-X mendedahkan fasa 

α-Fe2O3 di mana Al2O3 dipadukan bersama, dengan purata saiz kristal 27 nm. Analisis 

luas permukaan BET pemangkin A, B, C, dan D  menunjukkan masing-masing 

mempunyai luas permukaan (m2 g-1) 170, 205, 172 dan 153, dengan purata diameter 

liang 4 nm, menunjukkan mesoporisiti. Imej mikroskopi pancaran elektron (TEM) dan 

FESEM menunjukkan SWCNT terikat padat secara berkelompok, manakala analisis 
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resolusi tinggi mikroskopi pancaran elektron (HR-TEM) mengesahkan susunan secara 

berkelompok dengan ruang untuk setiap SWCNT. Analisis XRD menunjukkan 

kehadiran puncak atom karbon yang bergrafit, Fe3C, FeN dan Al4C3 dengan purata 

saiz kristal 17.4 nm, membuktikan pertumbuhan CNT berlaku melalui atom logam 

terturun, seperti yang diramalkan dalam DH2. Analisis Raman sampel CNT 

mendedahkan bahawa Mod Pernafasan Radial (RBMs), diameter dan tenaga ruang 

jalur sampel sepadan dengan model ETB yang lain. Analisis Infra-merah Transformasi 

Fourier (FT-IR) daripada mengesahkan kewujudan getaran regangan dan lenturan 

kumpulan berfungsi amide dan karbonil (-C=ONHR) dan karbosilik (-COOH), dalam 

semua sampel, menunjukkan bahawa sampel tersebut telah berjaya ditambah 

kumpulan berfungsi.  

Kebolehan elektrokimia tertinggi sampel SWCNT dicerap di dalam elektrolit 0.1 M 

KCl pada tingkap keupayaan di antara -1.0 hingga 1.0 V dan kadar imbasan 0.01 to 

0.2 V/s. Kapasitans spesifik (F g-1) dengan nilai 242, 207, 284 dan 259 direkodkan 

untuk SWCNT A4, B4, C4 dan D4. Semua sampel menunjukkan kitar voltammogram 

yang stabil, profail cas-discas yang lurus, kestabilan pada 1000 ujian kitaran dan 

peningkatan respons arus-keupayaan menunjukkan potensi yang baik sebagai elektrod 

pseudo kapasitor. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 Research Background 

 

The need for energy storage has invoked the need for intensive research in search 

of suitable and efficient materials to augment the use of batteries and conventional 

capacitors as energy storing devices in the field of electronics. Supercapacitors 

have been reported as promising candidates for this purpose because they possess 

several advantages over conventional capacitors such as high power density, very 

long life, quick mode of operation and excellent reversibility (Burke & Miller, 2000 

P. 519). They are reported to store electrical energy many folds greater than 

electrolytic capacitors. A supercapacitor can store electric energy in two ways: 

electrostatically via charge adsorption between the surface of a conductive 

electrode and an electrolyte, usually refered to double-layer capacitance, and 

through electron transfer which is achieved by redox reactions, a process known as 

pseudocapacitance (Conway, 1999, P. 67). These excellent electrochemical 

properties of supercapacitors made them suitable for various applications, 

including consumer applications where they stabilize the power supply for 

fluctuating loads such as laptop computers and portable media player; in industries 

to provide back up or emergency shutdown power to low-power equipment such 

as RAM, SRAM and PC cards; in medicine where they are used to deliver power 

energy for shocking the heart (IEA-PVPS, 2011, P. 124). This might be the reason 

why research advances are ongoing in the field of electronics, in search of suitable 

materials that may find application in the design of electrodes for supercapacitors.  

 

 

Among the various forms of carbon materials, carbon nanotubes (CNTs) have been 

receiving outstanding considerations as promosing materials for nanotechnology, 

since their discovery in 1991, by Lijima. A CNT is a cyndrical tube of hexagonal 

matrix formed by rolling a graphene sheet: it is called single wall carbon nanotube 

(SWCNT) if it consist of one tube and multi wall carbon nanotube (MWCNT), if it 

has more than two walls. A SWCNT can exhibit metallic or semiconducting 

character, depending on a unique chiral index (n, m), which determines the thermal, 

optical, mechanical, electronic and magnetic properties of the material. They are 

generally one-dimensional carbon materials with excellent mechanical properties, 

and are therefore applied in composite materials to enhance physical and chemical 

properties such as toughness, durability, conductivity and strength; their sensing 

abilities enabled them have potential applications in environmental, medical and 

agricultural studies; they also posses good electrical conductivity and pore sizes 

suitable for storing electrolyte ions, which made them attractive in the field of 

electronics (Azam & Rosle, 2013, P. 3905; Jiang, Meng & Wu, 2011, P. 155). It is 

therefore evident that these materials (CNTs) affect all part of our lives: health, 

transport, media, communication and environment. These unique properties 

possessed by CNTs have invoked the need for intensive research in order to exploit 

and explore their synthesis, characterization and applications through theoretical 
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and experimental means. However, despite all research advances in the field of 

CNT synthesis, the problem of producing these essential materials in mass, with 

the desired electronic properties, using a low-cost method, is still a persistent 

challenge (Kumar & Ando, 2010, P. 3749).    

 

 

Currently, Chemical Vapour Deposition (CVD) method of CNT synthesis is 

regarded as the best of the three methods, others being laser ablation and arch 

discharge methods. The former method is said to be easy in handling and the most 

economical for large scale production of CNTs (Ward, Wei & Ajayan, 2003, P. 

721); most efficient for yielding pure and quantitative CNT products and the most 

suitable in terms of CNT architecture, purity and yield (Jacques, 2009, P. 68). 

Among the various material parameters involved in this process, the catalyst and 

the precursor carbon source are the most influential; the metal catalysts mostly used 

are nano particles of nickel (Ni), iron (Fe) and cobalt (Co), mainly because they 

serve as better media for effective carbon solubility and diffusion (Ding et al., 2008, 

P. 465); common carbon precursors include methane, ethane, propane, butane, 

pentane, hexane, ethylene, benzene, methanol, ethanol, sucrose, kerosene 

(dodecane) and tripropylamine (Kumar & Ando, 2010, P. 3751). Their molecular 

structures play a very significant role on the structural architecture of CNTs, for 

instance, methane and benzene can form straight and curved CNTs, respectively. 

(Schneider et al., 2008, P. 1773; Maruyama et al., 2010, P. 4097).  

 

 

The unique optical and electronic properties exhibited by SWCNTs made them 

more attractive materials for future electronics than MWCNTs and theoretical 

results has confirm that metallic SWCNTs can carry electric current density many 

folds greater than metals. Therefore, recent advances in the field of selective 

synthesis of these carbon materials are receiving greater attention and were mostly 

achieved through manipulation of the catalyst shape and composition (Yang et al., 

2014, P. 524).  

 

 

1.2 Statement of Research Problems 

 

The structural architecture of SWCNTs were reported to depend on their chirality 

index (n, m), which determines their diameter and chiral angle. Authors are unanimous 

that the most determinant parameter for chirality control of SWCNT growth is the 

catalyst nano particles; therefore, modern researches were based on the epitaxial 

model of SWCNT growth, which attributed chirality growth control to the crystal 

structure and thermal stability of the catalyst nano particles. This model therefore, 

recommends that the catalyst nano particles must be in solid crystalline form and of 

high thermal stability. A breakthrough in the selective synthesis of (12, 6) SWCNTs 

was reported by Yang et al., (2014), in which molecular clusters of W39Co6Ox were 

used to prepare nano particles of W-Co catalyst supported on SiO2/Si substrates and 

synthesis of (12, 6) SWCNTs were achieved via CVD pyrolysis of ethanol (P. 526). 

Raman RBM of the as-grown SWCNTs conformed with RBM of (12, 6) SWCNTs. 

The authors attributed the success of selective growth to the enhanced structural 

similarities between the atomic arrangement of the catalyst nano particles and the 
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circumference (diameter) of the (12, 6) SWCNT. Stability of the nano-sized catalyst 

particles during reaction processes was attributed to high thermal stability (2400oC) 

of W-Co alloy. This work was complemented two years later by An et al., (2016) who 

selectively grow (12, 6) SWCNTs with Co-W catalyst  prepared by magneton 

sputtering of W and Co metals on SiO2 followed by annealing at 400oC in air (P. 

14525). Here, selective synthesis was attributed to the formation of an intermediate 

structure of Co6W6C as revealed by in-plane transmission electron microscopy, while 

stability of the catalyst was due to anchoring nature of W.  

 

 

However, despite advances in this field, the ultimate aim of obtaining a desired type 

of SWCNT by structural growth control of chirality through  manipulation of catalyst 

composition, shape and structure has posed a major challenge for over 20 years (Yang 

et al., 2014, P. 530). There are two main reasons for this difficulty (1) it has not been 

possible to prepare identical nano particles of catalyst of the same sizes, compositions 

or shapes (2) it is even more challenging to control the stability of these nano-sized 

particles at higher temperatures of growth processes. This has necessitated the need 

for new innovative approaches, different from attribution of chirality to catalyst crystal 

sizes, in order to solve the problem of SWCNT chirality control growth (Liu, Wu, Gui, 

Zheng, & Zhou,  2017, P. 38). 

 

 

It was based on this persistent challenge that Theoretical Model 2 of the current report 

was a proposed attempt to correlate the magnitudes of the chirality index (n, m) of 

each SWCNT directly to the weight percent fractions of the metal/support catalyst 

matrix, respectively, which may be used to select and design suitable metal/support 

catalyst to selectively grow SWCNTs of desired chirality, without the use of tedious 

in situ experimental control.. 

 

 

1.3 Research Aim and Objectives 

 

The aim of this research work is to selectively synthesize metallic SWCNTs of the 

types A (11, 8), B (10, 4), D (10, 7) and E (8, 8), via CVD method, and evaluate their 

capacitances. To achieve this aim, the following specific objectives were designed:  

 

1. Development of Theoretical Model 1 (DH1) using the kinetic theory of gases 

and its applications in the selection of carbon precursor/metal catalyst matrix.  

2. Development of Theoretical Model 2 (DH2), a comparative study with the 

Extended Tight Binding (ETB) results, and its application in the selection and 

design of Metal / Support catalyst matrix. 

3. Application of DH1 and DH2 in the design and preparation of sample catalysts 

with compositions A (11, 8), B (10, 4), C (10, 7) and D (8, 8) by chemical 

impregnation method, and their analysis using X-Ray Difraction (XRD), Field 

Emission Scanning Electron Microscopy (FESEM), Electron Dispersive 

Spectroscopy (EDS), Thermogravimetric Analysis (TGA) and BET surface area 

analysis.  
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4 Synthesis of  the corresponding CNTs of the types A (11, 8), B (10, 4), D (10, 7) 

and E (8, 8) via thermal CVD process and characterization of the as-grown CNTs 

using XRD, FESEM, EDS, Transmission Electron Microscopy (TEM), High-

Resolution Transmission Electron Microscopy (HR-TEM), TGA and Raman 

analyses. 

5 Evaluation on the effects of catalyst loading, working temperature and pyrolysis 

time on the structure of the as-grown CNTs. 

6 Comparasion of the electronic properties of the as-grown CNTs with those 

established by the Extended Tight Binding (ETB) Model, based on Raman 

spectroscopy analysis.  

7 Evaluation of the electrochemical properties of the CNTs using Cyclic 

Voltammetry (CV) analysis and galvanostatic charge-discharge tests. 
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