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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in 

fulfillment of the requirement for the Degree of Master of Science 

 

 

IMPROVED CLUSTERING USING ROBUST AND CLASSICAL 

PRINCIPAL COMPONENT 

 

 

By 

 

 

AHMED KADOM HASSN 

 

 

June 2017 
 

 

Chairman : Anwar Fitrianto, PhD 

Faculty : Science 

 

 

k-means algorithm is a popular data clustering algorithm. k-means clustering aims 

to partition n observations into k clusters in which each observation belongs to 

the cluster with the nearest mean, serving as a prototype of the cluster. Finding the 

appropriate number of clusters for a given data set is generally a trial-and-error 

process which made more difficult by the subjective nature of deciding what 

constitutes ‘correct’ clustering. When dimension of data is large it is often difficult 

to apply k-means clustering algorithm since it needs lots of computational times.  

 

 

To remedy this problem, we propose to integrate Principal Component analysis 

(PCA) which is useful for dimensionality reduction of a dataset with the k-means 

clustering algorithm. We call our propose method as k-means by principal 

components (pc1). In this study, the kernels that are created by using the k-means  

method are replaced with kernels which are created by using PCA method where  the 

PCA  method  reduces the dimensionality of a data. The results of the study show 

that the k-means by PCA is faster and more efficient than the classical k-means 

algorithm. 

 

 

The classical k-means algorithm and the k-means by PCA algorithm are very 

sensitive to the presence of outlier. Hence the k-means by robust PCA is developed 

to rectify the problem of outliers in the dataset. 

 

 

The findings indicate that in the absence of outliers, the performances of both 

methods; the k-means by PCA and the k-means by robust PCA are equally good. 

Nonetheless, the k-means by robust PCA is not much affected by outliers compared 

to the k-means by classical PCA.   
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ANALISIS KOMPONEN UTAMA TEGUH DAN KLASIK 
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Jun 2017 

 

 

Pengerusi : Anwar Fitrianto, PhD 

Fakulti : Sains 

 

 

Algoritma k-means ialah algoritma data kluster yang popular.  Matlamat 

pengelompokan k-means adalah untuk membahagi cerapan n ke dalam kluster k 

dengan setiap cerapan adalah kepunyaan kluster dengan min yang terdekat, ianya 

berfungsi sebagai prototaip kluster. Mencari bilangan kluster yang sesuai untuk 

sesuatu set data adalah secara amnya suatu proses percubaan yang menjadi lebih 

sukar disebabkan sifat subjektif dalam menentukan apa yang merupakan 

pengelompokan yang ‘betul’.  Apabila dimensi data besar biasanya sukar untuk 

menggunakan algoritma pengelompokan k-means, kerana ianya memerlukan banyak 

masa pengkomputeran.  

 

 

Untuk membetulkan masalah ini, kami mencadangkan untuk mengintegrasikan 

analisis komponen utama (PCA), di mana ianya berguna untuk pengurangan dimensi 

set data dengan algoritma pengelompokan k-means. Kami namakan kaedah yang 

dicadangkan sebagai k-means dari komponen utama (pc1). Dalam kajian ini, kernel-

kernel yang dicipta dengan menggunakan kaedah k-means telah digantikan dengan 

kernel-kernel yang dicipta menggunakan kaedah PCA di mana kaedah PCA telah 

mengurangkan dimensi pada data tersebut.  Keputusan dari kajian ini menunjukkan 

bahawa k-means dengan PCA adalah lebih cepat dan cekap daripada algoritma k-

means klasik. 

 

 

Algoritma k-means klasik dan k-means dengan algoritma PCA adalah lebih sensitif 

dengan kehadiran titik terpencil. Oleh itu, k-means dengan PCA teguh telah 

dicadangkan untuk membetulkan masalah titik terpencil di dalam set data. 
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Keputusan menunjukkan bahawa pencapaian kedua-dua kaedah dengan kehadiran 

titik terpencil; k-means dengan PCA dan k-means dengan PCA teguh adalah sama 

bagus. Walaubagaimanapun, k-means dengan PCA teguh tidak banyak terjejas 

dengan titik terpencil berbanding dengan k-means dengan PCA klasik. 
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CHAPTER 1  

 

 
INTRODUCTION 

 

 

1.1 Introduction and Background of the study 

 

Searching for ‘‘natural’’ groups of objects is an important exploratory technique for 

understanding complex data. The origins of clustering can be traced back to 

taxonomy where it is necessary that different people assign similar objects to the 

same group. Clustering or grouping were traditionally done by taxonomists who 

picked important grouping variables based on their rich knowledge of species. 

Nowadays, the principal function of clustering is to name, display, summarize and 

to elicit an explanation for the resulting partitions of the dataset (Hartigan, 1975). 

 

 

Clustering defines as programmed grouping of similar circumstances created several 

dissimilarity amount in Statistics and Computer Science. Clustering is sometimes 

referred to as ‘‘numerical taxonomy’’. 

 

 

For example, a DNA microarray is a type of dataset to which clustering algorithms 

are applied. A microarray is a rectangular array of N rows, one for each case (e.g. a 

patient or a tumor) and p columns, one for each feature (e.g. genes, SNP’s). 

 

 

The dependable, precise plus robust arrangement of growths is vital for prosperous 

analysis of cancer. However, in medical a clinical presentation of microarray-

established is to identify and diagnose cancer, the explanation of new growth 

sessions would be centered on the partitions produced by grouping. The clusters can 

formerly be applied to build forecasters for fresh tumor models (Dudoit et al., 2002). 

 

 

Current applications of clustering algorithms often include a large number of features 

and visualizing such datasets is difficult. Typically, simply a moderately few 

numbers of feature is important to determine the class memberships of the cases. 

 

 

If thousands of potential clustering features must be considered, the traditional 

taxonomists’ approach of hand picking important features becomes difficult and 

impractical. Instead, we need a method that automatically chooses the important 

clustering variables. Furthermore, large datasets may contain outliers, which are 

defined as cases that do not belong to any of the given clusters. In this situation, one 

may wish to use a wise algorithm that identifies the important features and outliers 

together with the clusters. 
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Principal component analysis is known as a general statistical technique which gives 

much insight and attempts to describe the covariance organization of data by values 

of a minor number of constituents. Therefore, these constituents are linear 

arrangements of the unique variables, and frequently agree for an explanation and a 

enhanced thoughtful of the dissimilar causes of variant. For the reason that PCA is 

disturbed with the data reduction,  yet, it is commonly applied for the investigation 

of high-dimensional data which are normally come across in chemometrics, 

computer vision, engineering, genetics, and other fields. PCA is formerly and 

regularly the first approach of the data analysis, go alone with discriminant analysis, 

cluster analysis, or other multivariate techniques.  However, as a result, it is essential 

to discover individuals main constituents that comprise maximum of the information. 

In the conventional technique, the leading constituent relates to the trend in which 

the projected observations recorded have the major sum of variance. The second 

constituent is then orthogonal to which the first and over again take full advantage 

of the variance of the data points projected on it. Persistently,  in this method its yield 

entirely the principal constituents, whereby, relate to the eigenvectors of the 

experimental covariance matrix. Regrettably, both the conventional variance, which 

is being made best use of it and the conventional covariance matrix, which is being 

disintegrated are very delicate to abnormal interpretations. Accordingly, the first 

constituents are frequently involved in the direction of distant points, and it may not 

make use of the much difference of regular observations. Hence, reduction of data 

centered on classical PCA (CPCA) turn into undependable if outliers are existing in 

the data (Mia Hubert et al., 2005)  

 

 

Almost the entire of the PCA algorithms stated previously are created on the 

expectations that data have not being damaged by outliers. The procedure is that, 

actual data regularly comprise various outliers and commonly they are not simply to 

be disjointed from the real data set (Chen, 2002) . 

 

 

The major aim of robust PCA approaches is to attain principal constituents that are 

completely may not be affected considerably by outliers.  The  first set of techniques 

group is attained by swapping the conventional covariance matrix by a robust 

covariance estimator. (Campbell, 1980; Maronna et al., 1976) suggested to apply 

affine equi-variant M-estimators of scatter for this aim, nevertheless, these may not 

fight many outliers. Furthermore, recently (Croux et al., 2000) applied positive-

breakdown   estimators such as the minimum covariance determinant (MCD) 

technique (Edelsbrunner et al., 1990) and S-estimators (Davies, 1987; Mia Hubert et 

al., 2005; Leroy et al., 1987).  

 

 

1.2 Statement of the problem  

 

Data exploration techniques are very important for studying enormous quantity of 

high dimensional data. Principal component analysis (PCA) is a generally applied 

statistical method in non-parametric dimension reduction. The k-means cluster 

analysis is usually applied in data clustering for non-parametric learning 

responsibilities. On the other perspective, clustering examinations (Duda et al., 2012; 
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Friedman et al., 2001; Jain et al., 1988) and tries to give permission by which data 

pass quickly to achieve accessibility by first demand understanding and also by 

separating data points into disconnect groups so that similar data points be in the 

right place to same cluster,  while data points which are not the same be in the right 

place to different clusters. The utmost common and capable clustering techniques is 

the k-means method (Hartigan et al., 1979; Lloyd, 1957; MacQueen, 1967) which 

uses models as centers to signify clusters by improving the squared cost function 

(detail explanation on k-means and associated ISODATA techniques, can be seen in  

(Jain & Dubes, 1988), and (Wallace, 1989)). On the other perspective, high 

dimensional data are frequently changed into lower dimensional data through the 

principal component analysis (PCA) where logical arrangements can be identified 

more obviously(Jolliffe, 2002b). This kind of unsupervised dimension reduction is 

applied  in actual extensive fields such as meteorology, image processing, genomic 

analysis, and information retrieval. Therefore, it may also be general that PCA is 

applied to project data to lessen the dimensional subspace and k-means is formerly 

applied in the subspace (Zha et al., 2001). Considering other circumstances, data are 

inserted in a low-dimensional space like the Eigen space of the graph Laplacian, and 

k-means at that point used (A. Y. Ng et al., 2001). The major sources of PCA-based 

dimension reduction is that PCA choices up the magnitudes with the maximum 

variances. Mathematically, this is an alternative to seeking  the paramount low rank 

estimation of the data through the singular value decomposition (SVD) (Eckart et al., 

1936). Though, this distortion of anomaly  reduction property only is insufficient to 

describe the helpfulness of PCA(Ding et al., 2004b).  

 

 

In consideration of the classical approach to principal component analysis, the first 

constituent relates to the trend in which the projected interpretations have the biggest 

variance. The second constituent is therefore the orthogonal to the first constituent 

and yield better when using the variance of the data arguments projected on it. 

Persistently, in another perspective, in this manner it gives almost all the principal 

constituents,  whereby its relates  to the eigenvectors of the experimental covariance 

matrix. Regrettably, both the conventional variance is being used as the best and the 

conventional covariance matrix is being disintegrated and are very complex to 

abnormal explanations. Accordingly, the first constituents are regularly fascinated in 

the direction of faraway distant points, and would not point  the discrepancy of the 

consistent observations. As a result, reduction of data established on classical PCA 

(CPCA) turn out to be undependable if outliers are existing in the data(Mia Hubert 

et al., 2005). 

 

 

1.3 Objectives of the study  

 

The principal components are essentially the continuous explanation of the cluster 

affiliation pointers in the k-means cluster analysis  method. The PCA measurement 

is repeatedly reduce the executed data clustering agreeing to the k-means cost 

function. This however, affords an essential validation of PCA-based reduction of 

data.  The outcomes also make available operational methods to explain the k- means 

cluster analysis issues. k-means approach applies k models, the centers of clusters, 

which exactly describe the data. (Ding & He, 2004b). 
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Usually, when considering the first components it generally and frequently 

fascinated in the direction of faraway distant points, and which possibly would not 

give the  precise difference in variation of the systematic observations. 

Consequently,  reduction of data is centered on classical PCA (CPCA) which 

develops as undependable if outliers are existing in the data (Mia Hubert et al., 2005). 

 

 

The research problem can be outlined as follows: 

 

 Clustering based on k-means method is very popular. However, as soon as 

the measurement of the data is big it may often difficult to apply k-mean 

cluster, because it needs lots of computational times. Therefore, 

computationally k-mean is very expensive for large  dimension of data. 

 Both PCA & k-mean clustering algorithm are affected by outliers. In this 

situation the use of  robust  PCA  is recommended for clustering the data. 

 

 

Based on statements of problem, the present study tries to arrive the following 

objectives:- 

 

i) To develop k-mean clustering algorithm based on PCA  data reduction 

technique. 

ii) To formulate k-mean clustering algorithm based on Robust PCA in the 

presence of outliers. 

 

 

1.4 Thesis Outline 

 

In line with the objectives and scope of this research, the subjects of the thesis are 

arranged in five sections. After the introduction, the various sections are ordered such 

that research goals are clearly presented in the outlined sequence. 

 

 

Chapter Two. This segment presents a concise survey of the literature which 

basically considering the cluster analysis on k-means to identify  group data into 

homogeneous gatherings based on similarities through a set of attributes.  The 

clustering analysis and principal component analysis (PCA) are highlighted in this 

chapter. 

 

 

Chapter Three. In this chapter, the k-means clustering algorithm and the PCA are 

discussed. The k-mean clustering based on PCA is proposed to increase the 

efficiency of the clustering algorithm and at the same time reduces computational 

times. Monte carlo simulation study and numerical example are presented.  
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Chapter Four. This chapter described the proposed k-means clustering algorithm 

based on robust PCA to reduce the effect of outliers on determining the number of 

clusters. To evaluate the performance of the proposed method, monte carlo 

simulation study and real data applications are carried out.  

 

 

Chapter Five. Finally,  the chapter offers complete summarized and detailed 

discussion of some results, contributions, and recommendations for further research. 
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