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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment 

of the requirement for the degree of Master of Science 

METABOLIC AND FUNCTIONAL CHARACTERISATION OF ADULT 

SKELETAL MUSCLE IN DOWN SYNDROME MOUSE MODEL (Ts1Cje) 

FOR INSIGHTS INTO HYPOTONIA IN HUMAN CONDITION 

By 

LIM CHAI LING 

April 2017 

Chairman       : Cheah Pike See, PhD 

Faculty : Medicine and Health Sciences 

Down syndrome (DS) is a genetic condition resulting from a partial or full 

triplication of human chromosome 21. In addition to intellectual disability, DS is 

frequently associated with hypotonia. However, little is known about its underlying 

mechanism. In this study, the trisomic Ts1Cje mouse, a DS murine model, was 

employed to explore the possible mechanisms of DS-associated hypotonia. The 

hypotheses of this study are the over dosage of trisomic genes disrupts the population 

size and the cellular functionality of trisomic Ts1Cje satellite cells, as well as, the 

metabolic pathways in trisomic Ts1Cje skeletal muscle. Eventually, they lead to 

hypotonia seen in DS. In order to determine the satellite cell population in trisomic 

Ts1Cje skeletal muscle, myofibres derived from the EDL of the adult trisomic 

Ts1Cje mice  and its age-matched disomic wild-type control littermates were isolated. 

The associated satellite cells were then quantified by using immunostaining for Pax7 

(a marker for quiescent satellite cells). The results showed no significant variation in 

terms of the satellite cell populations between the two genotypes, indicating that the 

depletion of satellite cell populations may not a primary cause of DS-associated 

hypotonia. Additionally, the average number of myonuclei present in each EDL 

myofibre of the trisomic Ts1Cje mice was also investigated. The data obtained 

suggest that there was no significant difference in the average number of myonuclei 

per myofibre genotypes between the two genotypes. This finding suggested the 

trisomic Ts1Cje myofibres are normal in size. Meanwhile, the intrinsic cellular 

functionality of satellite cells between the two genotypes was also determined. 

Satellite cells derived from the EDL of the two genotypes were isolated and cultured 

in high-serum containing conditioned medium. Subsequently, the in vitro self-

renewal, proliferative and differentiation activity of these myogenic precursor cells 

were assessed at 24, 48 and 72 h after cell seeding. These progenies were 

distinguished on the basis of Pax7 and MyoD (a marker for activating satellite cells) 

expression patterns. Furthermore, the results (proliferation and differentiation 

potential) obtained were later validated using Ki67 (a marker for proliferating cells) 
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and MyoD expression patterns. These findings demonstrated that there was no 

difference between the satellite cells of the two genotypes in their ability to self-

renew, proliferate and differentiate, indicating that alteration of the cellular function 

of satellite cells is not a primary cause of DS-associated hypotonia. Additionally, the 

metabolic profiles of trisomic Ts1Cje skeletal muscle were also evaluated using a 

non targeted metabolomics strategy. The hydrophilic and hydrophobic metabolites 

present in gastrocnemius (GA) samples of the two genotypes were extracted using 

methanol/chloroform/water partitioning-based protocol and subsequently were 

characterised by using 1H NMR spectroscopy combined with multivariate data 

analysis. The findings revealed that guanidinoacetate, histidine, adenosine mono-

phosphate and glutamine were found to be at lower levels in the trisomic Ts1Cje 

skeletal muscle, indicating that alteration of energy, glutamate and histidine pathway 

metabolism in trisomic Ts1Cje skeletal muscle may underlie the hypotonia seen in 

DS. In conclusion, the perturbation of metabolic profile resulted from the over 

dosage of trisomic genes is the primary cause of DS-associated hypotonia.  
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk Ijazah Master Sains 

PENCIRIAN METABOLIK DAN FUNGSI SELULAR OTOT RANGKA 

MENCIT SINDROM DOWN (Ts1Cje) BAGI SIASATAN PUNCA YANG 

MENYEBABKAN KELEMAHAN OTOT DALAM KALANGAN PESAKIT 

SINDROM DOWN 

Oleh 

LIM CHAI LING 

April 2017

Pengerusi  : Cheah Pike See, PhD 

Fakulti       : Perubatan dan Sains Kesihatan 

Sindrom Down (DS) adalah satu keadaan genetik yang terhasil daripada penigaan 

sebahagian atau penuh kromosom manusia 21. Selain daripada kecacatan intelektual, 

individu DS juga sering dilapor dengan hipotonia. Walau bagaimanapun, mekanisme 

yang menyebabkan sindrome tersebut masih belum dikenalpastikan. Dalam kajian ini, 

kami menggunakan mencit trisomik Ts1Cje, satu jenis model mencit DS, untuk 

meneroka mekanisme yang menyebabkan hipotonia berkaitan dengan DS. Hipotesis 

dalam kajian ini adalah bahawa kelebihan dos gen trisomi akan mengganggu jumlah 

populasi dan fungsi selular sel-sel satelit, serta akan mengusikan laluan metabolik 

dalam otot rangka mencit Ts1Cje. Akhirnya, sebab-sebab tersebut akan 

menyebabkan hipotonia yang sering dijumpa di kalangan pesakit DS. Dalam usaha 

untuk mencirikan jumlah populasi sel satelit, serat otot rangka extensor digitorum 

longus (EDL) telah dikutip daripada mencit dewasa trisomik Ts1Cje dan mencit 

kawalan yang sepadan umur. Sel-sel satelit pada setiap serat otot telah dikaji dengan 

Pax7 melalui immunohistokimia (penanda spesifik bagi sel satelit). Keputusan 

eksperimen ini telah menunjukkan tiada perbezaan secara signifikan dari segi 

populasi sel satelit antara kedua-dua jenis genotip, mencadangkan bilangan dalam 

populasi sel satelit ini tidak menyumbang kepada hipotonia berkaitan dengan DS. 

Selain itu, purata mionukleus dalam setiap serat otot berasal dari otot EDL juga 

disiasat Keputusan eksperimen ini menunjukkan tiada perbezaan yang ketara dalam 

bilangan purata mionukleus antara otot rangka mencit Ts1Cje dan mencit kawalan 

untuk kedua-dua jantina. Keputusan ini membuktikan bahawa mencit Ts1Cje 

mempunyai saiz serat otot yang normal. Fungsi selular intrinsik sel-sel satelit antara 

kedua-dua genotip juga disiasat. Dalam eksperimen ini, sel-sel satelit yang berasal 

dari otot EDL mencit trisomik Ts1Cje jantan dewasa dan mencit kawalan yang 

sepadan umur telah dikulturkan dalam medium yang kaya dengan serum. Seterusnya, 

aktiviti sel-sel satelik seperti  pembaharuan diri in vitro, proliferatif dan diferensiasi 

telah dinilaikan pada 24, 48 dan 72 jam dalam keadaan kultur. Progeni yang berikut 
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telah dibezakan berdasarkan perwarnaan immunohistokimia dengan menggunakan 

Pax7 dan MyoD. Tambahan pula, keputusan eksperimen (proliferatif dan diferensiasi) 

juga telah disahkan melalui perwarnaan immunohistokimia dengan menggunakan 

Ki67 dan MyoD. Keputusan kajian ini telah menunjukkan bahawa tiada perbezaan 

secara signifikan antara sel-sel satelit bagi kedua-dua genotip dari segi keupayaan 

untuk memperbaharui diri, pertumbuhan dan diferensiasi. Hasil kajian ini telah 

mencadangkan bahawa fungsi selular sel satelit tidak memainkan peranan dalam 

menyebabkan hipotonia yang berkaitan dengan DS. Di samping itu, profil metabolik 

otot rangka mencit Ts1Cje juga diperiksa dengan menggunakan strategi 

metabolomiks yang bersasaran bebas. Metabolit hidrofilik dan hidrofobik dari otot 

rangka gastrocnemius (GA) telah diekstrak dengan menggunakan protokol ekstrak 

metanol/ kloroform/ air dan seterusnya telah diciri dengan menggunakan 1H NMR 

spektroskopi bergabung dengan kaedah “multivariate data analysis”. Keputusan 

eksperimen ini menunjukkan bahawa kandungan guanidinoacetat, histidin, adenosin 

mono-fosfat dan glutamin dalam otot rangka mencit trisomik Ts1Cje adalah lebih 

rendah secara signifikan berbanding dengan mencit kawalan. Keputusan ini 

mencadangkan bahawa laluan metabolisme tenaga, laluan metabolism glutamat dan 

laluan metabolisme histidin memainkan peranan yang penting dalam menyebabkan 

hipotonia yang berkaitan dengan DS. Kesimpulannya, sel-sel satelit dari otot rangka 

memainkan peranan yang minimum  dalam menyebabkan hipotonia. 

Walabagaimanapun, kelebihan dos gen trisomi telah mengakibatkan gangguan laluan 

metabolik dan seterusnya mengakibatkan hipotonia yang berkaitan dengan DS. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background 

 

Down syndrome (DS) is a genetic condition resulting from a partial or full 

triplication of human chromosome 21 (HSA21), which occurs at a rate of 

approximately 1 case per 700 live births worldwide (Roper and Reeves, 2006; 

Cdc.gov, 2016). The extra copy of chromosome 21 alters normal gene expression 

and eventually leads to a series of clinical manifestations affecting multiple organs. 

The clinical manifestations of DS are complex and have different degrees of 

penetrance and expressivity (Roper and Reeves, 2006). Some clinical manifestations, 

such as congenital cardiac diseases, thyroid disease and gastrointestinal disorders, 

affect only a subpopulation of DS individuals (Liu et al., 2014), whereas, certain 

clinical manifestations, such as intellectual disability, craniofacial abnormalities and 

hypotonia, are present in nearly all DS cases (Liu et al., 2014). 

 

Hypotonia (muscle weakness) is a condition of low muscle tone, often accompanied 

by a slower speed of response together with a reduction in muscular endurance 

(Brault et al., 2015; Lisi and Cohn, 2011). It is cited as one of the most significant 

problems associated with DS. DS individuals have often been diagnosed with low 

muscular strength and delays in acquisition of fine and gross motor skills from early 

childhood. A previous study has reported that the force generated by the knee 

extensor muscle of DS individuals is approximately 40%-70% less than that 

generated by the knee extensor muscle of individuals with intellectual disabilities 

other than DS and those with normal intellectual ability (Cowley et al., 2012). This 

wide variation in muscle strength is comparable to the discrepancy observed among 

healthy young adults and elderly people. Unsurprinsingly, hypotonia will reduce the 

quality of life of DS patients. Unfortunately, the origin of DS-associated hypotonia is 

little known. Even though previous studies have suggested that DS-associated 

hypotonia could be due to premature aging and mitochondrial defects (Heffernan et 

al., 2009; Phillips et al., 2013; Brault et al., 2015). However, those findings are too 

superficial and scattered. Therefore, more extensive studies aiming to investigate the 

exact mechanism of DS-associated hypotonia are required in the coming days. 

 

Due to ethical issues, there are arguments against using human subjects in basic 

research; therefore, a DS murine model, the trisomic Ts1Cje mouse, was employed 

as a tool in this study to unravel the causes of DS-associated hypotonia. Trisomic 

Ts1Cje was developed by Sago et al. in 1998 (Sago et al., 1998). This murine model 

carries a partial triplication of chromosome 16 spanning from the murine superoxide 

dismutase 1 (Sod1) gene to the Zinc finger protein 295 (Zfp295) gene. However, the 

Sod1 gene is not functionally triplicated (Sago et al., 1998). Hence, it carries a 

normal copy number of the Sod1 gene (Olson et al., 2004). The trisomic Ts1Cje 

mouse is one of the commonly use murine models in DS research, because it displays 
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a remarkable number of phenotypic characteristics reminiscent of those commonly 

observed among DS individuals. These phenotypic characteristics include structural, 

and cognitive alterations of the brain and craniofacial alterations (Liu et al., 2014). 

Thus, Ts1Cje mice have considerable value in the determining the mechanisms of 

DS-associated pathology. Moreover, in a study done by Bala (2016), trisomic Ts1Cje 

mice were also found to display reduced grip strength and locomotor activity as 

compared with their disomic wild-type control littermates (unpublished data; 

Appendix B). Thus, the trisomic Ts1Cje mouse is a suitable model to investigate the 

possible molecular and metabolic mechanisms of DS-associated hypotonia. 

 

It is fairly well-accepted that over dosage of trisomic genes will disrupt the stability 

of the genome and eventually causes the perturbation of stem and progenitor cell 

growth. Various lines of evidence demonstrate that trisomic genes can affect the 

cellular activities of various types of stem/ progenitor cells, such as hematopoietic, 

neuronal and cardiac stem cells, either directly or by altering interactions with 

microenvironmental and temporal cues (De Vita et al., 2010; Roy et al., 2012; 

Bosman et al., 2015; Najas et al., 2015;), eventually causing both the dysmorphic 

features and pathogenesis of DS. However, whether a similar mechanism will apply 

to DS skeletal muscle is not yet known. 

 

Satellite cells (also known as skeletal muscle resident cells) are rare mononuclear 

cells with low cytoplasmic content wedged between the basal lamina and 

sarcolemma of the postnatal skeletal muscle (Bischoff., 1990). In adult skeletal 

muscle, satellite cells are mitotically quiescent under normal circumstances. 

However, they are activated in response to exercise and muscle trauma (Boldrin, 

Muntoni and Morgan, 2010). Activated satellite cells will follow a well-characterised 

proliferation and differentiation program. Eventually, they will either fuse with each 

other or with the existing myofibres to generate new skeletal muscle tissue (Boldrin, 

Muntoni and Morgan, 2010). In addition to producing progeny destined for 

differentiation, a small population of satellite cells possess the ability to self-renew 

and thus, they are considered as reserve satellite cells (Sacco et al., 2013). These 

reserve satellite cells are crucial for the replenishment of the satellite cell pool. In 

summary, satellite cells play an essential role in skeletal muscle regeneration and the 

maintenance of skeletal muscle homeostasis (Tierney and Sacco, 2016). Therefore, a 

small defect in satellite cells can lead to a series of complications in recurrent 

regeneration. Many studies reported that a decrease in satellite cell populations 

contributes to a decrement in skeletal muscle functionality. For example, in the case 

of age-related sarcopenia, satellite cell populations in the skeletal muscle of elderly 

people are found to be lower as compared to the skeletal muscle from healthy young 

adults (Kadi et al., 2003; Shefer et al., 2006; Shefer et al, 2010). Nonetheless, the 

existing literature has not reported the influence of trisomic genes in the satellite cells 

of trisomic Ts1Cje skeletal muscle. Hence, the population size and cellular 

functionality of satellite cells in trisomic Ts1Cje skeletal muscle were assessed in 

this study. Additionally, the number of myonuclei was assessed to acquire supporting 

evidence for the results on satellite cell populations size and some additional 

information on myofibre size. 
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On the other hand, previous literatures suggested that an overdose of trisomic genes 

would lead to the perturbation of metabolic pathways (Pogribna et al., 2001; 

Coppedè, 2009). A previous study also demonstrated that DS-associated hypotonia 

could be due to the disruption of metabolic pathways (Brault et al., 2015). However, 

those findings are too superficial and scattered. Therefore, a more extensive study 

aiming to extract more inclusive information on the metabolic profile of the trisomic 

Ts1Cje skeletal muscle is required. In this study, a 1H NMR-based non-targeted 

metabolomics approach was employed.  

 

Metabolomics is an emerging post-genomic field, tightly related to genomics and 

proteomics, which is concerned about the comprehensive identification and 

quantification of multiple small and low-molecular-weight metabolites (≤ 1500 

Daltons) in biological samples (Gowda et al., 2008). The metabolome is the 

downstream product of the genome, transcriptome and proteome; hence, analysing 

the metabolome of a biological system could facilitate the extraction of an extensive 

and comprehensive description of pathway activity. Additionally, the total number of 

human metabolites (≈7,000) identified is comparatively modest as compared with 

genes (25,000), transcripts (100,000) and proteins (1,000,000) (Shah, Kraus and 

Newgard, 2012). Thus, interpreting metabolomics data will be relatively more 

proximal, simpler and less time consuming as compared with the interpretation of 

genomics and proteomics data. 

 

With the availability of current advanced technologies, several hundred to thousands 

of small, low-molecular-weight molecules can be detected easily nowadays. Still, the 

detection sensitivity depends on the analytical platform. However, to date, there is no 

single technology able to capture the complete metabolome. Among the analytical 

platforms that can be utilised for metabolomics applications, mass spectroscopy (MS) 

and nuclear magnetic resonance (NMR) are the most commonly used techniques 

(Robertson and Lindon, 2005; Gowda et al., 2008; Nagrath et al., 2011). However, 

high-resolution 1H NMR has been chosen for use in this study because it is the only 

technology capable of producing a comprehensive profile of metabolite signals 

without the need for preselection of measurement parameters or selection of 

separation or derivation procedures. Besides that, it also able to produce results that 

are highly reproducible as compared with MS (Robertson and Lindon, 2005; Gowda 

et al., 2008). Moreover, many recent studies demonstrated that 1H NMR-based 

metabolomics have been used extensively to understand the pathogenesis of many 

diseases such as autism, cancer, cardiovascular diseases, stroke etc (Yap et al., 2010; 
Jung et al., 2011; Nagrath et al., 2011; Shah, Kraus and Newgard, 2012). Therefore, 

in this study, a non-targeted metabolomics strategy; combining 1H NMR 

spectroscopy and multivariate data analysis was employed to obtain information on 

the metabolic profile of trisomic Ts1Cje skeletal muscle. 

 

1.2 Problem statement 

 

Proper motor skills are essentially important for a wide range of activities in our 

daily lives, from sitting and independent eating and drinking to walking and running. 
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Delay in motor development due to hypotonia has considerable impacts on DS 

individuals’ lives. It will not only interfere with their capability to perform daily 

living activities but will also limit their opportunities for independent living, 

vocational calling and economic independence. Ultimately, it leads to assisted living 

and lower quality of life among DS individuals. However, the origin of DS-

associated hypotonia is less known. Therefore, an insight of the satellite cells and the 

metabolic profile in trisomic Ts1Cje skeletal muscle will have enormous 

implications for DS individuals’ social and medical care needs. 

 

1.3 Significance of the study 

 

This study aims to provide fundamental knowledge of the underlying mechanism of 

DS-associated hypotonia. These findings will provide new clues to the etiology of 

DS-associated hypotonia and eventually, they will also give rise to better medical 

management of DS patients. 

 

1.4 Hypotheses 

 

The hypotheses of this study are the following: 

1. Trisomic genes will cause a reduction of satellite cell populations in adult 

trisomic Ts1Cje skeletal muscle and eventually lead to DS-associated 

hypotonia.  

2. Trisomic genes will affect the cellular capability of satellite cells in adult 

trisomic Ts1Cje skeletal muscle and eventually lead to DS-associated 

hypotonia. 

3. Trisomic genes will cause a perturbation of metabolic pathways in the 

skeletal muscle of adult trisomic Ts1Cje mice and eventually lead to DS-

associated hypotonia. 

 

1.5 Objectives 

 

1.5.1 General objective 

 

This study seeks to investigate the effects of trisomic genes on satellite cells and on 

the alternation of the metabolic profile in trisomic Ts1Cje skeletal muscle, in order to 

provide insights into hypotonia seen among DS individuals. 

 

1.5.2 Specific objectives 

 

The specific objectives of this study are to determine the following: 
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1. The effects of trisomic genes on satellite cell populations in trisomic Ts1Cje

skeletal muscle;

2. The effects of trisomic genes on the cellular function of satellite cells in

trisomic Ts1Cje skeletal muscle and

3. The effects of trisomic gene on the alteration of the metabolic profile in

trisomic Ts1Cje skeletal muscle.
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