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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of
the requirement for the degree of Doctor of Philosophy

GENERALIZED BURR TYPE X DISTRIBUTION AND ITS
PROPERTIES AND APPLICATIONS

By

MUNDHER ABDULLAH KHALEEL

May 2017

Chair: Professor Noor Akma Ibrahim, PhD
Faculty: Science

We develop three new models from the baseline Burr type X with two parameters
distribution (BX) using the beta-G, gamma-G and Weibull-G families of distributions.
Burr type X distribution is chosen because the probability density function (pdf)
and the cumulative distribution function (cdf) are of closed form. As a consequence
of this, it can be used very conveniently even for censored data. Unlike Weibull,
Generalized Exponential and gamma distributions, BX has a nonmonotone hazard
function, which is suitable for the applications for right skewed data. Thus, the new
models are attractive in terms of flexibility in dealing with right skewed, left skewed
and approximately symmetric data.

These three new distributions are known as beta Burr type X distribution (BBX),
gamma Burr type X distribution (GBX) and Weibull Burr type X distribution (WBX).
For each of the new distributions, the probability density function and failure rate func-
tion are found to be more flexible in accommodating different shapes. The new distri-
butions have numerous sub-models as special cases and the expansions of pdf and cdf
for each are obtained. We derived several mathematical properties of BBX, GBX and
WBX distributions which include the quantile function, rth moment, moment generat-
ing function, mean deviation, Rényi entropy and order statistics. The maximum likeli-
hood method is employed for the estimation of the parameters of BBX, GBX and WBX
distributions. Simulation studies are carried out for varying sample sizes and parameter
values to assess the performance of BBX, GBX and WBX distributions. Real data sets
are used to illustrate the flexibility of BBX, GBX and WBX distributions. From the
results, each distribution has provided a better fit than its sub-models and non-nested
models based on the criteria such as the Akaike information criterion (AIC), corrected
Akaike information criterion (CAIC), Bayesian information criterion (BIC), Hannan-
Quinn information criterion (HQIC) and Kolmogorov-Smirnov statistic (K−S). From

i



© C
OPYRIG

HT U
PM

the real data analyses, WBX is found to fit left skewed and approximately symmetric
data best while GBX fits the right skewed data best.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

TABURAN BURR TERITLAK JENIS X DENGAN SIFAT DAN
PENGGUNAAN

Oleh

MUNDHER ABDULLAH KHALEEL

Mei 2017

Pengerusi: Professor Noor Akma Ibrahim, PhD
Fakulti: Sains

Kami membangunkan tiga model baharu dari garis dasar taburan Burr jenis X dengan
dua parameter (BX) menggunakan keluarga taburan beta-G, gamma-G dan Weibull-G.
Taburan Burr jenis X dipilih kerana fungsi ketumpatan kebarangkalian (pdf) dan
fungsi taburan kumulatif (cdf) adalah berbentuk tertutup. Akibat daripada ini, ia boleh
digunakan dengan mudah walaupun untuk data tertapis. Tidak seperti taburan Weibull,
Eksponen Teritlak dan gamma, BX mempunyai fungsi bahaya bukan-senada, yang
sesuai untuk kegunaan bagi data pencong kekanan. Oleh itu, model baru ini menarik
dari segi fleksibiliti dalam menangani data pencong ke kanan, pencong ke kiri dan data
yang menghampiri simetri.

Ketiga-tiga taburan baharu ini dikenali sebagai taburan beta Burr jenis X (BBX), tabu-
ran gamma Burr jenis X (GBX) dan taburan Weibull Burr jenis X (WBX). Bagi setiap
satu taburan ini, fungsi ketumpatan kebarangkalian dan fungsi kadar kegagalan dida-
pati lebih fleksibel dalam menampung bentuk-bentuk berlainan. Taburan-taburan ba-
haru ini mempunyai banyak sub-model sebagai kes-kes khas dan pengembangan pdf
dan cdf untuk setiap satu diperolehi. Kami menerbitkan beberapa sifat matematik tabu-
ran BBX, GBX dan WBX yang termasuk fungsi kuantil, momen ke r, fungsi penjana
momen, sisihan min, entropi Rényi dan statistik tertib. Kaedah kebolehjadian mak-
simum digunakan untuk anggaran parameter taburan BBX, GBX dan WBX. Kajian
simulasi dijalankan untuk pelbagai saiz sampel dan nilai-nilai parameter untuk menilai
prestasi taburan BBX, GBX dan WBX. Set data sebenar digunakan untuk menggam-
barkan fleksibiliti taburan BBX, GBX dan WBX. Daripada keputusan, setiap taburan
telah memberi penyesuaian yang lebih baik daripada sub-model dan model bukan-
tersarang berdasarkan kriteria seperti kriteria maklumat Akaike (AIC), kriteria mak-
lumat Akaike diperbetulkan (CAIC), kriteria maklumat Bayesian (BIC) dan kriteria
maklumat Hannan-Quinn (HQIC) dan Kolmogorov-Smirnov statistik (K− S). Dari-
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pada analisis data sebenar, WBX adalan penyuaian terbaik dengan data pencong bagi
pencong ke kiri dan data hampir simetri manakala GBX adalah penyuaian terbaik bagi
data pencong ke kanan.
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4.3.7 Rényi Entropy 86
4.3.8 Order Statistics 88

4.4 Maximum Likelihood Function 90
4.5 Simulation Study 91
4.6 Conclusion 94

5 WEIBULL BURR TYPE X DISTRIBUTION 95
5.1 Introduction 95
5.2 Weibull Burr type X 96
5.3 Expansion of the pdf and cdf of WBX 97
5.4 Mathematical Properties 103

5.4.1 Sub-Models of WBX 103
5.4.2 Quantile Function 103

xi



© C
OPYRIG

HT U
PM

5.4.3 Moments 105
5.4.4 Moment Generating Function 108
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CHAPTER 1

INTRODUCTION AND BASIC DEFINITIONS

1.1 Introduction

Statistical distributions are very useful for describing and predicting real-world phe-
nomena. Many distributions have been developed to be fit to models. Some statisti-
cians are interested in seeking families of lifetime distributions, such as exponential,
Weibull, gamma, beta, and others. Several life distributions may exhibit increasing
failure rates, for example the Weibull and Burr type X distributions, increasing linear
failure rates, decreasing failure rates, or constant failure rates. Some distributions are
bathtub shaped. The distributions hazard function shape has an important role in de-
ciding whether the respective distribution can be fit to a given data set. In recent years,
many attempts have been made to generalize lifetime distributions to make them more
flexible and also to achieve new distributions with more parameters. Subsequently, the
most important generalized distributions used in the present work are defined.

1.1.1 Beta Distribution

A random variable Y is said to have standard beta distribution with parameter υ ,ω if
the pdf is:

φ(y) =
yυ−1(1− y)ω−1

β (υ ,ω)
0 < y < 1, υ > 0, ω > 0, (1.1)

where β (υ ,ω) =
∫ 1

0 tυ−1(1− t)ω−1dt denote the beta function. Many authors have
proposed generalizations of the probability density function. Libby and Novick (1982)
considered a generalized beta function whose pdf is defined as:

φ(y) =
cυ y(υ−1)(1− y)(ω−1)

β (υ ,ω)
[
1− (1− c)y

](ω+υ)
0 < y < 1 , υ , ω,c > 0. (1.2)

McDonald (1984) proposed two generalized beta distributions, namely generalized beta
of the first kind (GB1) and the generalized beta of second kind (GB2). The pdf of GB1
and GB2 respectively are:

GB1 : φ(y) =
c y(cυ−1)

β (υ ,ω)bcυ
[1− (

y
b
)c](ω−1) 0≤ y≤ b, υ ,ω,c,b > 0. (1.3)

1
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GB2 : φ(y) =
c

β (υ ,ω)bcυ

y(cυ−1)

[1− ( y
b )

c](ω+c)
y≥ 0 , υ ,ω,c,b > 0. (1.4)

Gordy (1998) proposed a new generalized beta distribution called the confluent hyper-
geometric distribution. The pdf is given as:

φ(y) =
yυ−1(1− y)ω−1 e−γy

β (υ ,ω) 1F1(υ ;υ +ω;−γ)
0 < y < 1, υ ,ω > 0,−∞ < γ < ∞ (1.5)

where

1F1(υ ;υ +ω,−γ) =
∞

∑
k=0

(υ)k (−γ)k

(ω)k k!

and

(u)k = u(u+1)(u+2)...(u+ k−1).

Nadarajah and Kotz (2006c) proposed and studied four new generalizations of the stan-
dard beta distribution. The first generalization is called a compound beta distribution.
This method is based on the characteristic that if X and Y are independent gamma ran-
dom variables, then the ratio X

X+Y has the pdf of the standard beta if X and Y have the
pdfs for x > 0 and y > 0, respectively as follows,

φ(x,a,b) =
x(a−1)(1+ x)−(a+b)

β (a,b)
, (1.6)

φ(y,ν ,ω) =
y(ν−1)(1+ y)−(ν+ω)

β (ν ,ω)
. (1.7)

They considered the distribution of W = X
X+Y and the pdf is given by:

2
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φ(w) =
C(1−w)b−1

wb+1 (1−2w)

∞

∑
k=0

(−1)k(a+b)kB(k+b−β ,a)
k!

×
(1−2w

w

)k[
(2b+ k)w−b− k

]
a,b,α,β > 0,

where C is a constant and is given by:

C = 3F2(β ,1−α,b−β ;β −1,b+a−β ;1)
β B(a,b)B(α,β )

.

The second beta distribution generalization is called power beta. It is similar to the first
method except the pdfs of X and Y for x > 0 and y > 0 respectively are as follows,

φ(x,a,β ) =
x(a−1)e

(−x
β

)

β a Γ(a)
, (1.8)

φ(y,b,β ) =
y(b−1)e

(
−y
β

)

β b Γ(b)
β > 0, (1.9)

They considered the distribution of W = Xc
Xc+Y c when c > 0. The pdf of w is given by:

φ(w) =
w−(1+

b
c )
(

1−w
)(b

c−1)

bcB(a,b)

{
b 2F1

(
b,a+b;b+1;−

(1−w
w

)(1
c ))

−
(1−w

w

)(1
c )

2F1
(
b+1,a+b+1;b+2;−

(1−w
w

)(1
c ))} a,b > 0.

The third generalization is the hypergeometric beta distribution and its pdf is:

φ(y) =
ω β (ν ,ω)y(ν+ω−1)

2F1(1− γ,ν ;υ +ω;y)
β (ν ,ω + γ)

0 < y < 1 ν ,γ,ω > 0, (1.10)

where

3
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2F1(a,b;c;y) =
∞

∑
k=0

(a)k (b)k yk

(c)k k!
a,b,c > 0

denotes the ascending factorial. The last generalization is the trigonometric beta (TB)
distribution as it involves trigonometric functions. The authors proposed four pdfs for
the TB distribution, two of which involve the cosine function and the other two involve
the sine function.

A new technique to generalized family of beta class distribution was introduced by
Eugene et al. (2002) who used the logit of beta distribution. The beta class cdf is given
by:

Φ(y,ν ,ω) =
∫ F(y)

0

1
β (ν ,ω)

tν−1 (1− t)ω−1 dt, ν ,ω > 0, (1.11)

where F(y) is the cdf of any continuous random variable and the pdf corresponding to
the cdf is:

φ(y,ν ,ω) =
f (y)

β (ν ,ω)

[
F(y)

]ν−1 [
1−F(y)

]ω−1
. (1.12)

Alexander et al. (2012) provided a generalized beta distribution called generalized beta
generated. The pdf of the new generalized beta is:

φgB(y,υ ,ω,c) =
c

β (υ ,ω)
(t)υ c−1 (1− tc)ω−1 0 < t < 1, υ ,ω,c > 0. (1.13)

1.1.2 Gamma Distribution

A random variable Y has a gamma distribution if its pdf is given as:

φ(y,ν ,ω) =
1

Γ(ν)ων
y(ν−1) e−(

y
ω ) y > 0, ν ,ω > 0. (1.14)

4
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Amoroso (1925) proposed a generalization of the gamma distribution and obtained the
following density function:

φ(y,ν ,ω, p) =
p

Γ(ν)ων
y(ν p−1) e−(

y
ω )p

y > 0, ν ,ω, p > 0. (1.15)

Stacy (1962) proposed another generalization of a gamma distribution, which is a spe-
cial case of Amoroso′s generalization and the pdf is given by:

φ(y,ν ,ω, p,d) =
p

Γ( d
p )ω

ν
y(ν−1) e−(

y
ω )p

y > 0, ν ,ω, p,d > 0. (1.16)

Stacy′s generalization has many special cases, such as Chi-square, gamma, Weibull,
exponential, and Chi distributions. Gupta et al. (1998) proposed and studied a new
gamma distribution generalization called the exponentiated gamma distribution. The
general form of their exponentiated gamma distribution is defined as:

Gν (y) =
[
Φ(y)

]ν
, (1.17)

where ν is the exponentiated parameter. The pdf of the exponentiated distribution is
defined as:

gν (y) = ν [Φ(y)]ν−1
φ(y). (1.18)

The cdf of the exponentiated gamma distribution can be written as:

Φ(y,c) =
[
1− ey(y+1)

]c
, y > 0,c > 0. (1.19)

Agarwal and Al-Saleh (2001) provided another gamma distribution generalization
whose pdf is defined as:

φ(y,m,n,c,δ ) =
cm−δ y(m−1)e−(cy)

Γδ (m,n)( y+n
c )δ

y≥ 0, m,n,c > 0,δ = η−1,η ≥ 0, (1.20)

5
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where

Γδ (m,n) =
∫

∞

0

y(m−1)e−(y)

(y+n)δ
dy.

They showed that failure rate can be monotonic or bathtub shaped. Nadarajah and
Kotz (2006b) proposed a generalization of the gamma distribution by using Gupta et al.
(1998) method. This is called the generalized gamma distribution and its cdf is given
as:

Φ(y) =
[
Ψ1(m,y)

]ν y > 0,ν > 0,m > 0, (1.21)

where Ψ1(., .) is the incomplete gamma function and defined as:

Ψ1(m,y) =
ψ(m,y)
Γ(m)

,

with

ψ(m,y) =
∫ y

0
tm−1 e−t dt,

is the incomplete gamma function and

Γ(m) =
∫

∞

0
tm−1 e−t dt,

is the complete gamma function.

Zografos and Balakrishnan (2009) introduced and studied a new generalized gamma
distribution for univariate continuous distribution (generalized gamma type 1) using a
particular case of Stacy′s generalized gamma distribution. The cdf of the family of
distributions generated by gamma random variables can be defined by:
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Φ(y,m) =
1

Γ(m)

∫ − log
[

1−Φ(y)
]

0
tm−1 e−t dt (1.22)

=
1

Γ(m)
I
− log

[
1−Φ(y)

](m) ,m > 0,

The pdf corresponding to the cdf is given by:

φ(y,m) =
φ(y)
Γ(m)

{
− log

[
1−Φ(y)

]}m−1

y > 0,m > 0. (1.23)

Cordeiro and de Castro (2011) also proposed and studied a generalized gamma dis-
tribution called exponentiated generalized gamma distribution. The pdf of this new
distribution is given as:

φ(y,ν ,ω,c,k) =
ν c( y

ω
)ν k−1e−(

y
ω )c

ωΓ(k)

[
Ψ1

(
k,(

y
ω
)c
)]ν−1

, y > 0,ν ,c,ω,k > 0.

(1.24)

Ristić and Balakrishnan (2012) introduced an alternative to the family defined by Za-
grofose and Balakrishnan. The pdf of the new generalized gamma distribution (gener-
alized gamma type 2) is given by:

φ(y,δ ) =
φ(y)

{
− log

[
Φ(y)

]}δ−1

Γ(δ )
, y > 0,δ > 0. (1.25)

The cdf corresponding to the pdf is given by:

Φ(y,δ ) = 1−
γ

{
δ ,− log

[
Φ(y)

]}
Γ(δ )

, y > 0,δ > 0, (1.26)

where γ{., .} is incomplete gamma function.
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1.1.3 Weibull Distribution

Swedish Physicist Waloddi Weibull (1939) introduced the Weibull distribution (John-
son and Kotz, 1994). A random variable Y has the Weibull distribution with three
parameters a,b,c if the pdf is:

φ(y,a,b,c) =
c
b

(y−a
b

)c−1
e−(

y−a
b )c y≥ a, a,b,c > 0, (1.27)

where a is location parameter, or shift parameter, b is scale parameter , and c is the
shape parameter. The two-parameter Weibull distribution is obtained when a = 0 and
we shall refer to it as the standard Weibull. Its pdf is:

φ(y,b,c) =
c
b

( y
b

)c−1
e−(

y
b )

c
y≥ 0, b,c > 0. (1.28)

A different form in which the two-parameter Weibull distribution can be written is:

φ(y,η ,b) = bη
b yb−1 e−(η y)b y≥ 0, η ,b > 0. (1.29)

Mudholkar and Srivastava (1993) proposed a generalized form of the standard Weibull
distribution by introducing an additional shape parameter (exponentiated Weibull). The
cdf is given by:

Φ(y,b,η ,k) =
[
1− e−(ηy)b

]k
y≥ 0, η ,b,k > 0. (1.30)

The pdf of exponentiated Weibull is:

φ(y,η ,b,k) = k bη
b yb−1 e−(ηy)b

[
1− e−(ηy)b

]k−1
y≥ 0, k,η ,b > 0. (1.31)

A new technique was proposed by Marshall and Olkin (1997) to generalize the standard
Weibull distribution by adding one parameter a > 0. The new technique is the extended
Weibull distribution and its cdf is given by:
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Φ(y,a,b,η) = 1− a e−(ηy)b

1− (1−a)e−(ηy)b
η ,a,b > 0. (1.32)

A new generalized Weibull distribution, i.e. the modified Weibull distribution was in-
troduced by Lai et al. (2003) . The cdf of the modified Weibull distribution is:

Φ(y,η ,ν ,b) = 1− e−(η yb eν y) y≥ 0, η ,ν ,b > 0. (1.33)

Mudholkar et al. (1996) proposed another generalization called the generalized Weibull
family. The cdf of this new model is given by

Φ(y,η ,ν ,b) = 1− [1−ν (η y)b]
1
ν y≥ 0, η ,b > 0,−∞ < ν < ∞. (1.34)

Xie et al. (2002) proposed and study a new generalization of the standard Weibull distri-
bution and named it Weibull extension. They extended the modified Weibull proposed
by Lai et al. (2003). The cdf of the new model is given by:

Φ(y,ν ,ω,η) = 1− eη ν (1−e(
y
ν )ω ) y≥ 0, ν ,ω, η > 0. (1.35)

A further generalized Weibull family was introduced and assessed by Haghighi and
Nikulin (2006). This is the generalized power Weibull family and its cdf and pdf are
respectively:

Φ(y,η ,ω,ϑ) = 1− e

{
1−
[

1+(η y)ω
]ϑ−1

}
y≥ 0, η ,ω,ϑ > 0, (1.36)

and

φ(y,η ,ω,ϑ) = ϑ ω η
ω
[
1+(η x)ω

]ϑ

e

{
1−
[

1+(η y)ω
]ϑ−1

}
. (1.37)

Cooray (2006) also proposed a generalized Weibull family, which is the odd Weibull
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family. The pdf is given by:

φ(y,η ,ν ,ϑ) =
ν ϑ η ye(η y)ν

[
e(η y)ν −1

]ϑ−1

y

{
1+
[
e(η y)ν −1

]ϑ
}−2

y≥ 0, η ,ν ,ϑ > 0.

(1.38)

Alzaatreh et al. (2013) introduced and studied a Weibull generalization named the
Weibull-X family of distributions by using a new technique. Its cdf is:

Φ(y) =
∫ W (G(y))

0
r(y) dy , (1.39)

where r(y) is the standard Weibull distribution, W (G(y)) = − log[1−G(y)] and G(y)
is any random distribution.

More recently, Bourguignon et al. (2014) proposed a Weibull generalization called the
Weibull - G family of distributions by using the same technique as Alzaatreh et al.
(2013) as in (1.39). If W (G(y)) = G(y)

1−G(y) , the cdf of the Weibull-G family is:

Φ(y,Θ) =
∫ G(y,Θ)

1−G(y,Θ)

0
r(y) dy , (1.40)

when r(y) is the standard Weibull distribution.

1.2 Basic Definitions

In this section, important functions are defined, such as the density, cumulative distribu-
tion, survival, hazard rate, cumulative hazard rate, and reversed hazard rate functions.
Each of these functions describes the distribution of a random variable.

1.2.1 The Density Function

The density function or probability density function (pdf) of continuous random vari-
ables satisfies φ(y)≥ 0 ∀y,
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∫ +∞

−∞

φ(y)dy = 1.

1.2.2 The Cumulative Distribution Function

The cumulative distribution function (cdf) is also called the failure distribution. It is
denoted by Φ(y) and can be derived using the density function as follows:

Φ(y) = Pr(Y ≤ y) =
∫ y

−∞

φ(x)dx.

1.2.3 The Survival Function

The survival function or reliability function denoted by R(y) is complementary to the
cumulative distribution function. It can be found using the density function or cumula-
tive distribution function as follows:

R(y) = 1−Φ(y) = Pr(Y > y) =
∫

∞

y
φ(x)dx.

1.2.4 The Hazard Rate Function

The hazard rate function or rate function of Y is denoted by h(y) and is given by:

h(y) = lim
∆y→0

Pr(y < Y < y+∆y|Y > y)
∆y

= lim
∆y→0

Φ(y+∆y)−Φ(y)
∆yR(y)

=
φ(y)
R(y)

=
φ(y)

1−Φ(y)

Therefore, when ∆y is very small and satisfies h(y)≥ 0 ∀y,

∫
∞

0
h(y)dy = ∞
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1.2.5 The Cumulative Hazard Rate Function

The cumulative or integrated hazard rate function denoted by H(y) is a significant func-
tion. Recently, many distributions have been generated using this function and it can
be derived using the hazard rate function, survival function, or cumulative distribution
function. It is given by:

H(y) =
∫ y

0
h(x)dx

H(y) =− log(R(y)) =− log(1−Φ(y))

1.3 Useful Functions

This section presents some brief notes on gamma and special gamma functions, whose
derivations will be used throughout this thesis. The primary reason the gamma func-
tion is useful in such contexts is the prevalence of type φ(u)e−φ(u) expressions, which
describe processes that decay exponentially in time or space. Integrals of such expres-
sions can occasionally be solved in terms of the gamma function when no elementary
solution exists. The gamma function, denoted by Γ(.), is defined as:

Γ(ν) =
∫

∞

0
uν−1e−udu ;ν > 0

That is, if ν is a positive integer one has

Γ(ν) = (ν−1)!

1.3.1 Incomplete Gamma Functions

In mathematics, the upper incomplete gamma function Γ(ν ,y), and lower incomplete
gamma function γ(ν ,y) , are types of special functions that arise as solutions to var-
ious mathematical problems such as certain integrals. The upper incomplete gamma
function is defined as:

Γ(ν ,y) =
∫

∞

y
uν−1e−udu. (1.41)
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The lower incomplete gamma function is defined as:

γ(ν ,y) =
∫ y

0
uν−1e−udu. (1.42)

Furthermore, both higher and lower incomplete gamma ratios denoted by Γν (y) and
γν (y), respectively, can be defined as:

Γν (y) =
Γ(ν ,y)
Γ(ν)

,

and

γν (y) =
γ(ν ,y)
Γ(ν)

,

where

Γ(ν) = Γ(ν ,y)+ γ(ν ,y).

1.3.2 The Digamma Function

The logarithmic derivative of the gamma function is known as the digamma (or psi)
function, ψ(.), which is defined by:

ψ(ν) =
d

dν
lnΓ(ν) =

Γ′(ν)
Γ(ν)

.

1.4 Relevant Facts

This section presents a number of basic relevant facts pertaining to this thesis. Most of
these facts were presented by Hogg and Craig (1995), among others.
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1.4.1 The Quantile Function

The quantile function is one way to determine a probability function. The quantile
function Q f of the distribution is defined as the inverse of the cumulative distribution
function. The quantile function takes the form below:

y = Q f (p) = {y : Pr(Y ≤ y)}= p = Φ
−1(y).

The quantile function is essential for the generation of observations in simulation stud-
ies. It also helps find the Moors kurtosis and Bowley skewness of any distribution when
the distribution does not have moments or has a large skewness value.

1.4.2 Kurtosis

Kurtosis is an essential measure of a distribution′s shape. It is a measure of the relative
peakiness of its frequency curve or flatness relative to a normal distribution. Thus, the
central moment of the kurtosis (µn) and the cumulants (τn) of X are

µn =
n

∑
k=0

(
n
k

)
(−1)k

µ
k
1 µn−k,

and

τn = µn−
n−1

∑
k=1

(
n−1
k−1

)
(−1)k

τk µn−k,

respectively, where τ1 = µ1, τ2 = µ2−µ2
1 ,τ3 = µ3−3µ2 µ1 +2µ3

1 , and
τ4 = µ4−4µ3 µ1−3 µ2

2 +12µ2 µ2
1 −6µ4

1 . Pearson’s measure of kurtosis (Ku) is deter-
mined as:

Ku =
µ4

µ2
2
, (1.43)

where µ2 , µ4 are the second and fourth central moments from the mean. Based on
these values, distributions with Ku > 3 are called leptokurtic, those with Ku < 3 are
called platykurtic, while distributions with Ku = 3 are called mesokurtic. The last case
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is similar to the bell shape of a normal distribution. Another measure of kurtosis that
is not dependent on the central moment is based on the quantile function of Moors
kurtosis (Moors, 1988).

This measure is based on the octile of the distribution and is less sensitive to outlier
data. It is defined as:

Mu =
Q f (1/8)+Q f (3/8)+Q f (7/8)−Q f (5/8)

Q f (3/4)−Q f (1/4)
. (1.44)

1.4.3 Skewness

The skewness of a distribution is defined as the lack of symmetry. In a symmetrical
distribution, the mean, median and mode are equal to each other, and the ordinate at the
mean divides the distribution into two equal parts such that one part is a mirror image
of the other. Karl Pearsons measure of skewness is based upon the means divergence
from the mode in a skewed distribution. Pearsons measure of skewness is given by:

Sk =
µ3

µ
(3

2 )
2

, (1.45)

where µ2 and µ3 are the second and third central moments. When the distribution is
symmetric about the mean, then µ3 = 0 =⇒ Sk= 0. Similar to a normal distribution, it
has a skewness of zero, meaning the shape is symmetric. It can also be noted that the
measure of skewness Sk may take on negative or positive values depending on whether
µ3 is negative or positive, respectively. Hence, distributions with Sk > 0 are said to
be positively skewed distributions, while those with Sk < 0 are said to be negatively
skewed. Another measure of skewness is the Bowley skewness (Kenney and Keeping,
1954), which is based on quartiles and is one of the earliest skewness measures. It is
defined by:

Sk =
Q f (3/4)+Q f (1/4)−2Q f (1/2)

Q f (3/4)−Q f (1/4)
. (1.46)

1.4.4 The Non - Central Moments

The symbol µr refer to the rth non - central moment (or the moment about the origin )
of a continuous random variable Y having a distribution φ(y) , for r ≥ 1. The rth non -
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central moment is given by:

µr = E(Y r) =
∫

∞

−∞

yr
φ(y)dy,

the first moment about zero is called the mean, and it is a measure of central tendency
denoted by µ .

1.4.5 Moment Generating Function

The term MY (t) refers to moment generating function (mgf) of a continuous random
variable y with pdf φ(y). It is given by:

MY (t) = E(etY ) =
∫

∞

−∞

ety
φ(y)dy =

∞

∑
r=0

tr

r!

∫
∞

−∞

yr
φ(y)dy =

∞

∑
r=0

µrtr

r!
.

1.4.6 Mean Deviation

The amount of scatter in a population is measured to some extent by the totality of
deviations from the mean and median. The mean deviation from the mean and median
can be used to measure a population variation. The mean deviation from the mean is
a robust statistic as it is more resilient to outliers in a data set than standard deviation.
In standard deviation, the distance from the mean is squared. Hence, on average, large
deviations are weighted more heavily, and thus outliers can heavily influence it. In the
mean deviation from the mean, the magnitude of a small number of outliers distances
is irrelevant. The mean deviation from the median is a measure of statistical dispersion.
It is a more robust estimator of scale than sample variance or standard deviation. It
thus behaves better with a distribution without a mean or variance such as the Cauchy
distribution.

The mean deviation from the mean and mean deviation from the median are respec-
tively defined by:

D(µ) = E(Y −µ)
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D(M) = E(Y −M)

where µ = E(Y ) and M = median(Y ). The measures D(µ) and D(M) can be found
using the following relationships:

D(µ) =
∫

∞

−∞

|y−µ|φ(y)dy = 2 µ[Φ(µ)]−2 µ +2
∫

∞

µ

yφ(y)dy, (1.47)

or

D(µ) =
∫

∞

−∞

|y−µ|φ(y)dy = 2 µ[Φ(µ)]−2
∫

µ

−∞

yφ(y)dy. (1.48)

The D(M) is found by:

D(M) =
∫

∞

−∞

|y−M|φ(y)dy =−µ +2
∫

∞

M
yφ(y)dy. (1.49)

These will be explained later in more detail.

1.4.7 Rényi Entropy

Rényi entropy is a measure of the variation or uncertainty of random variables. It is a
very popular entropy measure in many fields of science, such as engineering, theory of
communication and probability. The Rényi entropy for a random variable with any pdf
of distribution can be determined from the definition:

IR(ρ) =
1

1−ρ
log
∫

∞

−∞

φ
ρ(y)dy ρ > 0, ρ 6= 1. (1.50)

Statistical entropy is a probabilistic measure of uncertainty (or ignorance) about the
outcome of a random experiment. It is also a measure of the reduction in that un-
certainty. Abundant entropy and information is induced, among which the Rényi en-
tropy has been developed and used in various disciplines and contexts (Rrnyi, 1961).
Information-theoretic principles and methods have become integral parts of probability
and statistics and are applied in various branches of statistics and related fields. Rényi
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entropy tends toward Shannon entropy, as ρ =⇒ 1.

1.4.8 Order Statistics

Let Y1,Y2, ...,Yn denote n independent and identically distribution (iid) random samples
from a distribution function Φ(y). Let variables Yi be the arrangement of the sample
value from the smallest to the largest and denoted as Y1:n ≤ Y2:n ≤ ... ≤ Yn:n, called
corresponding order statistics. Here the Y1:n is the first order statistics denoting the
smallest of Yis

Y1:n = minYi:n i = 1,2, ...,n ,

Y2:n = T he second smallest o f Yi:n i = 1,2, ...,n ,

and Yn:n is the nth order statistics denoting the largest of Yis

Yn:n = maxYi:n i = 1,2, ...,n .

The rth value of this order statistics is called the rth order statistics of the sample. The
cdf of the Yr:n is given by:

Φr:n(y) =Pr(Yr:n ≤ y)

=
n

∑
i=r

Cn
i

[
Φ(y)

]i[
1−Φ(y)

]n−i
. (1.51)

From (1.51) we can find the cdfs of the Y1:n and Yn:n as follows,

Φ1:n(y) = 1−
[
1−Φ(y)

]n
−∞ < y < ∞,

Φn:n(y) =
[
1−Φ(y)

]n
−∞ < y < ∞.
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The pdf for Yr:n is given by:

φr:n(y) =
n!

(r−1)!(n− r)!

[
Φ(y)

]r−1[
1−Φ(y)

]n−r
φ(y) . (1.52)

Substituting r = 1 in (1.52) gives the pdf of the X1:n as the sample minimum:

φ1:n(y) = n φ(y)
[
1−Φ(y)

]n−1
.

Substituting r = n in (1.52) gives the pdf of the Yn:n as the sample maximum:

φn:n(y) = n φ(y)
[
Φ(y)

]n−1
.

1.5 Maximum Likelihood Estimation (MLE)

There are several different methods of estimating model parameters. Maximum
likelihood estimation (MLE) is one of the most widely used methods for estimating
statistical model parameters. With a given statistical model, when MLE is applied on
a data set, the method is able to estimate the parameters of the model. In other words,
for a fixed data set with a given statistical model, the maximum likelihood approach
selects a set of model parameter values that maximize the likelihood function. This
method directly maximizes the agreement of the chosen model with the observed data.
For discrete random variables MLE maximizes the probability of the observed data
under the conditions of distribution (Sijbers et al., 1998). In applying the approach of
maximum likelihood estimation, the first step is to determine the joint density function
for all observations. The mathematical definition of MLE is presented below:

Let Y1,Y2, ...,Yn be an iid sample with pdf φ(yi;ϑ ), where ϑ is a (k×1) vector of pa-
rameters that characterize φ(y;ϑ). The joint density of the sample is, by independence,
equal to the product of the marginal densities as:

φ(y1,y2, ...,yn;ϑ) =
n

∏
i=1

φ(yi;ϑ) .

Then the likelihood function denoted by l(φ) is defined as the joint density treated as a
function of parameter ϑ :
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l(φ) = φ(ϑ | y1,y2, ...,yn) =
n

∏
i=1

φ(yi;ϑ) .

The MLE of ϑ is that value that maximizes l(φ). In other words, it is the value that
makes the observed data the most probable. Rather than maximizing this product, which
can be quite tedious, it is often considered that the logarithm is an increasing function
so it will be equivalent to the maximized log likelihood denoted by:

L(φ) = log l(φ) :

L(φ) =
n

∑
i=1

log(φ(yi;ϑ)) .

1.6 Goodness-of-Fit Statistics for Model Selection

In model selection, we assume there can be any kind of data, such as real or generated
data and a set of models. It is also assumed that statistical inference is model-based.
Classically, it is assumed there is at least a single correct (or even true) best model,
which suffices as the sole model for making inferences from the data. Although
the identity (and parameter values) of that model is unknown, it can be estimated,
sometimes very well. Therefore, classical inference often involves a data-based
search over the model set for (i.e., the selection of) that single correct model but with
estimated parameters. Then the inference is based on the fitted selected model as if
it was the only model considered. Model selection uncertainty is ignored. This is
considered justified because after all, the single best model has been found. However,
many selection methods (e.g., classical stepwise selection) are not even based on an
explicit criterion of what a best model is, see Burnham and Anderson (2004).

It is thought that the first step to improve inference under model selection would be
to establish a selection criterion, such as the Akaike information criterion (AIC), cor-
rected Akaike information criterion (AICC), Bayesian information criterion (BIC) and
Hannan-Quinn information criterion (HQIC). However, first step is to establish a phi-
losophy about models and data analysis and then find a suitable model selection cri-
terion. In fact, all AIC,AICC, BIC, and HQIC depend on the log- likelihood function
evaluated by the maximum likelihood estimates (l). The following formulas present
the method of calculating all above-mentioned efficiency measures:
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AIC =−2l +2k, AICC = AIC+
2k (k+1)
n− k−1

,

and

BIC =−2l + k log(n), HQIC = 2 log
{

log(n)
[
n−2l

]}
,

where l denotes the log-likelihood function evaluated by the maximum likelihood esti-
mates, k is the number of parameters, and n is the sample size. In order to quantify the
performance of the current distribution, we adopt the goodness-of-fit statistic for dis-
criminating both the empirical and fitted densities. We use the Kolmogorov-Samirnov
(K − S) test test along with the corresponding P-value. The best distribution corre-
sponds to smallest value of AIC,AICC,BIC, HQIC and (K−S) values.

1.7 Scope of the Study

The focus of this study is on the generalization of the Burr type X distribution with two
parameters by adding one or two parameters to the baseline distribution. The mathe-
matical properties of these new distributions are derived. Simulation studies are carried
out to evaluate the performance of the estimators. Real data sets are used to illustrate
the flexibility and potentiality of the models. This study has a number of advantages.
For one, new distributions with new parameters are presented, and owing to their flex-
ibility it is possible to apply these new distributions in the different fields of science.
Moreover, the new distributions have several sub-models. The new models offer better
fit ( for various data sets) compared to the sub-models based on various criteria. The
real data sets used do not involved censored observation

1.8 Objectives of the Study

The most significant goal in this research is to generate three distributions in different
ways for the Burr type X distribution. Thus, the objectives of this thesis are as follows:

1. Introduce three new distributions: Beta Burr type X (BBX), Gamma Burr type X
(GBX) and Weibull Burr type X (WBX).

2. Investigate and study the statistical properties of the three new distributions.

3. Estimate the unknown parameters in these distributions by using maximum like-
lihood estimation.
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4. Perform simulation studies with different sample sizes and parameter values to
assess the performance of models.

5. Application of real data sets to illustrate how the proposed new distributions fit
the data sets better than their sub-models and non-nested models.

1.9 Organization of Thesis

The thesis is divided into seven Chapters. Following this introductory chapter is
Chapter 2, which presents an overview of baseline distribution and also works related
to this research. This chapter presents the history of Burr type X distribution and
related research for the three families beta-G , gamma-G and Weibull-G.

Chapter 3 deals with some facts about beta-G family. We develop and define the pdf
and cdf of beta Burr type (BBX) distribution and we plot the pdf and hazard rate
function. Then, we provide a useful expansion for the pdf of BBX model. Accordingly,
we provide several mathematical properties such as limit behavior, quantile function
etc. The maximum likelihood method is used to estimate the distribution parameters.
Finally, algorithm and Monte Carlo simulation study is carried out to assess the
performance of the maximum likelihood estimators the conclusion.

In Chapter 4 we introduce the pdf and cdf of gamma-G family and using this to
develop the gamma Burr type X (GBX) distribution. A comprehensive mathematical
properties of GBX model is provided like limit behavior, moment etc. Then the
method of maximum likelihood is used for estimating the GBX parameter. A Monte
Carlo simulation study is used to assess the performance of the maximum likelihood
estimators.

In Chapter 5 the development of Weibull Burr type X (WBX) distribution is intro-
duced. The pdf and hazard functions are also plotted. Then the expansion of pdf
and cdf are provided. Several mathematical properties of WBX distribution such as
moment and, Rényi entropy etc. are obtained. The parameters are estimated using the
maximum likelihood method. A Monte Carlo simulation study is achieved to assess
the performance the maximum likelihood estimators.

In Chapter 6 the usefulness of the new three models is illustrated by using to the three
real data sets. Then, we compare the results to the baseline distribution. Lastly, a brief
conclusion is given about the three models and data sets.

Chapter 7 presents the overall summary of the current study, the conclusion and future
work.
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Ristić, M. M. and Balakrishnan, N. (2012). The gamma-exponentiated exponential
distribution. Journal of Statistical Computation and Simulation, 82(8):1191–1206.

Rrnyi, A. (1961). On measures of entropy and information. In Fourth Berkeley sympo-
sium on mathematical statistics and probability, volume 1, pages 547–561.

Sijbers, J., den Dekker, A. J., Scheunders, P., and Van Dyck, D. (1998). Maximum-
likelihood estimation of rician distribution parameters. IEEE Trans. Med. Imaging,
17(3):357–361.

Sindhu, T. and Aslam, M. (2014). On the parameter of the Burr type x under bayesian
principles. matrix, 1:0.

Smith, J., Wong, A., and Zhou, X. (2015). Higher order inference for stress–strength
reliability with independent Burr-type x distributions. Journal of Statistical Compu-
tation and Simulation, 85(15):3092–3107.

Smith, R. L. and Naylor, J. (1987). A comparison of maximum likelihood and bayesian
estimators for the three-parameter Weibull distribution. Applied Statistics, pages
358–369.

Soliman, A. A., Ellah, A. H. A., Abou-Elheggag, N. A., and El-Sagheer, R. M. (2015).
Inferences using type-ii progressively censored data with binomial removals. Ara-
bian Journal of Mathematics, 4(2):127–139.

Stacy, E. W. (1962). A generalization of the gamma distribution. The Annals of Math-
ematical Statistics, pages 1187–1192.

Surles, J. and Padgett, W. (2001). Inference for reliability and stress-strength for a
scaled Burr type x distribution. Lifetime Data Analysis, 7(2):187–200.

Surles, J. and Padgett, W. (2005). Some properties of a scaled Burr type x distribution.
Journal of Statistical Planning and Inference, 128(1):271–280.

Tahir, M., Cordeiro, G. M., Mansoor, M., and Zubair, M. (2015). The Weibull-lomax
distribution: properties and applications. Hacettepe Journal of Mathematics and
Statistics.

Tahir, M., Zubair, M., Mansoor, M., Cordeiro, G. M., Alizadeh, M., and Hamedani,
G. (2014). A new Weibull-g family of distributions. Hacet. J. Math. Stat.(2015b).
forthcoming.

Torabi, H. and Hedesh, N. M. (2012). The gamma-uniform distribution and its appli-
cations. Kybernetika, 48(1):16–30.

Xie, M., Tang, Y., and Goh, T. N. (2002). A modified Weibull extension with bathtub-
shaped failure rate function. Reliability Engineering & System Safety, 76(3):279–
285.

139



© C
OPYRIG

HT U
PM

Xu, K., Xie, M., Tang, L. C., and Ho, S. (2003). Application of neural networks in
forecasting engine systems reliability. Applied Soft Computing, 2(4):255–268.

Zea, L. M., Silva, R. B., Bourguignon, M., Santos, A. M., and Cordeiro, G. M. (2012).
The beta exponentiated pareto distribution with application to bladder cancer suscep-
tibility. International Journal of Statistics and Probability, 1(2):8.

Zografos, K. and Balakrishnan, N. (2009). On families of beta-and generalized gamma-
generated distributions and associated inference. Statistical Methodology, 6(4):344–
362.

Zoraghi, N., Abbasi, B., Niaki, S. T. A., and Abdi, M. (2012). Estimating the four pa-
rameters of the Burr iii distribution using a hybrid method of variable neighborhood
search and iterated local search algorithms. Applied Mathematics and Computation,
218(19):9664–9675.

140




