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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of
the requirement for the degree of Doctor of Philosophy

FRACTIONAL OPERATORS AND THEIR APPLICATIONS ON SPACES 
OF ANALYTIC AND UNIVALENT FUNCTIONS

By

ZAINAB ESA ABDULNABY

May 2017

Chair: Professor Dr. Adem Kılıçman, PhD
Faculty: Science

Fractional calculus operators and linear (or convolution) operators have many interest-
ing applications in the theory of analytic and univalent functions. These operators and
their generalizations have been applied in obtaining the characterization properties,
coefficient estimates and distortion inequalities for various subclasses of analytic and
univalent functions.

The main objective of this thesis is to study certain different types of operators such
as fractional differential, fractional integral and fractional mixed intgro-differential
operators as well as convolution operators besides some classes defined by these
operators. Our focus is on spaces of normalized analytic functions in the open unit
disk, such as Banach spaces.

Firstly, a class of analytic functions with negative coefficients is investigated by con-
structing the fractional differential operator. Further, we illustrate some of its general
geometric properties. We investigate the boundedness and the maximality of the
extended fractional differential operator. The mixed integro-differential operator and
its generalizations are established. In addition, applications are designed involving the
per-Shwarzian derivatives. Moreover, the fractional integral operator is introduced for
joining some special functions. Here, we concern about its univalency. Boundedness
and compactness on a class of normalized Banach space are discussed. A generalized
fractional differential operator and its normalized formula are developed and studied.
The above studies are constructed in various types of Banach spaces in a complex
domain.
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Defining the new linear operators associated with the well known special functions
such as Mittag-Leffler function are investigated by utilizing the convolution techniques
in a complex domain. Studying some bounded transformation operators from Banach
to another Banach spaces also, are considered. Extending the Moment-generating
function in the complex plane C is applied to define new linear operators of convolution
and fractional convolution types which are the generalization for the prominent oper-
ators in the open unit disk. Some applications involving these operators are obtained
to solve some well known geometric problems such as Fekete–Szegö problem, while
another are solved by using Jack’s Lemma.

Finally, we defined a new fractional class of analytic and univalent functions in the
open unit disk which can be considered as a generalization of Koebe function. As
applications in this class, we defined subclasses of analytic and univalent functions of
fractional powers, through employing a fractional differential operator. Then, some
certain results on coefficient inequality, growth and distortion theorem and extreme
points are studied.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

PENGOPERASI PECAHAN TERTENTU DAN PENGGUNAANNYA
DALAM RUANG TERANALISIS DAN FUNGSI UNIVALEN

Oleh

ZAINAB ESA ABDULNABY

Mei 2017

Pengerusi: Profesor Dr. Adem Kılıçman, PhD
Fakulti: Sains

Pengoperasi kalkulus pecahan dan pengoperasi linear (atau konvolusi) mempunyai
banyak aplikasi menarik dalam teori fungsi analisis dan univalen. Pengoperasi-
pengoperasi ini dan pengitlakannya telah digunakan untuk mendapatkan sifat-sifat
pencirian, anggaran pekali dan ketaksamaan herotan untuk pelbagai subkelas fungsi
analisis dan univalen.

Objektif utama tesis ini adalah untuk mengkaji beberapa jenis pengoperasi yang
berbeza seperti pengkamiran pecahan, pecahan integer dan pengoperasi pecahan
tercampur pembezaan-pengkamiran serta pengoperasi konvolusi selain beberapa kelas
yang ditakrifkan oleh pengoperasi-pengoperasi ini. Fokus kami adalah pada ruang
normal bagi fungsi analisis dalam cakera unit terbuka, seperti ruang Banach.

Pertama, satu kelas fungsi teranalisis dengan pekali negatif dikaji dengan membina pen-
goperasi pembezaan pecahan. Selanjutnya, kami menggambarkan beberapa ciri umum
geometri. Kami mengkaji batasan dan kemaksimalan pengoperasi pembezaan pecahan
lanjutan. Pengoperasi pembezaan-kamiran tergabung dan keitlakkannya diterbitkan.
Selain itu, aplikasi yang direka melibatkan setiap pembeza Shwarzian. Selanjutnya,
pengoperasi kamiran pecahan diperkenalkan untuk menghubungkan beberapa fungsi
khas. Di sini, kami menitikberatkan tentang univalensinya. Pembatasan dan kepadatan
pada kelas ruang Banach ternormal dibincangkan. Satu pengitlakkan pengoperasi pem-
bezaan pecahan dan formula kenormalannya dibangunkan dan dikaji. Kajian di atas
dibina dalam pelbagai jenis ruang Banach dalam domain kompleks.
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Definisi pengoperasi linear baru yang berkaitan dengan fungsi-fungsi khas yang telah
diketahui seperti fungsi Mittag-Leffler dikaji dengan menggunakan teknik-teknik kon-
volusi dalam domain yang kompleks. Mengkaji sesetengah pengoperasi transformasi
terbatas dari satu ruang Banach ke ruang Banach yang lain, juga dipertimbangkan.
Melanjutkan fungsi janaan- Moment dalam satah kompleks C digunakan dan pen-
gitlakkan pengoperasi jenis konvolusi dan konvolusi pecahan yang berkaitan dengan
fungsi ini ditakrifkan. Beberapa aplikasi yang melibatkan pengoperasi ini diperolehi
untuk menyelesaikan beberapa masalah geometri yang telah diketahui seperti masalah
Fekete-Szegö, manakala yang lain diselesaikan dengan menggunakan Lema Jack.

Akhir sekali, kami mentakrifkan kelas pecahan baru bagi fungsi analisis dan univalen
dalam cakera unit terbuka yang dianggap sebagai satu pengitlakkan bagi fungsi Koebe.
Untuk aplikasi dalam kelas ini, kami takrifkan subkelas bagi fungsi analisis dan uni-
valen bagi kuasa pecahan, dengan menggunakan satu pengoperasi pengkamiran peca-
han. Kemudian, beberapa keputusan tertentu pada ketidaksamaan pekali, pertumbuhan
dan penyelewengan teorem dan titik yang melampau dikaji.
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CHAPTER 1

INTRODUCTION

Complex analysis is a deep and far-ranging study of the fundamental notions of
complex differentiation and integration and has the attractive advantages not provable
in the real domain. For instance, complex functions are necessarily analytic, meaning
that they can be represented by convergent power series (Taylor series), and hence are
infinitely differentiable. They may be of several variables. Nevertheless, our focus in
this study is particularly on those functions which are of one complex variable.

The area of geometric function theory is one of the branches of complex analysis,
which covers all geometrical properties of analytic and univalent functions. This
theory has raised the interest of many researchers since the beginning of the 20th
century when appeared the first important papers in this domain, due to Koebe in 1907
and Bieberbach in 1916 (see Goodman (1979) and Duren (1983)).

Often, operator theory plays an important role in geometric function theory. Because,
studying linear operators use to define, improve and generalize many well known
analytic function classes. Another reason, that this studying involving more geometric
features for the investigated analytic function classes and preserve many of their
properties. A further important reason, it leads to developing various applications and
provides uncomplicated methods and tools to solve a number of problems in such
theory.

On the other hand, operator theory is described as the branch of functional analysis
that deals with bounded linear operators as well as their properties. It has growth and
development with strong connections to pure and applied mathematics for covering the
biggest spaces in such area.

However, there is a pretty company between each of the complex analysis, the operator
theory, and the functional analysis can be found in the geometric function theory. This
is fascinating area of study, for several reasons:

(i) This study leads to the formulation of many interesting problems in analytic func-
tions.

(ii) The methods of functional analysis usually grant clarity and elegance to the
proofs of classical theorems and make the results accessible in more common
situations.

(iii) Improvement the operators and their properties on several Banach spaces of an-
alytic functions.

1
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As a result, a large number of applications in such area via the operator theory are
evolved. Therefore, we utilize this study to define fractional differential and integral
operators in a complex domain then determine their boundedness and compactness
properties on complex Banach spaces.

This introductory chapter begins by providing the reader with some background infor-
mation and general on the analytic and univalent functions theory. Then it follows by
presenting some special classes of univalent functions and complex Banach spaces of
analytic and univalent functions as well as fractional differential and integral operators
defined in a complex domain which are the main part of this thesis. Special functions
and some of their properties are given in the following section. Finally, this chapter il-
lustrates the main problems that need to be solved and highlights on the most important
motivations for writing this study, also provides a general overview of the outline and
content of this study.

1.1 Analytic functions

Let C be the complex plane, then a subset E ⊂ C is called a domain if E is open and if
any two points of E can be connected by a broken line segment in E. The domain E is
said to be simply connected if it has no holes.

The complex-valued function (of one variable) f is said to be analytic (or regular, holo-
morphic) at a point z0 if it is differentiable at every point in some neighborhood of the
point z0. An analytic function f in a complex domain E is a convergent power series
that can be presented as a Taylor series formed in their domain as follows:

f (z) =
∞

∑
k=0

ak(z− z0)
k,

where the coefficient ak = f (k)(z0)/k!, that means f converges in some open disk
centred at z0. It is easy to obtain f (k)(z0) from the Cauchy integral formula that is
given by

f (k)(z0) =
k!

2πi

∫
Λ

f (z)
(w− z)k+1 dw,

where Λ is a rectifiable simple closed curve covering z and f is analytic indoors and on
it.

Normalization: Let f : E→ C is analytic on E, then

(i) the function f is normalized if it takes the value zero at the origin, that is f (0) =
0, and

(ii) its derivative takes the value 1 at the origin, that is f ′(0) = 1.

2
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Example 1.1 As a simple example for a normalized analytic function is f (z) = z for
all z ∈ E, that is

f (0) = 0 and f ′(0) = 1.

In this point there is an important question arises as follows:

Do all the analytic functions normalized?

Definitely not, for example the function f (z) = z2 is analytic but not normalized.
Clearly, the set of normalized analytic functions is non-empty, so there exist a subset of
them which have a nice geometric property.

1.2 Univalent functions

The theory of univalent functions is the basic connection between the analytical struc-
ture and geometric behavior. The problem lies in finding a useful set of conditions on
the sequence of ak that are necessary and sufficient for f (z) to be univalent in U.

Definition 1.1 A single-valued function f is said to be univalent (or one to one, schliht
(German) or odnolistni (Russian)), in a domain E→ C if it never takes the same value
twice; that is, if f (z1) 6= f (z2) for all points z1 and z2 in E with z1 6= z2.

Definition 1.2 The single-valued function f is said to be locally univalent at a point
z0 ∈ E in some neighbourhood of z0 if and only if f ′(z0) 6= 0.

If f is univalent in a domain E then it is trivially locally univalent throughout E but the
converse is not true.

Example 1.2 Let E = C \ {0} and f (z) = z2(z ∈ E). It is clear that the function f is
analytic in E and locally univalent at any point of E since f ′(z0) = 2z0 6= 0, for all
z0 = 1

2 ∈ E. Nevertheless, the function f is not univalent in E since f (z) = f (−z) for
all z ∈ E.

The open unit disk: The option of the open unit diskU := {z∈C; |z|< 1} as a complex
domain for the study of analytic and univalent functions theory is a matter of great
benefit, to make the mathematical calculation more simple and leads to elegant formula.
Adding to that, there is no loss of generality in this option, since the Riemann mapping
theorem asserts that:

Theorem 1.1 (Gray, 1994). If E ⊂ C is a simply connected domain and z0 ∈ E, then
there exists a unique function f , analytic and univalent in E onto the open unit disk U
in such a way that f (z0) = 0 and f ′(0)> 0.

3
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Consequently, every univalent function in E is linked with a univalent function in the
open unit disk U and therefore, the properties of the univalent function determined
on the open unit disk U can be obviously translated into the properties of the original
function defined in the simply connected domain E. For these reasons, the option of
the open unit disk U as a domain for study in details analytic and univalent functions is
the best matter in such theory.

Let H (U) be the class of all analytic functions whose domain is the open unit disk U.
For a ∈ C and n ∈ N (set of natural numbers) let H [a,n], be the subclass of H (U),
consisting analytic functions of the form

f (z) = a+anzn +an+1zn+1 + · · · .

Let A (n)⊂H [a,n], be the class of function f defined by

f (z) = z+
∞

∑
k=n+1

akzk, (z ∈ U) (1.1)

which is analytic in the open unit disk U. In particular, we set A (1) = A ⊂H (U),
which is the class of normalized analytic functions defined by the following power
series:

f (z) = z+
∞

∑
k=2

akzk, (z ∈ U). (1.2)

Also, let S be the subclass of A of univalent and analytic functions f :U→C satisfied
the normalization conditions f (0) = 0 and f ′(0) = 1.

Example 1.3 Here, we recall many examples of functions belonging to the class S :

(i) the identity mapping: f (z) = z, we have f (U) = U,

(ii) the inverse of univalent function f−1 is also univalent in an open unit disk U,

(iii) the function

f (z) =
z−a

1−az
= (z−a)(1−az+a2z2 +a3z3 + · · ·)

= a+(1−aa)z+(a−a2a)z2 +(a2−a3a)z3 + · · ·

= a+(1−|a|2)z+a(1−|a|2)z2 +a2(1−|a|2)z3 + · · ·

= a+(1−|a|2)
∞

∑
k=1

a(k−1)zk,

where |a|< 1 and

4
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(iv) the function
f (z) =

z
1− z2 = z+ z3 + z5 + · · · ,

which maps U onto the plane minus the two half-lines [1/2,∞) and (−∞,−1/2].

We next present the most important example of a function of class S .

Example 1.4 Let K : U→ C be a function given by

K(z) =
z

(1− z)2 = z+2z2 +3z3 + · · ·+ kzk + · · ·= z+
∞

∑
k=2

kzk, (1.3)

which maps U onto C\{ξ ∈ C : ℜ{ξ} ≤ −1/4, Imξ = 0} where K is called the Koebe
function.

Furthermore, let Kθ :U→C be given by Kθ (z) =
z

(1−eiθ z)2
, where θ ∈ R. We note that

Kθ is a rotation function of angle−θ of the function K, since Kθ = e−iθK(eiθ z), z ∈U.
Therefore, Kθ is univalent on U and maps the open unit disk U onto the complex plane
except for a radial slit to ∞ which starts from the point (−1/4)e−iθ .

Analytically, the class of univalent functions S is not closed under addition (this fol-
lows trivially from the fact that any f ∈ S satisfies that f ′(0) = 1). For example,
f = z/(1− z) and g = z/(1+ iz) are in the class of univalent functions S , but ( f +g)
is not in S . However, the convolution (or Hadamard product), is the most important
binary operation in the class S , since the outcomes arise from the elementary observa-
tion that the convolution of two univalent functions in S is also in the class of univalent
functions S (see Ruscheweyh (1975)).

Definition 1.3 The convolution (or Hadamard product) of two normalized analytic
functions f defined by (1.2) and

g(z) = z+
∞

∑
k=2

bkzk (z ∈ U),

is denoted by f ∗g and defined as follows

( f ∗g)(z) = z+
∞

∑
k=2

akbkzk (z ∈ U), (1.4)

where the geometric analytic function

I(z) =
∞

∑
k=0

zk+1 =
z

1− z
(z ∈ U),

is the identity analytic function under this Hadamard product, that means that, ( f ∗
I)(z) = f (z) in U.

5
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The convolution technique ∗ is a pretty binary operation of univalent functions theory
and it satisfies the following characteristics:

For all z ∈ U, let f ,g and h be normalized analytic functions in the class S , then

(i) Inverse: ( f ∗ f−1)(z) = I(z).

(ii) Commutative: ( f ∗g)(z) = (g∗ f )(z).

(iii) Associative: ( f ∗g)∗h = ( f ∗h)∗g = (g∗h)∗ f .

The following lemma shows the derivative of convolution two normalized analytic
functions in the open unit disk U.

Lemma 1.1 (Ruscheweyh, 1975). Let f and g be two normalized analytic functions in
a complex domain U. Then

z(g∗ f )′(z) := g(z)∗ z f ′(z)⇔ (g∗ f )′(z) =
g(z)

z
∗ f ′(z), (|z|< 1,z 6= 0).

The following theorems can be applied to obtain the sharp upper and lower bounds for
| f (z)| and | f ′(z)|, respectively on |z|< 1 (see Goodman (1983)).

Theorem 1.2 (Growth Theorem). Let f ∈S on |z|< 1 with f (0) = 0 and f ′(0) = 1,
and let r = |z|< 1. Then

1− r
(1+ r)2 ≤ | f (z)| ≤

1+ r
(1− r)2 . (1.5)

The equalities hold if and only if a function f is a rotation of the Koebe function.

Theorem 1.3 (Distortion Theorem). Let f ∈S on |z|< 1 with f (0) = 0 and f ′(0) = 1,
and let r = |z|< 1. Then

1− r
(1+ r)3 ≤ | f

′(z)| ≤ 1+ r
(1− r)3 . (1.6)

The equalities hold if and only if a function f is a rotation of the Koebe function.

Nehari (1975) proved that, the family S of the functions f (z) = z+
∞

∑
k=2

akzk, |z|< 1 is

compact. In another words, S is a compact subset of the space of all analytic functions
on the open unit disk U, because it is closed and locally bounded. Closed means that
the limit of a convergent sequence of univalent functions is again an univalent function
in S . Locally bounded means that for every r(0 < r < 1), there is a positive number
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M(r) so that | f (z)|< M(r) whenever |z|< r and f is in S . These observations pushed
Bieberbach to create the most popular conjecture in 1916 which asserts that the Koebe
function has the largest coefficients in S .

Theorem 1.4 (Bieberbach Conjecture). If f ∈ S , then the Koebe function has the
largest coefficients, that is

|ak| ≤ k, (k ≥ 2).

Bieberbach in 1916 (see Duren (1983)) demonstrated that the inequality for k = 2,
and conjectured that it is true for any k. Later, De Branges (1985) proved that this
conjecture it applies for all coefficients k ≥ 2.

In view of geometric functions, long gap between the formulation of the Bieberbach’s
conjecture in 1916 and its proof by De Branges (1985), led to creating new motiva-
tions for researchers in defining and studying some certain subclasses of analytic and
univalent functions in the open unit disk U.

1.3 Some special classes of univalent functions

In this section, we present some special subclasses of univalent functions with posi-
tive and negative coefficients which are completely characterized by natural geometric
properties have been widely considered by many researchers.

Classes of Starlike functions: The starlike of univalent function is a subclass in S
and it was investigated by Alexander (1915) as follows:

Definition 1.4 (Duren, 1983). A function f ∈S is said to be starlike in U if the image
of U under f consisting of the point υ0 = 0 ∈ U is conformally starlike domain, f (U)
with respect to the origin υ0 = 0, that is any line segment joining υ0 = 0 to every other
points in f (U), lies entirely in f (U). We denoted the set of all starlike functions by S ∗.

Some results for function f ∈A was obtained by Robertson (1936) as follows:

Theorem 1.5 If f ∈A , then the necessary and sufficient condition for the function f
to be in the class of normalized S ∗ in U is

ℜ

{
z f ′(z)
f (z)

}
> 0, (z ∈ U). (1.7)

The next result shows that the Bieberbach conjecture in Theorem 1.4 holds for f ∈S ∗.
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Theorem 1.6 (Duren, 1983). If f ∈S ∗ then

|ak| ≤ k, k = 2,3, · · · .

The equality occurs if and only if f is Koebe function.

Example 1.5 The Koebe function K(z) =
z

(1− z)2 is starlike function in U, since it

maps U onto the entire complex plane C minus the slit −∞ < f (U)<−1
4 .

In general case, for 0≤ α < 1, let S ∗(α) be a subclass of A defined as follows:

Definition 1.5 (Goodman, 1983). A function f is said to be starlike function of order
α (0≤ α < 1) in U, if

ℜ

{
z f ′(z)
f (z)

}
> α, (z ∈ U), (1.8)

this class is denoted by S ∗(α).

It is clear that, S ∗(α)⊂S ∗ for α (0≤ α < 1) and S ∗(0) = S ∗.

Classes of Convex functions: The convex univalent functions is another subclass of
S , this subclass defined and studied by Robertson (1936) as follows:

Definition 1.6 A function f ∈S is said to be convex in U if the image of U under f
is a conformally onto a convex domain f (U), that is any line segment joining any two
points in f (U) lies entirely in f (U). This set of all convex functions is denoted by K .

Here, we recall some results due to Robertson (1936) as follows:

Theorem 1.7 Let f be given by (1.2), then the necessary and sufficient condition for a
function f to be in the class K is

ℜ

{
1+

z f ′′(z)
f ′(z)

}
> 0, (z ∈ U). (1.9)

Theorem 1.8 (Duren, 1983) If f = z+
∞

∑
k=0

akzk is in K then

|ak| ≤ 1, k = 2,3, · · · .

8
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The equality occurs if and only if f has the following form:

f (z) =
z

1− ei`z
, ` ∈ R.

Example 1.6 The function f (z) =
z

1− z
is convex in U, because f (z) maps U onto the

half-plane ℜ{ f}>−1/2.

In general case, for α (0≤ α < 1), let K (α) be subclass of A defined as follows.

Definition 1.7 A function f is said to be convex function of order α (0≤ α < 1) in U,
if

ℜ

{
1+

z f ′′(z)
f ′(z)

}
> α, (z ∈ U), (1.10)

this class is denoted by K (α).

It is clear that,

f ∈K (α)⇐⇒ z f ′ ∈S ∗(α), (0≤ α < 1) (1.11)

while the first connection between the classes S ∗ and K was provided by Alexander
(1915) as in the following.

Theorem 1.9 (Alexander Theorem)(Duren, 1983). Let f be a function given by (1.2),
then

f ∈K ⇐⇒ z f ′ ∈S ∗.

Another important subclasses of normalized analytic functions introduced by Liu
(2004) in the open unit disk are:

For some α (0 < α ≤ 1), if f ∈A satisfies∣∣∣∣arg
(

z f ′(z)
f (z)

)∣∣∣∣< απ

2
, z ∈ U, (1.12)

then f is said to be strongly starlike of order α in U, and denoted by f ∈ SS ∗(α).

For some α (0 < α ≤ 1), if f ∈A satisfies∣∣∣∣arg
(

1+
z f ′′(z)
f ′(z)

)∣∣∣∣< απ

2
, z ∈ U, (1.13)

9
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then f is said to be strongly convex of order α in U, and denoted by f ∈ SK (α).

Furthermore, for ψ > 1, let N (ψ) be the subclass of A , consisting of the functions f ,
which satisfies the following condition

ℜ

(
1+

z f ′′(z)
f ′(z)

)
< ψ, z ∈ U (1.14)

and let M (ψ) be the subclass of A consisting of the functions f which satisfies the
following condition

ℜ

(
z f ′′(z)
f ′(z)

)
< ψ, z ∈ U. (1.15)

Clearly,
f ∈N (ψ)⇐⇒ z f ′ ∈M (ψ).

For ψ > 1, the classes N (ψ) and M (ψ) were introduced by Owa and Nishiwaki
(2002), and Owa and Srivastava (2002).

Class of bounded turning: Let S B be the set of functions whose derivatives have
positive real parts, that

ℜ{ f ′(z)}> 0, (z ∈ U). (1.16)

In general case, a function f ∈ S is said to be bounded turning functions of order
α (0≤ α < 1), if

ℜ{ f ′(z)}> α (z ∈ U), (1.17)

this class is denoted by S B(α) ⊂ A . They are entirely univalent functions as has
preceded. Many results concerning this class can be found in (Miller and Mocanu
(2002); Darus et al. (2009); Ibrahim and Darus (2011)).

Class of pre-Schwarzian derivative: For a locally univalent function f on U, the class
of pre-Schwarzian derivative (or rational nonlinearity) of function f , is defined by

Tf =
f ′′(z)
f ′(z)

, (z ∈ U) (1.18)

this class studied by Goodman (1983), Kim and Sugawa (2006) and Ponnusamy and
Sugawa (2008). Indeed, the class Tf is the logarithmic derivative of f ′, this quantity has
several applications with function of operator theory in the theory of locally univalent
functions. Further, we define the norm of pre-Schwarzian derivatives, which considered
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by (Kim and Sugawa, 2006) as follows:

||Tf ||= sup
z∈U

(1−|z|2)
∣∣Tf
∣∣<∞. (1.19)

Recently, these classes are widely used by a large number of researchers, to study
starlikeness and convexity properties by employing different types of operators on
their definitions.

Analytic functions with negative coefficients: Let P denote the subclass of S con-
sisting of functions whose coefficients are negative and be expressed as

f (z) = z−
∞

∑
k=2

akzk, ak ≥ 0, (1.20)

which are considered by Silverman (1975). Moreover, for 0≤ α < 1, we write

P∗(α) := S ∗(α)∩P and C (α) := K (α)∩P.

The convolution of two analytic functions f given by (1.20) and g defined by g(z) =

z−
∞

∑
k=2

bkzk, bk ≥ 0 belong to P is denoted by ( f ∗g)(z) and expressed as

( f ∗g)(z) = z−
∞

∑
k=2

akbkzk, (z ∈ U).

Principle of subordination: Here, we begin with the classical Schwarz’s lemma which
is considered one of the most interesting lemma in the theory of analytic and univalent
functions, that have been formulated as follows:

Lemma 1.2 (Schwarz Lemma)(Nehari, 1975). Let the analytic function w(z) be regu-
lar in U and let w(0) = 0. If |w(z)| ≤ 1 in U, then

|w(z)| ≤ |z|, |z|< 1, (1.21)

and |w′(0)| ≤ 1. The equality in (1.21) realizes if and only if w(z) = Mz and |M|= 1.

Definition 1.8 (Principle of subordination)(Duren, 1983). Let the functions f and g in
U, the function f is subordinate to g if there exists a Schwarz function w(z), analytic in
U with w(0) = 0 and |w(z)|= 1, z ∈ U such that f (z) = g(w(z)). In special case, if the
function g is univalent in U the above subordination is equivalent to:

f (0) = g(0) and f (U)⊂ g(U),
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then f is subordinate to g(z) ∈ U and we write

f ≺ g (z ∈ U). (1.22)

The following subordination lemma solves a problem in integral means.

Lemma 1.3 (Duren, 1983). For ν > 0 and 0 < r < 1. If f and g be two analytic
functions in U with g≺ f , then∫ 2π

0
|g(reiθ )|ν dθ ≤

∫ 2π

0
| f (reiθ )|ν dθ . (1.23)

1.4 Spaces of analytic functions

In this section, we supply the open unit disk U with complex Banach spaces to study
some topological properties for operators of analytic and univalent functions. Let first
give important inequalities in functional analysis that are used in this study. These
notations are taken from Zhu (2007), Hedenmalm et al. (2012), Hoffman (2007) and
Garnett (2007).

Minkowski inequalities: are the classical inequalities used in mathematical analysis
and defined by

(i) Let f and ψ be two integrable functions in a domain X⊂ [0,∞). Then for p > 1:[∫
X

| f (z)+ψ(z)|pdz
]1/p

≤
[∫
X

| f (z)|pdz
]1/p

+

[∫
X

|ψ(z)|pdz
]1/p

. (1.24)

(ii) Let X and Y be σ -finite measure spaces with measures t and z, respectively, and
let Ψ be a complex function on X×Y. Then for p≥ 1:[∫

Y

∣∣∣∣∫
X

Ψ(z, t)dt
∣∣∣∣p dz

]1/p
≤
∫
X

(∫
Y

|Ψ(z, t)|pdz
)1/p

dt, (1.25)

the inequality in (1.25) holds only if |Ψ(z, t)|= f (z)ψ(t), for some non-negative mea-
surable functions ψ and f .

Definition 1.9 (Complex Banach space). A vector spaceX(U) over the filed of complex
numbers C is said to be a complex Banach space for the norm

|| f ||= sup{|| f (z)|| : z ∈ U},

and for all f ∈ X(U), the complex Banach space X(U) has the following properties:
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(i) || f +g|| ≤ || f ||+ ||g|| for all f and g in X(U),

(ii) ||b f ||= |b||| f || for all f ∈ X(U) and for all b ∈ C,

(iii) || f ||= 0 if and only if f = 0,

(iv) If { fn} is a Cauchy sequence in X(U), that is, || fn− fm|| → 0 as n→ ∞ and
m→∞, then there exists an element A ∈ X(U) such that || fn−A|| → 0 as n→∞.

The function || · || above is called a norm on a complex Banach space X(U). The
condition (iv) above says that X(U) is complete in the norm || · ||.

We are going to work with complex Banach spaces whose elements are analytic and
univalent functions in the open unit disk U. Next, two examples for complex Banach
spaces of analytic functions that will be used later in this study.

The Bergman space: For 0 < p < ∞, the Bergman space Ap(U), consisting of those
functions f which are analytic in the open unit disk U of the complex plane for which
p-norm is finite:

‖ f ‖Ap :=
{∫

U

| f (z)|pdA(z)
}1/p

< ∞, (1.26)

where dA(z) = 1/πdxdy. For 1 ≤ p < ∞ the Bergman space Ap, has the following
properties:

(i) ||c f ||Ap ≤ |c||| f ||Ap , where c is a real number.

(ii) || f (z)||Ap = 0 if and only if f (z) = 0.

(iii) || f (z)+g(z)||Ap ≤ || f (z)||Ap + ||g(z)||Ap for 1≤ p is satisfied.

The triangle inequality on Ap is often equal to Minkowski’s inequality in expression
(1.24). However, if 0 < p < 1, then the property of triangle inequality (iii) is replaced
by

|| f (z)+g(z)||p
Ap ≤ || f (z)||pAp + ||g(z)||pAp .

As special case of Ap(U), suppose that q : (0,1]→ [0,∞) is a weighted function which
is integrable on (0,1] and q on U is q(z) = q(|z|), by assuming that q is normalized so∫
U

q(z)dA(z) = 1. For 1 ≤ p < ∞, the weighted Bergman space A
p
q(U) is the space of

all analytic functions f : U→ C defined by

‖ f ‖
A

p
q

:=
{∫

U

| f (z)|pq(z)dA(z)
}1/p

< ∞, (1.27)
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holds true (see Baernstein et al. (2004)). We have the following inclusion:

Ap ⊂ A
p
q .

The Bloch space: The Bloch space B contains of all analytic functions f : U→ C,
such that

‖ f ‖B= sup
z∈U

{
(1−|z|2)| f ′(z)|

}
< ∞. (1.28)

holds true. Let q : (0,1]→ [0,∞) and f be an analytic function in the open unit disk U
is said to be in the weighted Bloch space Bq if

(1−|z|) | f ′(z) |< h̄q(1−|z|), (z ∈ U)

for some h̄ > 0. Note that, if q = 1 then B1 =B. Further, the weighted τ- Bloch space
Bτ

q , covering of all f ∈Bτ
q defined by

‖ f ‖Bτ
q
= sup

z∈U

{
| f ′(z)| (1−|z|)

τ

q(1−|z|)

}
< ∞. (1.29)

It is easy to note that if an analytic function g ∈Bτ
q , then

sup
z∈U

{
|kg(z)| (1−|z|)

τ

q(1−|z|)

}
≤ c < ∞, (1.30)

where k is a positive number. For 0≤ q < ∞ and 0 < τ < ∞, the weighted logarithmic
τ-Bloch space Bτ

q,log, of analytic functions f in U is defined by

|| f ||Bτ
q,log

= sup
z∈U

{
| f ′(z)| (1−|z|)

τ

q(1−|z|)
log
(

1
(1−|z|)

)}
≤ c < ∞.

We have the following inclusions:

B ⊂Bq ⊂Bτ
q ⊂Bτ

q,log.

1.5 Fractional operators

The basic primer in classical calculus are started with derivatives and integrals functions
and these two operations are inverse to each other in some sense. Fractional calculus is
an operation covers these classical functions and their generalizations. There are vari-
ous methods to define the fractional calculus in ordinary differential and integral equa-
tions (see Lovoie et al. (1976); Tremblay (1979); Samko et al. (1983); Hilfer (2000)).
Specifically, fractional calculus operators play an important role in geometric function
theory to define new generalized subclasses of analytic functions and then study their
properties. For example, operators of the classical fractional calculus defined by Owa
(1978) and Srivastava and Owa (1989) as follows.
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Definition 1.10 The fractional integral Srivastava–Owa operator of order β is defined
for a function f by

I
β
z f (z) :=

1
Γ(β )

∫ z

0
f (ζ )(z−ζ )β−1dζ , (1.31)

where 0 < β , and the function f is analytic in simply-connected region of the complex
z-plane containing the origin and the multiplicity of (z−ζ )β−1 is removed by requiring
log(z−ζ ) to be real when (z−ζ )> 0.

Lemma 1.4 For z ∈ U and f ∈A , then

(i) I 0
z f (z) = f (z).

(ii) I
β
z (b) = bzβ/Γ(β +1), where b is a constant function.

(iii) I
β
z {zm}= Γ(m+1)

Γ(m+β+1) zm+β ,m >−1;0≤ β < 1,z ∈ U.

Definition 1.11 The fractional derivative Srivastava–Owa operator of order β is de-
fined by

Dβ
z f (z) :=

1
Γ(1−β )

d
dz

∫ z

0
f (ζ )(z−ζ )−β dζ , (1.32)

where 0 ≤ β < 1, and the function f is analytic in simply-connected region of the
complex z-plane containing the origin and the multiplicity of (z−ζ )−β . is removed as
in Definition 1.10 above.

Lemma 1.5 For z ∈ U and f ∈A , then

(i) D0
z f (z) = f (z).

(ii) Dβ
z (b) = bz−β/Γ(1−β ), where b is a constant function.

(iii) Dβ
z {zm}= Γ(m+1)

Γ(m−β+1) zm−β ,m >−1;0≤ β < 1,z ∈ U.

Definition 1.12 Under the conditions of Definition 1.11, the fractional derivative of
order β is defined by

Dm+β
z f (z) =

dm

dzm Dβ
z f (z). (1.33)
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1.6 Special functions

In this section, we will present some of special functions that used throughout this
study. Most of these notions are taken from (Kilbas et al., 2006).

Gamma function: For complex argument with positive real, the Euler gamma function
Γ is defined by

Γ(z) :=
∫ z

0
e−ttz−1dt, ℜ(z)> 0. (1.34)

Note that, the function Γ satisfies the functional equations

zΓ(z) = Γ(z+1) and zΓ(z−1) = Γ(z), ℜ{z}> 0.

In particular case, if z = ω , then Γ(ω +1) = ω!, where ω ∈ N0 = {0,1,2, · · ·}.

The binomial coefficients are represented by the gamma function for α,ω ∈ C by(
α

ω

)
=

Γ(α +1)
Γ(α−ω +1)Γ(ω +1)

, α /∈ {0,−1,−2, · · ·}. (1.35)

Beta function: The beta function B(u,v) is a special function defined by

B(u,v) :=
∫ 1

0
tu−1(1− t)v−1 dt ℜ(u)> 0,ℜ(v)> 0. (1.36)

In terms of the gamma function, the beta function B(., .) satisfies the following identity

B(u,v) =
Γ(u)Γ(v)
Γ(u+ v)

ℜ(u)> 0,ℜ(v)> 0. (1.37)

The expression in (1.37) shows the close association between the analytical continua-
tion of the beta and gamma functions to the entire complex plane C.

Mittag-Leffler function: Mittag-Leffler type function is denoted by Eα,β (z), defined
by Wiman in 1905 and studied by Humbert in 1953 (see Haubold et al. (2011)):

Eα,β (z) =
∞

∑
k=0

zk

Γ(αk+β )
. (1.38)

As important special cases of this function are mentioned below:

(i) when β = 1 with min{ℜ(α)}> 0 the function (1.38) reduces to the one that has
been defined by Mittag-Leffler in 1903 (see Kilbas et al. (2004))
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Eα(z) =
∞

∑
k=0

zk

Γ(αk+1)
, (1.39)

(ii) when α = 1 the function (1.39) reduces to the exponential function

ez =
∞

∑
k=0

zk

k!
= 1+ z+

z2

2!
+

z3

3!
+ · · · .

The hypergeometric function and its generalization: Hypergeometric function and
its generalization are considered the most important special functions, because of their
many connections to other classes of special functions, and its numerous identities and
expressions in terms of series and integrals. They were introduced by Gauss in 1866
(see Beukers (2014)), and he has proved to be of enormous significance in mathematics
and the mathematical sciences elsewhere. Therefore, we describe some properties of
hypergeometric functions which are useful for us to derive some of our main results.

For z,a,c in C and c 6= {0,−1,−2, · · ·}, the confluent hypergeometric (or Kummer)
function is denoted by 1F1(a,c;z) and is defined by

1F1(a,c;z) =
∞

∑
k=0

(a)k
(c)k

zk

k!
. (1.40)

If ℜ{a} > 0 and ℜ{c} > 0, the confluent hypergeometric can be represented as an
integral

1F1(a,c;z) =
Γ(c)

Γ(a)Γ(c−a)

∫ 1

0
ν

a−1(1−ν)c−a−1ezν dν . (1.41)

For a, b and c are complex numbers with c is neither zero nor a negative integer with
|z|< 1, the Gaussian hypergeometric function is denoted by 2F1(a,b,c;z) and is defined
by

2F1(a,b,c;z) =
∞

∑
k=0

(a)k(b)k
(c)k

· z
k

k!
, (1.42)

where (a)k is the Pochhammer symbol defined by

(υ)k :=
Γ(υ + k)

Γ(υ)
=

{
υ(υ +1)...(υ + k−1), if k = υ ∈ N; υ ∈ C;
1, if k = 0; υ ∈ C\{0},

(1.43)

and it follows that, (1)k = k! and (υ)k+1 = (υ + k)(υ)k.

Remark 1.1 The series in equation (1.42) can be written as

2F1(a,b,c;z) = 1+
a ·b
1 · c

z+
a(a+1)b(b+1)

1 ·2 · c(c+1)
z2 + . . . (1.44)
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In special case, if a = 1 and b = c, then the series (1.44) takes the form

2F1(1,b,c;z) = 1+ z+ z2 + z3 + . . . ,

which is a geometric series. Since (1.44) reduces to geometric series as a special case
of (1.42), then (1.44) is called hypergeometric series. The series of the hypergeometric
functions (1.42) is convergent for |z| < 1. Moreover, the hypergeometric function is
analytic in the open unit disk U, and other useful properties of this function are

(i) If 0 < b < c, then the integral representation for the hypergeometric function is
defined by

2F1(a,b,c;z) =
Γ(c)

Γ(b)Γ(c−b)

∫ 1

0
tb−1(1− t)c−b−1(1− zt)−adt. (1.45)

(ii) Differentiation of hypergeometric functions

d
dz 2F1(a,b,c;z) =

ab
c 2F1(1+a,1+b,1+ c;z). (1.46)

(iii) The hypergeometric function can be given by

2F1(−a,b;c;1) =
Γ(c−b+a)Γ(c)
Γ(c−b)Γ(c+a)

and from this, we have the Kummer’s first formula (see Buchholz (2013)):

ez
1F1(a;c;−z) = 1F1(c−a;c;z). (1.47)

For complex parameters α1, ...,αp (αi 6= 0,−1,−2, ...; i = 1, ..., p), and β1, ...,βs (β j 6=
0,−1,−2, ...; j = 1, ...,s), where p, s ∈ N0 := {0,1, ...} with p ≤ s+ 1 and |z| < 1,
the generalized hypergeometric function denoted by pFs(α1, · · · ,αp;β1, · · · ,βs;z) and
defined by

pFs(α1,α2 . . .αp;β1,β2 · · · ,βs;z) =
∞

∑
k=0

(α1)k,(α2)k · · ·(αp)k
(β1)k,(β1)k · · ·(βs)k

· zk

(k)!
. (1.48)

Fox-Wright function pΨs: For complex parameters

α1 . . .αp

(
αi
Ai
6= {0,1,2, ..}; i = {1, . . . , p}

)
and

β1 . . .βs

(
β j

B j
6= {0,1,2, ..}; j = {1, . . . ,s}

)
,

the generalized Wright function pΨs is simply an extension of hypergeometric function
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pFs function given in equation (1.48), defined by

pΨs

[
(α1,A1), . . . ,(αp,Ap);
(β1,B1), . . . ,(βs,Bs);

z
]
= pΨs

[
(αi,Ai)1,p,(β j,B j)1,s;z

]
=

∞

∑
k=0

Γ(α1 +A1k) · · ·Γ(αp +Apk)
Γ(β1 +B1k) · · ·Γ(βs +Bsk)

zk

k!

=
∞

∑
k=0

∏
p
i=1 Γ(αi +Aik)

∏
s
j=1 Γ(β j +B jk)

zk

k!
, (1.49)

where Ai > 0 for all i = {1, . . . , p}, B j > 0 for all j = {1, . . . ,s} and for suitable values
|z|, such that

s

∑
j=1

B j−
p

∑
i=1

Ai ≥−1.

For the special case, where Ai = 1 for all i= {1, . . . , p} and B j = 1 for all j = {1, . . . ,s},
where p≤ s+1; p,s ∈ N0 = N∪{0}; |z|< 1, then we have the following relationship:

pFs(α1, . . . ,αp;β1, . . . ,βs;z) = ∆pΨs[(αi,1)1,p;(β j,1)1,s;z] (1.50)

where ∆ =
Γ(α1)...Γ(αp)
Γ(β1)...Γ(βs)

. Further, the generalized of Mittag-Leffler type function with

two parameters Eα,β (z) can be viewed as a special case of the above function pΨs in
equation (1.49) that is

Eα,β (z) = 1Ψ1

[
(1,1);
(α,β );

z
]
.

Moment generating function: Let W be an one-dimensional random vector and let
F(w) be its distribution function. The Moment generating function of a random variable
W defined in complex plane C by Curtiss (1942) as follows:

MW (z) = E
[
ezW
]

:=
∫

∞

−∞

ezwdF(w) z ∈ C, (1.51)

in which ℜ(z)≥ 0 and the integral is supposed to converge for z in some neighbourhood
of the origin. In dealing with certain distribution problems, the function MW (z) has
been widely used by statisticians.

1.7 Problem statement

This study addressed the following problems concerning fractional (differential,
integral and mix integro-differential) operators with their generalizations, as well as
linear operators in complex plane C, which are summarized as follows:
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On fractional operators:

Recently, Ibrahim and Jahangiri (2014) defined and extended fractional differential op-
erator Tα,µ

z in geometric function theory, and they left as an open problem in complex
plane C. Because the coefficient problem for various families of analytic and univalent
functions is basically about the search for precise bounds of the coefficient ak. So it is
common to ask:

1. Is it possible to find the bounds coefficient of new classes involving a fractional
differential operator Tα,µ

z in the open unit disk U?

Srivastava et al. (1989) proved that by using fractional calculus Srivastava–Owa oper-
ators and their properties, it could be defined new fractional operators which are the
extension for some others, that leads to the following question.

2. Does the fractional differential operator Tα,µ
z has a modification in S ?

It is well known that an operator is bounded in the open unit disk if and only if it is
normalized (satisfied the conditions f (0) = 0 and f ′(0) = 1), therefore, we have the
following question

3. Is the modification of fractional differential operator bounded in some complex
Banach spaces?

Breaz and Breaz (2002) proved an univalency condition of the integral operator intro-
duced in Stanciu and Breaz (2014). May one ask

4. By utilizing mixed operators (differential and integral), can we impose a new
operator; type the Breaz integral in the open unit disk U?

Since every functions f in S ⊂A have inverse in S , unquestionably, the following
question is arises.

5. Can we extend the univalancy properties to cover some well known operators?

Ibrahim (2011) defined a generalization fractional calculus of Srivastava-Owa operators
and studied some of their geometric properties. That leads to the following question.

6. Does the Srivistava-Owa operators define with two fractional parameters?

Moreover, the above question motivates us to some else.
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7. Can we study the bounded and compact generalized fractional operators on some
complex Banach spaces?

On linear operators (Convolution operators):

Carlson and Shaffer (1984) provided linear operator associated with Gaussian hyper-
geometric function. In recent study, Srivastava and Attiya (2007) have represented a
linear operator with generalized Hurwizt-Lerch zeta function. Those new methods of
defining linear operators associated with special functions in |z|< 1, motived us to ask

8. Can we apply the Mittag-Leffler function, to define a new linear operator?

The Moment generating function was extended in complex plane by Curtiss (1942).
The following question raised

9. Can we apply the complex Moment generating function, to define new linear
operators of analytic functions in the open unit disk?

On fractional analytic functions:

In geometric function theory there is a well known function, which is called Koebe
function. Then may one ask

10. Is it possible to define the Koebe function with fractional power?

1.8 Research objectives

The objectives of this research are to study one of the substantive issues in many ap-
plications of geometric function theory in complex domain U to find solutions to the
problem in section 1.7,

(i) to define new classes of analytic and univalent function with negative coefficients
involving fractional differential operators.

(ii) to modify a fractional differential operator and study its geometrical and topo-
logical properties.

(iii) to derive new classes of analytic and univalent functions including mixed integro-
differential operator type fractional and study their univalency properties.

(iv) to formulate a new fractional integral operator and to study its geometric inter-
polations.

(v) to study the boundedness and compactness properties on complex Banach spaces
for new generalize certain fractional differential operator in the open unit disk.
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(vi) to introduce a linear operator associated with Mittag-Leffler function and study
its boundedness properties on weighted Bloch spaces.

(vii) to study some univalency properties for subclasses of univalent functions defined
by making use the linear operators associated with Moment generating function.

(viii) to define new fractional classes of functional analytic univalent functions and
study some their geometric properties in a complex domain U.

1.9 Organization of the thesis

This thesis is organized in the following way. In Chapter 2, we provide an overview of
topics, which are used to manage the research, the outcome, and contributions through
this thesis

In Chapter 3, we present a systematic study of the various interesting geometric
properties and applications of fractional differential operator T

α,µ
z and prove sev-

eral characterization theorems involving starlikeness and convexity of the function
T

α,µ
z f (z). Further, we define a modified fractional differential operator T α,µ in the

open unit disk U and estimate their upper bounds on some complex Banach spaces.

In Chapter 4, we provide a new integral operator involving modified fractional
differential operator T

α,µ
z f (z) and study some its univalency properties such as

starlikness and convexity in the open unit disk U. Further, we present new classes of
analytic univalent functions defined by making use a new definition of a generalized
mixed integro-differential operator. Some applications on the norm pre-Schwarzian
derivatives also introduced in the last of this chapter.

In Chapter 5, we define a fractional operator of analytic and univalent functions in
terms of integral. We observe the relation between the fractional differential operator
T

α,µ
z defined in Chapter 3 with the fractional integral operator L

α,µ
z defined in this

chapter. As applications, we utilize some univalency properties to obtain examples
associated with special functions. The boundedness and compactness properties for
fractional integral operator on complex Bergman space of order p(0 < p < 1) are
studied. Furthermore, we introduce the univalency property for the modified fractional
integral operator.

In Chapter 6, we define a new generalized fractional differential operator and study
some its applications with several special functions in the open unit disk. Further, we
prove the normalized fractional differential operator with its univalency (starlikeness
and convexity) characteristics. In another hand, boundedness and compactness
properties for the last mentioned operator on weighted Bloch spaces are introduced.
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In Chapter 7, we define new linear operators associated with the well known special
functions which are the Mittag-Leffler function and Moment generating function.
Some applications such as boundedness on complex weighted Bloch spaces are
studied. Further, finding the best estimate for analytic and univalent functions by using
Fekete-Szegö method and Jack Lemma also are introduced.

In Chapter 8, we define fractional functional classes of analytic and univalent functions
in the open unit disk U. By utilizing this fractional functions, we define a new
convolution operator, also we employ this operator to define new classes in such
domain. The coefficient conditions with some applications for the new classes of
analytic functions with negative coefficients are studied.

In Chapter 9, we provide a summary and future work of the research of this thesis.
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