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Abstract of thesis presented to the senate of Universiti Putra Malaysia in fulfilment 

of the requirement for the degree of Doctor of Philosophy 

 

INTERVAL ITERATIVE METHODS ON SIMULTANEOUS INCLUSION 

OF POLYNOMIAL ZEROS 

 

 

By 

 

SYAIDA FADHILAH BT MOHAMMAD RUSLI 

 

April 2017 

 

 

Chairman  :  Mansor Bin Monsi, PhD 

Faculty :  Sciences 

 

 

The main aim of the thesis is to modified procedures of bounding real zeros of 

polynomials simultaneously. For this purpose the interval approach is used in order 

to obtain faster and more accurate results. The research is based on the existing 

procedures: the interval symmetric single-step ISS1 and the interval repeated single-

step IRSS1. To begin with, the basic concepts of interval computations and some 

brief introductions on Newton’s method are provided.  

 

 

The modifications done in this thesis can be grouped into two types. The first is the 

repeated procedures and the second type is the Newton’s modified procedures. The 

modified procedures proposed consist of four repeated procedures and two Newton’s 

modified procedures. The algorithms of these modified procedures are elaborated to 

show the significance of each procedure.  

 

 

Theoretically, the analyses of inclusions for all procedures are presented to ensure 

the inclusions property of the procedures. In order to find the rate of convergence of 

the procedures, the analyses of R-order of convergence are discussed in detail. To 

obtain the numerical results, coding for the procedures are developed and 

implemented using the MATLAB R2007a combined with the Intlab toolbox. 

Numerical results are presented in terms of CPU times, number of iterations and the 

widths of final intervals to indicate the accuracies of the procedure. 

 

 

For the conclusion, faster computational time and good accuracies are achieved from 

the new modified procedures. Furthermore, they attained higher rate of convergences 

than the existing procedures. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk Ijazah Doktor Falsafah 

 

 

KAEDAH LELARAN SELANG DALAM MEMERANGKAP PENSIFAR 

NYATA POLINOMIAL SECARA SERENTAK 

 

 

Oleh  

 

SYAIDA FADHILAH BT MOHAMMAD RUSLI  

 

April 2017 

 

 

Pengerusi : Mansor Monsi, PhD 

Fakulti : Sains 

 

 

Tujuan utama tesis ini adalah untuk mengubahsuai prosedur yang menghadkan 

punca nyata polinomial secara serentak. Untuk tujuan ini pendekatan selang 

digunakan bagi mendapatkan keputusan yang lebih pantas dan tepat. Kajian ini 

adalah berasaskan prosedur sedia ada, prosedur selang langkah-tunggal bersimmetri 

ISS1 dan prosedur selang berulang langkah-tunggal bersimmetri IRSS1. Sebagai 

permulaan, konsep-konsep asas pengiraan selang dan sedikit pengenalan tentang 

kaedah Newton diberikan. 

 

 

Pengubahsuaian yang dilakukan dalam tesis ini dapat dikumpulkan kepada dua jenis 

iaitu prosedur berulang dan prosedur Newton terubahsuai. Prosedur terubahsuai yang 

dicadangkan terdiri daripada empat prosedur berulang dan dua prosedur Newton 

terubahsuai. Algoritma bagi prosedur-prosedur terubahsuai ini diterangkan bagi 

menunjukkan sifat ketara bagi setiap prosedur. 

 

 

Secara teori, analisis rangkuman bagi setiap prosedur dibentangkan bagi memastikan 

perangkuman setiap prosedur tersebut. Untuk mendapatkan kadar penumpuan 

sesuatu prosedur, analisis kadar penumpuan peringkat R dibincangkan dengan teliti. 

Bagi mendapatkan keputusan berangka, pengekodan algoritma bagi prosedur-

prosedur dibina dan diimplimentasikan dengan menggunakan “MATLAB R2007a” 

digabungkan dengan “Intlab V5.5 toolbox”. Keputusan berangka dibentangkan 

dalam bentuk masa CPU,  jumlah lelaran dan kelebaran selang terakhir yang 

menunjukkan kejituan sesuatu prosedur. 

 

 

Sebagai kesimpulan, masa pengiraan yang lebih pantas dan kejituan yang baik dapat 

dicapai daripada prosedur-prosedur terubahsuai baru. Tambahan lagi, prosedur-

prosedur ini mempunyai kadar penumpuan yang lebih tinggi berbanding prosedur 

sedia ada.  
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

Polynomials are expressions that consist of constants, coefficients and variables or 

also called the indeterminate. Polynomials may involve the operations of additions, 

subtractions, multiplications and non-negative integer exponents. Polynomial zeros 

have many applications such as in control engineering, finance, economics and 

theoretical computer science. Many cases in our real life can be formed into 

polynomial form, from a simple daily life problem to some complicated situation. 

Thus, finding the zeros of the polynomial is very important to solve various kinds of 

problems. Basically, zeros finding method is a method for finding a value 𝑥 such that 

𝑝(𝑥) = 0 for a given function 𝑝. Therefore the concept of finding zeros of a 

polynomial is synonym with solving an equation. 

 

There are many studies on various methods used for finding the zeros of polynomials 

found in literature. In this study, we are focusing on iterative methods to find the 

zeros of the polynomial as this approach is effective and accurate. 

 

 

1.1 Methods of Estimating Polynomial Zeros and Concept of Interval 

Computations 

 

We consider a polynomial of degree  𝑛 > 1 defined by 

 

𝑝𝑛(𝑥) = 𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 + 𝑎𝑛−2𝑥
𝑛−2 +⋯+ 𝑎0   ,                         (1.1.1)  

 

where 𝑎𝑖 ∈ 𝑅
1(𝑖 = 1,… , 𝑛) are given. 

 

This polynomial can be expressed as 

 

𝑝𝑛(𝑥) = ∏ (𝑥 − 𝑥𝑖)
𝑛
𝑖=1 .                                                                  (1.1.2)  

 

Suppose that 𝑥𝑖
∗ ∈ 𝑅, for 𝑖 = 1,… , 𝑛, 𝑝𝑛(𝑥) has 𝑛 distinct zeros. This means we 

consider cases only for polynomials with distinct zeros and multiple zeros are not 

included. In addition, we only consider polynomials with real zeros and we use 

interval analysis to trap the zeros of the polynomials with great accuracies. Since our 

approach is in interval, we do not need to worry about the error because the zeros are 

bound in the final results.  

 

 

In this research, the procedures start with some disjoint 

intervals  𝑋1
(0)
, 𝑋2

(0)
, 𝑋3

(0)
, … , 𝑋𝑛

(0)
 as the initial intervals which contain the 

polynomial zeros. These initial intervals are obtained from the approximation values 

of the zeros. In order to obtain the approximate values of the zeros, there are several 

approaches we can apply. One of them is by graphical method where we can 
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approximate the location of the zeros by plotting the graph of the polynomials. For 

the test polynomials, we use some characteristic polynomials in which the diagonal 

values represent the approximation of the zeros. For other standard form 

polynomials, we use MATLAB solver to locate where the zeros lie. These including 

intervals 𝑋𝑗
(0)
= [𝑥𝑗𝐼

(0), 𝑥𝑗𝑆
(0)] ∋ 𝜉𝑗 , 1 ≤ 𝑗 ≤ 𝑛 are pair wise disjoints, that is  

𝑋𝑗
(0)
∩ 𝑋𝑘

(0)
= ∅ , 1 ≤ 𝑗 < 𝑘 ≤ 𝑛.                                        (1.1.3) 

When the procedure is run over the initial intervals, smaller bounded closed intervals 

are determined where each of them is guaranteed to still contain the roots. In other 

words, the intervals sequences generated by the procedures are always converging to 

the zeros that is  

𝑋𝑖
(0)
⊃ 𝑋𝑖

(1)
⊃ 𝑋𝑖

(2)
⊃ ⋯   with   lim

𝑘→∞
𝑋𝑖
(𝑘)
= 𝜉𝑖 . 

 

According to Monsi (1988), the interval arithmetic approach can be a principal and a 

necessary tool to determine the narrow computationally rigorous bounds on 

polynomial zeros as the widths of intervals are limited only by the precision of the 

machine floating point arithmetic.            

 

 

In the next section, we will introduce the operation of the interval computation 

which are used in this thesis as well as the properties of the basic operations on real 

intervals. The aim is to understand the system of rules for calculating with intervals, 

sufficient for the application used in the thesis.  

 

 

1.1.1 Operations of Interval Computations 

 

𝐴 = [𝑎1, 𝑎2]  is called a bounded closed real interval 𝐼(𝑅)  where 𝑎1 ∈ 𝑅 is the 

infimum of A or 𝑖(𝐴) = 𝑎1, and 𝑎2 ∈ 𝑅  is the supremum of A or 𝑠(𝐴) = 𝑎2. The set 

of all closed real interval  𝐼(𝑅) is defined by   

𝐼(𝑅) = {𝐴 = [𝑎1, 𝑎2]|𝑎1, 𝑎2 ∈ 𝑅, 𝑎1 ≤ 𝑎2}  .                                   (1.1.1.1) 

The members of 𝐼(𝑅) are denoted by the capital letters 𝐴, 𝐵, 𝐶, … , 𝑋, 𝑌, 𝑍. Real 

numbers 𝑥 ∈ 𝑅 may be considered the special members [𝑥, 𝑥] from 𝐼(𝑅), and they 

are called point intervals. 

 

 

Definition 1.1.1.1: (Alefeld and Herzberger, 1983) 

Two intervals  𝐴 = [𝑎1, 𝑎2] and 𝐵 = [𝑏1, 𝑏2] are called equal that is 𝐴 = 𝐵 if they 

are equal in the set theoretic sense.  ■ 

From Definition 1.1.1.1, it follows that 𝐴 = 𝐵  ⇔ 𝑎1 = 𝑏1 , 𝑎2 = 𝑏2 . 

The relation “=” between the two elements from  𝐼(𝑅) is reflexive, symmetric and 

transitive. 
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Definition 1.1.1.2: (Alefeld and Herzberger, 1983) 

Let ∗∈ {+, −,∙,/} be a binary operation on the set of real numbers 𝑅. If 𝐴, 𝐵 ∈ 𝐼(𝑅),  
then 

 

𝐴 ∗ 𝐵 = {𝑧 = 𝑎 ∗ 𝑏 | 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}                                        (1.1.1.2) 
 

defines a binary operation on the real interval  𝐼(𝑅) ■  

 

 

From Definition 1.1.1.2, the operations on intervals  𝐴 = [𝑎1, 𝑎2] and 𝐵 = [𝑏1, 𝑏2] 
may be calculated explicitly as 

𝐴 + 𝐵 = [𝑎1 + 𝑏1, 𝑎2 + 𝑏2]   ,                                                     (1.1.1.3) 

𝐴 − 𝐵 = [𝑎1 − 𝑏2, 𝑎2 − 𝑏1]   ,                                                     (1.1.1.4) 

𝐴 ∙ 𝐵 = [min{𝑎1𝑏1, 𝑎2𝑏2, 𝑎2𝑏1, 𝑎1𝑏2} ,max{𝑎1𝑏1, 𝑎2𝑏2, 𝑎2𝑏1, 𝑎1𝑏2}]  ,           (1.1.1.5) 

and if  0 ∉ 𝐵 then 
𝐴

𝐵
= [𝑎1, 𝑎2] ∙ [

1

𝑏2
,
1

𝑏1
]  ,                                                              

= [min{𝑎1/𝑏2, 𝑎1/𝑏1, 𝑎2/𝑏2, 𝑎1/𝑏1} ,max{𝑎1/𝑏2, 𝑎1/𝑏1, 𝑎2/𝑏2, 𝑎1/𝑏1}].     (1.1.1.6) 
 

 

Definition 1.1.1.3: (Monsi, 1988) 

An interval  𝐴 ∈ 𝐼(𝑅) is a degenerate (or is a point interval) if and only if  𝑎1 = 𝑎2. 
■ 

 

 

The set 𝐼𝐷(𝑅) of degenerate intervals and the set R  of real numbers are isomorphic. 

This permits a meaning to be given to 𝑎 ∗ 𝐵 (𝑎 ∈ 𝑅 , 𝐵 ∈ 𝐼(𝑅),∗∈ {+,−,∙,/}).  

 

 

Definition 1.1.1.4: (Monsi, 1988) 

If  𝑎 ∈ 𝑅  and 𝐵 ∈ 𝐼(𝑅) then  

𝑎 + 𝐵 = [𝑎 + 𝑏1, 𝑎 + 𝑏2], 
𝑎 − 𝐵 = [𝑎 − 𝑏2, 𝑎 − 𝑏1], 

𝑎 ∙ 𝐵 = [min{𝑎𝑏1, 𝑎𝑏2}, max{𝑎𝑏1, 𝑎𝑏2}], 
 

and if 0 ∉ 𝐵,then 

𝑎/𝐵 = [𝑎, 𝑎] ∙ [
1

𝑏2
,
1

𝑏1
] = [min{

𝑎

𝑏2
,
𝑎

𝑏1
}, max{

𝑎

𝑏2
,
𝑎

𝑏1
}].   ∎ 

 

 

Proposition 1.1.1.1: (Monsi, 1988) 

Interval arithmetic is inclusion monotonic that is to say, if 𝐴, 𝐵, 𝐶, 𝐷 ∈ 𝐼(𝑅) then 

(∀ ∗∈ {+, −,∙,/}) 
(𝐴 ⊆ 𝐶,𝐵 ⊆ 𝐷) ⇒ (𝐴 ∗ 𝐵 ⊆ 𝐶 ∗ 𝐷). 
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Proof 

By Definition 1.1.1.2 

𝐴 ∗ 𝐵 = {𝑎 ∗ 𝑏| 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐵 } 
            ⊆ {𝑐 ∗ 𝑑| 𝑐 ∈ 𝐶 , 𝑑 ∈ 𝐷 } 

= 𝐶 ∗ 𝐷 ∎               
 

Definition 1.1.1.5: (Monsi, 1988) 

Let 𝐴, 𝐵 ∈ 𝐼(𝑅) be given. Then the intersection 𝐴 ∩ 𝐵  of 𝐴 and 𝐵 is defined by 

 

𝐴 ∩ 𝐵 = {𝑥 ∈ 𝑅 |𝑥 ∈ 𝐴 , 𝑥 ∈ 𝐵}.  ∎ 

 

 

Proposition 1.1.1.2: (Monsi, 1988) 

(𝑎)(∀𝐴,𝐵 ∈ 𝐼(𝑅)) 𝐴 ∩ 𝐵 = 𝐵 ∩ 𝐴 ; 

(𝑏)(∀𝐴,𝐵 ∈ 𝐼(𝑅)) 𝐴 ∩ 𝐵 ⊆ 𝐴, 𝐴 ∩ 𝐵 ⊆ 𝐵 ; 
(𝑐)(𝐴 ∩ 𝐵 = 𝐴 ⇔ 𝐴 ⊆ 𝐵 ), (𝐴 ∩ 𝐵 = 𝐵 ⇔ 𝐵 ⊆ 𝐴 ) . 
 

 

Proof of (a) 

By Definition 1.1.1.5 

𝐴 ∩ 𝐵 = { 𝑥 ∈ 𝑅 | 𝑥 ∈ 𝐴, 𝑥 ∈ 𝐵} ,   
          = { 𝑥 ∈ 𝑅 | 𝑥 ∈ 𝐵, 𝑑 ∈ 𝐴} , 
    = 𝐵 ∩ 𝐴.                           

 

Proof of (b) 

By Definition 1.1.1.5 

𝐴 ∩ 𝐵 = { 𝑥 ∈ 𝑅 | 𝑥 ∈ 𝐴, 𝑥 ∈ 𝐵} . 
 

So 
(𝑥 ∈ 𝐴 ∩ 𝐵) ⇒ 𝑥 ∈ 𝐴, 

whence 

𝐴 ∩ 𝐵 ⊆ 𝐴, 
and 

(𝑥 ∈ 𝐴 ∩ 𝐵) ⇒ 𝑥 ∈ 𝐵, 
whence 

𝐴 ∩ 𝐵 ⊆ 𝐵, 
 

Proof of (c) 

By (𝑏)  𝐴 ∩ 𝐵 ⊆ 𝐵, so

 
(𝐴 ∩ 𝐵 = 𝐴) ⟹ (𝐴 ⊆ 𝐵). 

 

Conversely, if 𝐴 ⊆ 𝐵 then by Definition 1.1.1.5 

 

𝐴 ∩ 𝐵 = { 𝑥 | 𝑥 ∈ 𝐴, 𝑥 ∈ 𝐵} 
= { 𝑥 | 𝑥 ∈ 𝐴} 

= 𝐴. 
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Therefore 

(𝐴 ∩ 𝐵 = 𝐴) ⟺ (𝐴 ⊆ 𝐵). 
 

Interchanging 𝐴 and 𝐵 and using (𝑎), give 

 
(𝐴 ∩ 𝐵 = 𝐴) ⟺ (𝐵 ⊆ 𝐴). ∎ 

 

 

1.1.2 Properties of Interval Computations 

 

Proposition 1.1.2.1: (Alefeld and Herzberger, 1983) 

If A, B and C are members of the real interval  𝐼(𝑅). Then it follows that 

                  (𝑎) (𝐴 + 𝐵) + 𝐶 = 𝐴 + (𝐵 + 𝐶)     (associativity of addition);           

                  (𝑏) (𝐴 ∙ 𝐵) ∙ 𝐶 = 𝐴 ∙ (𝐵 ∙ 𝐶)              (associativity of multiplication); 

                  (𝑐)  𝐴 + 𝐵 = 𝐵 + 𝐴                           (commutativity of addition);      

                  (𝑑)  𝐴 ∙ 𝐵 = 𝐵 ∙ 𝐴                              (commutativity of multiplication); 
 

 

Proposition 1.1.2.2: (Alefeld and Herzberger, 1983) 

If  0 = [0,0] and  1 = [1,1] , then 𝑋 and 𝑌 are the unique neutral elements with 

respect to addition and multiplication, that is 

(𝑎) 𝐴 = 𝑋 + 𝐴 = 𝐴 + 𝑋   𝑓𝑜𝑟 𝑎𝑙𝑙  𝐴 ∈ 𝐼(𝑅)  ⇔ 𝑋 = 0 . 

(𝑏) 𝐴 = 𝑌 ∙ 𝐴 = 𝐴 ∙ 𝑌   𝑓𝑜𝑟 𝑎𝑙𝑙  𝐴 ∈ 𝐼(𝑅)  ⇔ 𝑌 = 1 .  

Proposition 1.1.2.3: (Alefeld and Herzberger, 1983) 

((𝐴, 𝐵 ∈ 𝐼(𝑅)), (𝐴𝐵 = 0)) ⇒ (𝐴 = 0   𝑜𝑟  𝐵 = 0).  
 

Proposition 1.1.2.4: (Alefeld and Herzberger, 1983) 

Interval arithmetic is subdistributive; that is to say (∀𝐴,𝐵, 𝐶 ∈ 𝐼(𝑅)) 
 

𝐴(𝐵 + 𝐶) ⊆ 𝐴𝐵 + 𝐵𝐶. 
 

Proposition 1.1.2.5: (Alefeld and Herzberger, 1983) 

Let(𝐴, 𝐵, 𝐶 ∈ 𝐼(𝑅))be given. Then  
(𝑎)  (𝐴 ± 𝐶 = 𝐵 ± 𝐶) ⇒ (𝐴 = 𝐵); 
(𝑏)  (𝐴𝐶 = 𝐵𝐶) ⇏ (𝐴 = 𝐵);            
(𝑐)  (𝐴/𝐶 = 𝐵/𝐶) ⇒ (𝐴 = 𝐵).       

Definition 1.1.2.1: (Alefeld and Herzberger, 1983) 

The distance between two intervals 𝐴 = [𝑎1, 𝑎2], 𝐵 = [𝑏1, 𝑏2]  ∈ 𝐼(𝑅) is defined as    

𝑞(𝐴,𝐵) = max{|𝑎1 − 𝑏1|, |𝑎2 − 𝑏2|} . ∎ 
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Definition 1.1.2.2: (Alefeld and Herzberger, 1983) 

The absolute value of an interval 𝐴 = [𝑎1, 𝑎2] ∈ 𝐼(𝑅) is defined as  

 
|𝐴| = 𝑞(𝐴, [0,0]) = max{|𝑎1|, |𝑎2|} .∎ 

 

 

Theorem 1.1.2.1 (Alefeld and Herzberger, 1983) 

Let 𝐴 = [𝑎1, 𝑎2], 𝐵 = [𝑏1, 𝑏2], 𝐶 = [𝑐1, 𝑐2],   𝐷 = [𝑑1, 𝑑2]  ∈ 𝐼(𝑅).Then  
(𝑎) 𝑞(𝐴 + 𝐵 = 𝐴 + 𝐶) = 𝑞(𝐵, 𝐶); 
(𝑏) 𝑞(𝐴 + 𝐵 = 𝐶 + 𝐷) ≤ 𝑞(𝐴, 𝐶) + 𝑞(𝐵, 𝐷); 
(𝑐) 𝑞(𝑎𝐵, 𝑎𝐶) = |𝑎|𝑞(𝐵, 𝐶), 𝑎 ∈ 𝑅; 
(𝑑) 𝑞(𝐴𝐵 + 𝐴𝐶) = |𝐴|𝑞(𝐵, 𝐶).   ∎ 

 

 

Definition 1.1.2.3: (Alefeld and Herzberger, 1983) 

The width 𝑤(𝐴) of an interval  𝐴 = [𝑎1, 𝑎2] where 𝐴 ∈ 𝐼(𝑅) is defined by 𝑤(𝐴) =
𝑎2 − 𝑎1. ∎ 

 

 

Definition 1.1.2.4: (Alefeld and Herzberger, 1983) 

The midpoint  𝑚(𝐴) of  𝐴 ∈ 𝐼(𝑅) is defined by 𝑚(𝐴) =
1

2
(𝑎1 + 𝑎2) ■ 

 

 

1.1.3 Interval Evaluation and Range of Real Functions 

 

In this section, we consider 𝑓 is a continuous function and an expression 𝑓(𝑥) is a 

calculating procedure that will determine a value of the function f for every argument 

𝑥. 

 

 

Alefeld and Herzberger (1983) stated that the expression  

 

𝑊(𝑓,𝑋; 𝐴(0), … , 𝐴(𝑚)) = {𝑓(𝑥; 𝑎(0), … , 𝑎(𝑚))|𝑥 ∈ 𝑋, 𝑎(𝑘) ∈ 𝐴(𝑘), 0 ≤ 𝑘 ≤ 𝑚} 

  = [ min
𝑥∈𝑋

𝑎(𝑘)∈𝐴(𝑘),0≤𝑘≤𝑚

𝑓(𝑥; 𝑎(0), … , 𝑎(𝑚)) , max
𝑥∈𝑋

𝑎(𝑘)∈𝐴(𝑘),0≤𝑘≤𝑚

𝑓(𝑥; 𝑎(0), … , 𝑎(𝑚))], 

 

denote the interval of all values of the function 𝑓 when 𝑥𝜖𝑋, and 𝑎(𝑘) ∈ 𝐴(𝑘), 
0 ≤ 𝑘 ≤ 𝑚, are considered independent of each other. This definition is independent 

of the expression for 𝑓. 

 

 

Theorem 1.1.3.2 (Alefeld and Herzberger, 1983) 

Let f be the continuous function of the real variable  𝑥(1),… , 𝑥(𝑛), and let 

𝑓(𝑥(1), … , 𝑥(𝑛); 𝑎(0), … , 𝑎(𝑚)) be an expression for f. Also assume that the interval 

evaluation 𝑓(𝑌(1), … , 𝑌(𝑛); 𝐵(0), … , 𝐵(𝑚)) is defined for the 

intervals  𝑌(1), … , 𝑌(𝑛);𝐵(0), … , 𝐵(𝑚).  
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It then follows that  

 

(a) for all 

 

 𝑋(𝑘) ⊆ 𝑌(𝑘),  𝐴(𝑗) ⊆ 𝐵(𝑗) , 1 ≤ 𝑘 ≤ 𝑛  , 0 ≤ 𝑗 ≤ 𝑚 , 
 

it holds that 

 

(𝑖)     𝑊(𝑓, 𝑋(1), … , 𝑋(𝑛); 𝐴(0), … , 𝐴(𝑚))

⊆ 𝑓(𝑋(1), … , 𝑋(𝑛); 𝐴(0), … , 𝐴(𝑚))(inclusion property); 

(b) for all  

 

𝑋(𝑘) ⊆ 𝑍(𝑘) ⊆ 𝑌(𝑘)   ,   𝐴(𝑗) ⊆ 𝐶(𝑗) ⊆ 𝐵(𝑗) , 1 ≤ 𝑘 ≤ 𝑛  , 0 ≤ 𝑗 ≤ 𝑚 , 
 

it holds that  

 

(𝑖𝑖)   𝑓(𝑋(1), … , 𝑋(𝑛); 𝐴(0), … , 𝐴(𝑚))

⊆ 𝑓(𝑍(1), … , 𝑍(𝑛); 𝐶(0), … , 𝐶(𝑚))(inclusion monotonicity).∎ 

 

 

1.2 Newton’s Method 

 

Newton’s method is a well-known method widely used for solving equations. Whilst 

it might not be the most efficient nor the most robust method by itself, it is usually 

used together with other method that is globally convergent. The combination would 

help in giving the value of the initial guess, 𝑥0 closer to the root  𝜉. 

 

 

The Newton’s method is given by  

𝑥𝑖+1 = 𝑥𝑖 −
𝑓(𝑥𝑖)

𝑓′(𝑥𝑖)
(𝑖 = 0,1,… , 𝑛).                                                  (1.2.1) 

The iteration starts with an initial guess of the root of the function,𝑥0, then a function 

𝑓 defined over the real numbers 𝑥 and the function’s derivatives 𝑓′. In our case, the 

function 𝑓 is the polynomial with degree n. 

 

 

In this thesis, we will use this Newton’s method at the beginning of the algorithm in 

Chapter 6, Chapter 7 and Chapter 8. 
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1.3 Problem Statement 

 

In this research, there are two main ideas used to develop new improved procedures. 

First is by introducing the concept of inner iterations to the existing procedures in the 

literature.  We include the process of inner iterations to the algorithm where the 

values of the inner iterations depend on the value of 𝑚. The value of 𝑚 is set 

initially before the algorithm starts. The conventional approach is to add more steps 

to the algorithm of existing procedures like the idea of the interval symmetric single-

step procedure ISS1 and the interval zorro symmetric single-step procedure IZSS1. 

Therefore, instead of adding more steps to the algorithm, we just set the value of 𝑚 

to its optimum value, for the algorithm to perform best. This idea is expected to save 

computational time because when the inner iteration is used, more calculated values 

can be re-used in the inner loop.  

 

 

For the second idea, we add the Newton’s method at the beginning of the procedure. 

Note that the Newton’s method is calculated only once throughout the algorithm. 

This idea is expected to accelerate the process of bounding the intervals closer to the 

zeros. Therefore, the procedures will converge faster and lessen the computational 

time. 

 

   

1.4 Objective of the Research 

 

The main objective of the studies is to propose new procedures in bounding the 

polynomials zeros simultaneously by using interval arithmetic approach. By using 

the interval computation, we tend to achieve good accuracy as we can ensure a 

narrow computationally rigorous bound on the polynomial zeros. The objective of 

the thesis can be accomplished by: 

 

1. constructing the interval repeated midpoint symmetric single-step procedure 

IRMSS1 based on the interval midpoint symmetric single-step procedure 

IMSS1 and the interval repeated single-step procedure IRSS1. 

2. constructing the interval repeated zorro symmetric single-step procedure 

IRZSS1, based on the interval zorro symmetric single-step procedure IZSS1 

and the interval repeated single-step procedure IRSS1. 

3. constructing the interval repeated midpoint zorro symmetric single-step 

procedure IRMZSS1, based on the interval midpoint zorro symmetric single-

step procedure IMZSS1 and the interval repeated single-step procedure 

IRSS1. 

4. formulating the interval Newton symmetric Monsi-Wolfe procedure 

INSMW, by 

introducing the Newton’s method into the interval symmetric single-step 

ISS1. 

5. composing the interval repeated Newton symmetric Monsi-Wolfe procedure  

IRNSMW, based on the interval Newton symmetric Monsi-Wolfe procedure 

INSMW.  
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6. formulating the interval Newton midpoint symmetric Monsi-Wolfe procedure  

INMSMW, by introducing the Newton’s method into the interval midpoint 

symmetric single-step IMSS1. 

7. performing the analysis of inclusions for all proposed procedures to ensure 

the  

convergences of the procedures and analysing the R-order of convergence for 

each modified procedure for comparisons.  

 

 

1.5 Thesis Outline 

 

In this thesis, we discuss the interval iterative procedures in bounding roots of 

polynomials simultaneously. We start this thesis with the introduction on the basic 

concept of interval computations that is used in obtaining the numerical results. We 

include the important operations and properties involved in the analysis process in 

this research as they are the keys for us to analyzing the R-order of convergence of 

the procedures and also to proceed with the modified procedures.  

 

 

In chapter 2, we discuss the general idea of the R-order of convergence as explained 

in Ortega and Rheinboldt (1970). By referring to the idea, we analyze the R-order of 

convergence of all the modified procedures. We also include the brief discussions 

regarding the previous work which are the sources of the modified procedures. 

 

 

Chapter 3 to 8 are the chapters that contain the detailed discussions on all six 

modified procedures. In chapter 3, we developed the first modified procedure named 

the interval repeated midpoint symmetric single-step IRMSS1. In this procedure, we 

apply the idea of using the updated midpoints in the procedure IRSS1 by Monsi 

(1988) and this procedure appears to be the repeated version of the procedure 

IMSS1. The value of inner iteration is dependent on the value of 𝑚 and can be set at 

the beginning of the procedure.  

 

 

Chapter 4 covers the modified procedure namely the interval repeated zorro 

symmetric single-step IRZSS1. For this modification, we apply the idea of using 

algorithm with zorro pattern likewise in procedure IZSS1 and include the inner 

iteration in the algorithm so that it will be the repeated version of the procedure 

IZSS1.  

 

 

In chapter 5, the same concept of repeated version is applied but this time is on the 

algorithm of IMZSS1 and it is called the interval repeated midpoint zorro symmetric 

single-step procedure denoted as IRMZSS1. 
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In chapter 6, we derived the modified method namely the interval Newton symmetric 

Monsi-Wolfe procedure INSMW. For this procedure, we improve the procedure 

ISS1 by Monsi (1988), by adding the Newton method at the beginning of the 

procedure on the algorithm. This step will only be computed once in the procedure.  

 

 

In Chapter 7, we will construct the repeated version INSMW which is called the 

interval repeated Newton symmetric Monsi-Wolfe procedure IRNSMW. Similar to 

the concept used in Chapter 3, Chapter 4 and Chapter 5, the inner iteration will be 

included in the algorithm of INSMW where the inner iteration depends on the value 

of 𝑚. 
 

 

Next in chapter 8, we apply the idea of using the Newton method at the beginning of 

the IMSS1 procedure. In this procedure, we always use the updated midpoints for 

every step in the algorithm. This modification is called the interval Newton midpoint 

symmetric single-step procedure INMSMW. 

 

 

In each chapter, we present the algorithms and the analysis of R-order of 

convergence for the modified procedures. All six modified procedures show 

improvements as they have better rate of convergence and are supported by CPU 

times and number of iterations. The numerical results obtained are shown in the form 

of tables and graphs at the end of each chapter. The stopping criteria used is 𝑤𝑖
(𝑘)
≤

10−12.  

 

 

Finally in chapter 9, we conclude the results of our research and listed down some of 

the future work regarding this study.  
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