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ORDINARY DIFFERENTIAL EQUATIONS AND FIRST-ORDER

OSCILLATORY PROBLEMS

By

FIRAS ADEL FAWZI ALSHAREEDA

April 2017

Chair: Associate Professor Norazak Senu, PhD
Faculty: Science

In this study, new Runge-Kutta type methods (RKTG) are derived for directly solving
third-order ordinary differential equations ODEs of the form y′′′ = f (x,y,y′). The
derivation of third-, fourth- and fifth-order explicit RKTG methods using constant step
length and an embedded explicit RKTG denoted by RKTGD methods of 4(3) and 5(4)
pairs for variable step size have been derived. Numerical results obtained show that the
new RKTG and RKTGD methods are more accurate and efficient than several existing
methods in the literature.

In the second part, a Runge-Kutta type methods are derived for directly solving general
third-order differential equations of the form y′′′ = f (x,y,y′,y′′) denoted as (RKTGG).
The derivation of third- and fourth-order explicit RKTGG methods using constant step
size have been derived. Numerical results obtained for the new methods have shown
efficiency and robustness in terms of accuracy and number of function evaluations.

Next, an explicit Runge-Kutta (RK) and modified Runge-Kutta (MRK) with dispersion
and dissipation properties are studied for the integration of initial value problems
(IVPs) of first-order ordinary differential equations (ODEs) possessing oscillating
solutions. The constructions of RK and MRK methods for constant step size and
embedded MRK pair for variable step length have been derived. The strategies in
choosing the free parameters are also discussed. The impacts of dispersion and
dissipation relations are tested on homogeneous and non-homogeneous test problems
which have oscillating solutions.
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Meanwhile, trigonometrically-fitted RK and MRK methods are constructed for integra-
tion of IVPs of first-order ODEs with periodic behavior. The derivation of fourth-order
trigonometrically-fitted explicit RK and MRK methods using constant step size and
embedded 6(5) pair trigonometrically-fitted explicit Runge-Kutta (ETFRK) method
for variable step size have been derived. We analyzed the numerical results of RK,
MRK and ETFRK methods and found that our new methods are more efficient than
the existing methods.

In conclusion, the new codes developed are suitable for solving system of first-order
ODEs in which the solutions are in the oscillatory form and third-order ODEs.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

KAEDAH JENIS RUNGE-KUTTA UNTUK MENYELESAIKAN
PERSAMAAN PEMBEZAAN BIASA PERINGKAT KETIGA DAN MASALAH

AYUNAN PERINGKAT PERTAMA

Oleh

FIRAS ADEL FAWZI ALSHAREEDA

April 2017

Pengerusi: Profesor Madya Norazak Senu, PhD 
Fakulti   : Sains

Di dalam kajian ini, kaedah jenis Runge-Kutta (JRKA) yang baharu diterbitkan
untuk menyelesaikan secara langsung persamaan pembezaan biasa (PPB) peringkat
ketiga berbentuk y′′′ = f (x,y,y′). Terbitan kaedah tak tersirat JRKA peringkat-ketiga,
-keempat dan -kelima yang menggunakan panjang langkah malar dan kaedah benaman
tak tersirat JRKA ditandakan dengan BJRKA untuk pasangan 4(3) dan 5(4) untuk
panjang langkah berubah telah diterbitkan. Keputusan berangka yang diperoleh
menunjukkan bahawa kaedah yang baharu JRKA dan BJRKA adalah lebih jitu dan
cekap berbanding dengan beberapa kaedah sedia ada di dalam sorotan litratur.

Di dalam bahagian yang kedua, kaedah jenis Runge-Kutta (JRKAA) diterbitkan untuk
menyelesaikan secara langsung persamaan pembezaan peringkat-ketiga am berbentuk
y′′′ = f (x,y,y′,y′′). Terbitan kaedah tak tersirat JRKAA peringkat-ketiga dan -keempat
yang menggunakan saiz langkah malar telah diterbitkan. Keputusan berangka yang
dapati untuk kaedah baharu ini menunjukkan kecekapan dan keteguhan dari segi
kejituan dan bilangan penilaian fungsi.

Seterusnya, kaedah tak tersirat Runge-Kutta (RK) dan Runge-Kutta terubahsuai
(RKT) dengan ciri-ciri serakan dan lesapan dikaji untuk mengamir masalah nilai awal
(MNA) PPB peringkat pertama yang mempunyai penyelesaian berayun. Pembinaan
kaedah RK dan RKT untuk panjang langkah malar dan pasangan benaman RKT untuk
panjang langkah berubah telah diterbitkan. Strategi pemilihan parameter bebas juga
dibincangkan. Impak dari hubungan serakan dan lesapan diuji ke atas masalah ujian
homogen dan bukan homogen yang mempunyai penyelesaian berayun.
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Sementara itu, kaedah suai-trigonometri RK dan RKT dibina untuk mengamir MNA
bagi PPB peringkat pertama khas yang mempunyai tingkah laku berkala. Terbitan
kaedah suai-trigonometri tak tersirat RK dan RKT peringkat-keempat yang menggu-
nakan saiz langkah malar dan pasangan 6(5) kaedah benaman suai-trigonometri tak
tersirat Runge-Kutta (BSTRK) untuk saiz langkah berubah telah diterbitkan. Kami
menganalisis keputusan berangka terhadap kaedah-kaedah RK, RKT dan BSTRK dan
didapati kaedah baharu kami lebih cekap berbanding kaedah sedia ada.

Sebagai kesimpulan, kod baharu yang dibangunkan adalah sesuai untuk menyelesaikan
sistem PPB peringkat pertama yang mempunyai penyelesaian bentuk berayun dan PPB
peringkat tiga.
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CHAPTER 1

INTRODUCTION

1.1 Ordinary Differential Equations (ODEs)

The ordinary differential equation is a differential equation that contains only ordinary
derivatives of one or more unknown functions with respect to a single independent
variable. In practice, however, few of the problems originating from the study of
physical phenomena can be solved exactly.

The n-th order ODEs can be written as:

y(n) = f
(
x,y, ...,y(n−1)), n = 2,3,4, ... . (1.1)

with initial conditions:

y(a) = y0

and
y(i)(a) = ηi, 0 < i≤ n−1, x ∈ [a,b]

while the first order ODEs can be written as:

dy
dx

= f
(
x,y(x)

)
,y(a) = y0 (1.2)

for x ∈ [a,b].
In (1.2), the quantity being differentiated, y is named as the dependent variable, while
the quantity with respect to which y is differentiated, x is named as independent vari-
able.

1.2 The Initial Value Problems (IVPs)

Ordinary differential equations (ODEs) are equations that involve an unknown function
with independent variable and one or more of its derivatives. ODEs arise in many con-
texts of engineering and science such as fluid dynamics, radioactive decay and popula-
tion growth. Many theoretical and numerical studies for such equations have appeared
in the literature. The analytical way to solve ODEs is via application of integration tech-
nique. However, the anti-derivatives for most realistic systems of ODEs are difficult or
impossible to find. Thus, numerical methods for ODEs have attracted considerable
attention.

1



© C
OPYRIG

HT U
PM

Definition 1.1 The initial value problems (IVPs) of third order is defined as:

y′′′(x) = f (x,y,y′), (1.3)

with initial conditions

y(x0) = y0, y′(x0) = y′0, y′′(x0) = y′′0

where f : R×Rn→ R
n , and y0, y′0, y′′0 ∈ Rn.

Definition 1.2 The initial value problems (IVPs) of general third order is defined as:

y′′′(x) = f (x,y,y′,y′′), (1.4)

with initial conditions

y(x0) = y0, y′(x0) = y′0, y′′(x0) = y′′0

where f : R×Rn→ R
n , and y0, y′0, y′′0 ∈ Rn.

Definition 1.3 The initial value problems (IVPs) of system first order differential equa-
tion is defined as:

y′(x) = f (x,y), (1.5)

with initial conditions

y(x0) = y0, y′(x0) = y′0, x ∈ [a,b]

where
y(x) = [y1(x),y2(x), ...,ys(x)]T

f (x,y) = [ f1(x,y), f2(x,y), ..., fs(x,y)]T ,

and y0 is a given vector of initial conditions and their solution is oscillatory.

One way to solve (1.3)–(1.5) is by Runge-Kutta (RK) method. RK method can be
divided into two groups which are explicit and implicit methods. An easy and quick
way to distinguish the type of these methods is that the implicit methods need an itera-
tion scheme, usually Newton type iteration during the integration, whereas the explicit
methods do not. Therefore, the computations for implicit methods are more expensive
than explicit methods. In addition to the implementation of the methods, accuracy and
stability are to further factors for judging the efficacy of a method. In this study, we
are focusing on solving problem (1.3)–(1.4) by using explicit Runge-Kutta type meth-
ods for directly solving third-order differential equations and solving problem (1.5) by

2
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using RK methods for oscillating problems.

1.3 Existence and Uniqueness of Solution

Initial value problems describe a problem together with the behavior of it’s path taken
at some initial points of the independent variable x. Some of the characteristic of initial
value problems that answer this question, as given by Butcher (2008), are existence of
solution, uniqueness of the solution if it exists and the sensitivity of the solution to a
small perturbation to the initial information. One of the well known conditions that
guarantees these characteristics is the Lipschitz condition.

Definition 1.4 A function f : R×Rd → Rd is said to satisfy Lipschitz condition in its
second variable if there exist a constant L such that for any x ∈ [a,b] and y1,y2 ∈ Rd ,

‖ f (x,y1− f (x,y2) ‖≤ L ‖ y1− y2 ‖, (1.6)

where L is called Lipschitz constant.

Theorem 1.1 : (Existence and Uniqueness)
Let f (x,y(x)) be defined and continuous ∀ points

(
x,y(x)

)
in a domain D defined by

x ∈ [a,b],y ∈ (−∞,∞), a and b are finite, and that f (x,y(x)) satisfies Lipschitz condi-
tion. Then for any given number ζ , ∃ a unique solution y(x) of the IVP (1.3), where ∀(
x,y(x)

)
∈ D, y(x) is continuous and differentiable.

The proof is given by Henrici (1962).

1.4 Runge-Kutta (RK) Methods

In the fact, Runge-Kutta method is a most common one step method for solving IVPs
of first-order ODEs. The general formulation of explicit RK method is given by,

yn+1 = yn +h
m

∑
i=1

biki (1.7)

where

ki = f

(
xn + cih, yn +h

i−1

∑
j=1

ai jk j

)
, i = 1, ...,m, (1.8)

and the following the row-sum assumption holds

ci =
m

∑
j=1

ai j.

3
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The m-stage explicit RK method in the matrix form for first-order equations or system
of equations can be written using Butcher Tableau as given in (Table 1.1)

Table 1.1: m-stage explicit Runge-Kutta method

0
c2 a21
c3 a31 a32
. . .
. . .
. . .

cm am1 am2 ... am,m−1
b1 b2 ... bm−1 bm

The method is said to be explicit when ai j = 0 for i≤ j and implicit otherwise.

1.4.1 Algebraic Order Conditions for RK method

The order conditions for RK method may be obtained from direct expansion of Taylor
series using the Local Truncation Error (LTE). The m-stage up to order six, RK methods
are given as follows:
Order 1

∑bi = 1 (1.9)

Order 2

∑bici =
1
2

(1.10)

Order 3
1
2 ∑bici

2 =
1
6

(1.11)

Order 4
1
6 ∑bici

3 =
1

24
, ∑biai jc j =

1
24

(1.12)

Order 5
1
24 ∑bici

4 =
1

120
,

1
4 ∑biciai jc j =

1
120

,

1
2 ∑biai jc j

2 =
1

120
(1.13)

Order 6
1

120 ∑bici
5 =

1
720

,
1

20 ∑bici
2ai jc j =

1
720

,

1
10 ∑biciai jc j

2 =
1

720
,

1
6 ∑biai jc j

3 =
1

720

∑biai, ja j,kck =
1

720
. (1.14)
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Definition 1.5 A Runge-Kutta method had algebraic order p, when the method’s Taylor
series expansion agrees with the theoretical solution Taylor series expansion in the p
first term:

y(n)(x) = yn
n(x), n = 1,2, ..., p

A Runge-Kutta must satisfy a number of equations, in the order to have a certain alge-
braic order. These equations are shown during the production of the method.

1.4.2 Local Truncation Error (LTE)

Dormand (1996) mentioned that the Local Truncation Error (LTE) is the amount or
value by the exact solution fails to satisfy the numerical solution.
Consider the equations

y(xn+1) = y(xn)+hn∆ (xn,y(xn),hn) (1.15)

yn+1 = yn +hΦ (xn,y(xn),hn) (1.16)

tn+1 = y(xn)+hΦ (xn,y(xn),hn)− y(xn+1) (1.17)

From the above equations, the local truncation error for the Taylor series method is

tn+1 = y(xn)+hΦ (xn,y(xn),h)− (y(xn)+hn∆ (xn,y(xn),h)) (1.18)

then yielding

tn+1 = {hΦ (xn,y(xn),h)−∆ (xn,y(xn),h)} (1.19)

In terms of derivatives, and using the elementary differentials notation, the pth order
method has LTE as

tn+1 =−
∞

∑
i=p+1

hi

i!

n!
∑
j=1

α
(i)
j F(i)

j ,

=−
∞

∑
i=p+1

hi

i!
y(i)(xn). (1.20)

The Taylor increment can be expressed in finite form as:

∆ (xn,y(xn),h) =y′(xn)
h
2

y′′(xn)+ ...+
hp−1

p!
y(p)(xn)

+
hp

(p+1)!
y(p+1)(xn +ηh), η ε (0,1) (1.21)

so the LTE derives from the last term of this polynomial. The value of η is not generally.
Consequently, there exist a real positive number A independent of the h-step size such

5
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that

‖ tn+1 ‖≤ Ahp+1 (1.22)

and for a pth order method it is usual to write

tn+1 = O(hp+1). (1.23)

for any method of type (1.16) the local truncation error may be expressed as

tn+1 =
∞

∑
i=p+1

hi
ϕi−1(xn,y(xn)) (1.24)

where the ϕi are called error functions. Using (1.20) the Taylor series scheme has error
functions

ϕi =−
y(i+1)

(i+1)!
(1.25)

where the principal error function is ϕp and will be dominant influence on the local
truncation error if h is sufficiently small Dormand (1996).

The general formula for the components of the local truncation error RK processes are

tn+1 =
∞

∑
i=1

hi

 ni

∑
j=1

β
(i)
j −

a(i)j

i!

F(i)
j


tn+1 =

∞

∑
i=1

hi

[
ni

∑
j=1

τ
(i)
i F(i)

j

]
(1.26)

where

τ
(i)
i =

β
(i)
i −a(i)i

i!
, i = 1,2, ...,ni

are called error coefficients.

Below are y error coefficients up to order four for the RK processes,

1st Order:

τ
(1)
1 = ∑

i=1
bi−1 (1.27)
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2nd Order:

τ
(2)
1 = ∑

i=1
bici−

1
2

(1.28)

3rd Order:

τ
(3)
1 =

1
2 ∑

i=1
bic2

i −
1
6
, (1.29)

τ
(3)
2 = ∑

i, j=1
biai jc j−

1
6
. (1.30)

4th Order:

τ
(4)
1 =

1
6 ∑

i=1
bic3

i −
1

24
, (1.31)

τ
(4)
2 = ∑

i, j,k=1
biai jaikck−

1
8
, (1.32)

τ
(4)
3 =

1
2 ∑

i, j=1
biai jc2

j −
1

32
, (1.33)

τ
(4)
4 = ∑

i, j,k
biai ja jkck−

1
24

. (1.34)

1.5 Analysis of Phase-fitted and Amplification-fitted RK Method

We consider the following linear scalar equation:

y′ = iwy. (1.35)

The exact solution of this equation with the initial value y(x0) = y0 satisfies

y(x0 +h) = R(H) y0, (1.36)

where R(H) = exp(H). This means that after a period of time h, the exact solution
experiences a phase advance H = wh and the amplification remains constant. When
applying the RK method (1.8) to (1.35) yield

yn+1 = R(H) y0, (1.37)

where
R(H) = 1+HbT (I−HA)−1e, e = (1, ...,1)T . (1.38)

The numerical solution attain a phase advance arg R(H) and the amplification factor
|R(H)| where R(H) is called the stability function of the method (1.8).
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Denote the real and imaginary part of R(H) by U(H) and V (H) respectively. Then, for
small h we have

U(H) =1−H2(bT Ae)+H4(bT A3e)−H6(bT A5e)+ ... , (1.39)

V (H) =H(bT e)−H3(bT A2e)+H5(bT A4e)−H7(bT A6e)− ... . (1.40)

For small h, arg R(H) = tan−1
(

V (H)
U(H)

)
and |R(H)|=

√
U2(H)+V 2(H).

van der Houwen and Sommeijer (1987) stated, the quantities

P(v) = v−arg R(H), D(v) = 1−|R(H)| (1.41)

which are called the phase-lag (or dispersion) and the error of amplification factor (or
dissipation) of the method, respectively. If

P(H) = O(Hq+1), D(H) = O(H p+1), (1.42)

then the method is called dispersive of order q and dissipative of order p, respectively.
If

P(H) = 0, D(H) = 0, (1.43)

the method is called phase-fitted (or zero-dispersive) and amplification-fitted (or zero-
dissipative), respectively. It is interesting to consider the phase properties of the update
of the scheme (1.1). Suppose that the internal stages have been exact for the linear
equation (1.35), that is, Yi = exp(ciH) y0, then the update gives

R(H) = 1+H
s

∑
i=1

bi(H) exp(ciH). (1.44)

Denote the real and imaginary part of R(H) by U(H) and V (H), respectively. Then, for
small h.

U(H) =1−H
s

∑
i=1

bi(H)sin(ciH), (1.45)

V (H) =H
s

∑
i=1

bi(H)cos(ciH). (1.46)

Theorem 1.2 The method (1.8) is phase-fitted and amplification-fitted if and only if

U(H) = cos(H), V (H) = sin(H) (1.47)

1.6 Modified Runge-Kutta (MRK) Method

An explicit m-stage MRK formula is given by

yn+1 = yn +h
m

∑
i=1

bi f (xn + cih,Yi) (1.48)
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where

Yi = giyn +h
i−1

∑
j=1

ai j f (xn + c jh,Y j). (1.49)

The method is said to be explicit when ai j = 0 for i ≤ j and implicit otherwise. The
method in (1.48) and (1.49) can be reduced into Butcher tableau form

(
see Table 1.2

)
Table 1.2: m-stage modified explicit Runge-Kutta method

0
c2 g2 a21
c3 g3 a31 a32
. . . .
. . . .
. . . .

cm gm am1 am2 ... am,m−1
b1 b2 ... bm−1 bm

1.7 Analysis of Phase-Lag of the MRK Method

To develop the MRK method, we utilize the test equation (1.35) based on van der
Houwen and Sommeijer (1987). Then, we compare the theoretical solution and the
numerical solution for this equation. By requiring that the solutions are in phase with
maximal order in the step-size h, we derive the so-called dispersion relation. Applying
the method (1.48) and (1.49) to the test equation (1.35) we obtain

yn = an
∗y0

with

a∗ = Am(H2)+ iHBm(H2),H = wh (1.50)

The amplification factor is a∗ = a∗(H), and yn denotes the approximation to y(xn). A
comparison of (1.50) with the solution of (1.35) leads to the following definition of the
dispersion or phase error or phase-lag and the amplification error.

Definition 1.6 An explicit m-stage MRK, presented in Table (1.2) where the quantities:

t(H) = H−arg[a∗(H)], a(H) = 1− | a∗(H) | (1.51)

are called the dispersion or phase error or phase-lag and the amplification error re-
spectively. If t(H) = O(Hr+1), and a(H) = O(Hs+1) then the method is said to be
phase-lag of order r and dissipative of order s.
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From the (1.51) it follows that,

a(H) = 1−
√
[A2

m(H2)+H2B2
m(H2)]. (1.52)

Meanwhile, for the modified Runge-Kutta method given in Table 1.2, the following
formula is used for the direct calculation of the phase-lag order r and the phase-lag
constant q

tan(H)−H
[

Bm(H2)

Am(H2)

]
= qHr+1 +O(Hs+3). (1.53)

The analysis of phase-fitted (dispersion of order infinity) and amplification-fitted (dis-
sipation of order infinity) are based on dispersion and dissipation quantities that have
discussed above. The modified RK method is phase-fitted and amplification-fitted if
the following conditions hold:

t(H) = 0 and a(H) = 0.

1.8 Absolute Stability Analysis for MRK

Consider the test problem of differential equation (1.35) and applying to MRK (1.48)
and (1.49) form, then we have

Yi = giyn + ĥ
s

∑
j=1

ai jY j (1.54)

yn+1 = yn + ĥ
s

∑
i=1

biYi (1.55)

Y = [Y1,Y2, ....,Ys]
T ,g = [g1,g2, ...,gs]

T

Substitute in (1.55) gives

yn+1 = yn + ĥ [b1Y1 +b2Y2 + ...+bsYs]

or

yn+1 = yn + ĥ [ b1 b2 ... bs]


Y1
Y2
.
.
.

Ys


Substitute in (1.54) then

Y1 = g1yn + ĥ[a11Y1 +a12Y2 + ...+a1sYs]

Y2 = g2yn + ĥ[a21Y1 +a22Y2 + ...+a2sYs]

10
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.

.

.

Ys = gsyn + ĥ[as1Y1 +as2Y2 + ...+assYs]
Y1
Y2
.
.
.

Ys

= yn


g1
g2
.
.
.

gs

+ ĥ


a11 ... a1s
. ... .
. ... .
. ... .

as1 ... ass




Y1
Y2
.
.
.

Ys


Y = ynG+ ĥAY, (1.56)

Y = [Y1,Y2, ...,Ys], G = [g1,g2, ...,gs],

yn+1 = yn + ĥBY, (1.57)

where
B = [b1b2...bs].

From (1.56)
Y − ĥAY = ynG,(
I− ĥA

)
Y = ynG,

Y =
(

1− ĥA
)−1

ynG. (1.58)

Substitute (1.58) in (1.57), we have

yn+1 = yn + ĥB
(

I− ĥA
)−1

YnG,

Yn+1 =

[
1+ ĥB

(
1− ĥA

)−1
G
]

Yn. (1.59)
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1.9 Trigonometrically-fitting Explicit MRK Method

A generalized explicit modified Runge-Kutta MRK method formula is given in (1.48)
and (1.49) led us to the following theorem:

Theorem 1.3 (see Liu et al. (2013))
Method (1.49) is of exponential order p if the following condition is satisfied:

cos(v)+ isin(v) = 1+
s

∑
k=1

(iv)kbAk−1e , (1.60)

where v = wih for i = 0,1, ..., p.

Definition 1.7 A Runge-Kutta method that integrates exactly the function eiwx and
e−iwx or equivalently sin(wx) and cos(wx) with w > 0 the principal frequency of the
problem when applied to the test equation y′= iwy is said to be trigonometrically-fitted.

Let yn = eiwxn be the solution that integrate the ordinary differential equation

y′(x) = f (x,y), y(x0) = y0,

y′(x0) = y′0, x ∈ [a,b] (1.61)

Computing the value of yn+1, y′n and substitution in (1.49) we have:

ev = 1+ iv
m

∑
i=1

bigi− v2
m

∑
i=1

bi

i−1

∑
j=1

ai j(Y je−iwxn). (1.62)

where v = wh . Using the formula :

ev = cos(v)+ isin(v) (1.63)

and by comparing the real and imaginary part we have:

cos(v) =1− v2
m

∑
i=1

bi

i−1

∑
j=1

ai j(Y je−iwxn),

sin(v) =v
m

∑
i=1

bigi . (1.64)

1.10 Embedded Runge-Kutta Methods

An explicit m-stage Runge-Kutta formula is given by

yn+1 = yn +h
m

∑
i=1

bi f (xn + cih,Yi) (1.65)

12
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where

Yi = yn +h
i−1

∑
j=1

ai j f (xn + cih,Y j), i = 1, ...,m. (1.66)

with the associated Butcher tableau (see Table (1.1)), or in matrix form

c A
b

where A is matrix (ai, j)m×m, c = (c1,c2, ...,cm)
T , b = (b1,b2, ...,bm). In RK method

the embedded pair q(p) is based on the RK method (c,A,b) of order q and another RK
method (c,A,b∗) of order p < q. An embedded pair is characterized by Butcher tableau

c A
b
b∗

An embedded pair of explicit Runge-Kutta method is used in variable step-size algo-
rithm because its provide a cheap error estimation. From embedded method we obtain
an estimate

ESTn+1 =‖ yn+1− y∗n+1 ‖ . (1.67)

For the numerical integration of the equation (??) we used step-size control procedure
by Raptis and Cash (1985):

• if ESTn+1 <
Tol
100 , hn+1 = 2hn,

• if Tol
100 ≤ ESTn+1 < Tol, hn+1 = hn,

• if ESTn+1 ≥ Tol, hn+1 =
hn
2 and repeat the step,

where Tol is the requested local error. It should be noted that the q th-order approxi-
mation yn is used as the initial value for the (n+1) th step, that mean the embedded pair
is applied in local extrapolation mode or higher order mode.
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1.11 Problem Statement

Initial value problem (IVP) of third-order ODEs of the form y′′′ = f (x,y,y′) where
the second derivative do not appear explicitly and the general third-order ODEs y′′′ =
f (x,y,y′,y′′) often arise in many fields of applied sciences such as electromagnetic
wave, thin film flow and gravity driven flow. The aim of this research is to develop
algebraic order conditions for Runge-Kutta type methods to directly solve third-order
ODEs y′′′ = f (x,y,y′) and y′′′ = f (x,y,y′,y′′) and then derive a Runge-Kutta method
based on the order conditions developed.

1.12 Scope of Study

First of all, the main purpose of this research is to construct Runge-Kutta type methods
for directly solving third-order ODEs of the form y′′′ = f (x,y,y′) and general third-
order ODEs of the form y′′′ = f (x,y,y′,y′′). Then, the secondary aim for this research
is to solve first-order ordinary differential equations (1.5) in which the solutions exhibit
a pronounced oscillatory character and we are focusing on solving problem (1.5) by
using explicit Runge-Kutta and modified Runge-Kutta methods for oscillatory prob-
lems with phase-fitted, amplification-fitted and trigonometrically-fitted techniques for
constant and variable step size mode.

1.13 Objectives of the Study

This study concerns on the derivation of new and efficient codes that are based on the
explicit RK method for solving systems of third-order ODE directly for both constant
and variable step size and to develop an improved numerical methods based on RK
method that can accurately and efficiently integrate first-order IVPs whose the solution
is oscillatory in nature. Specifically, we suggest the following:

• To develop algebraic order conditions and to derive Runge-Kutta type methods
for directly solving third-order ordinary differential equations y′′′ = f (x,y,y′).

• To construct embedded explicit Runge-Kutta type methods for directly solving
third-order ordinary differential equations y′′′ = f (x,y,y′).

• To develop algebraic order conditions and to derive Runge-Kutta type meth-
ods for directly solving general third-order ordinary differential equations y′′′ =
f (x,y,y′,y′′).

• To derive phase-fitted and amplification-fitted explicit Runge-Kutta and modified
Runge-Kutta (MRK) method for solving oscillatory first order ordinary differen-
tial equations.

• To construct embedded high order phase-fitted MRK method for solving oscilla-
tory first order ordinary differential equations.
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• To derive trigonometrically-fitted explicit Runge-Kutta and modified Runge-
Kutta methods for solving oscillatory first-order ordinary differential equations.

• To construct embedded high order trigonometrically-fitted RK method for solv-
ing oscillatory first-order ordinary differential equations.

1.14 Outline of Thesis

In Chapter 1, a concise introduction on ordinary differential equations and development
of the numerical methods, basic theory on algebraic order of RK method, dispersion
order, dissipation order and local truncation error (LTE) for RK are discussed.

In Chapter 2, we are dealing with the review of the numerical methods for solving
third-order and general third-order ODEs. Fallowed by with the review of the earlier
works on numerical methods for solving first-order ODEs.

In Chapter 3, we derive two-stage third-order, three-stage fourth-order and four-stage
fifth-order with algebraic order up to order six for solving directly third-order ODEs.
The development of the new RK type method and the construction of order conditions
for solving third-order ODEs of the form y′′′ = f (x,y,y′) are discussed. The numerical
outcomes of the new methods for solving directly third-order ODEs with form
y′′′ = f (x,y,y′) have been compared with methods that reduced the third-order ODEs
to the system of first-order ODEs.

In Chapter 4, we construct the embedded pairs for RKTG methods for variable
step-size where the higher order of the methods are based on the methods derived in
Chapter 3. The methods have been compared with embedded existing RK methods for
solving third-order ODEs.

In Chapter 5, the development of derive three-stage third-order and four-stage fourth-
order and we discussed the strategies for obtained the new methods. The results have
been compared with existing methods for directly solving general third-order ODEs of
the form y′′′ = f (x,y,y′,y′′).

In Chapter 6, we debated the phase-fitted and amplification-fitted for explicit RK and
MRK methods. We also discuss the embedded pair of phase-fitted MRK. The choice
of free parameters in getting the optimized pair are also discussed. The numerical
results have been obtained and compared with existing methods.
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In Chapter 7, we discussed the trigonometrically-fitted RK and MRK. Moreover, we
discuss the embedded pair for explicit RK. The numerical outcomes compared with
existing methods for solving oscillatory problems.

Lastly, the summary of the entire thesis, conclusions and future studies are given in
Chapter 8.
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