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Many biological systems are often subjected to random environmental influences that
cannot be understood from the deterministic theoretical approach. Theoretical descrip-
tion of these systems can only be correctly understood from the probabilistic (stochas-
tic) view point, even though the source of randomness may vary depending on the na-
ture of the process and its physical origin. For instance, random processes that evolve
with a system intrinsically are best modeled by master equation which is in the form
of nonlinear integro-partial differential equation with discrete jump moments at short
times. However, for systems subject to external random effects, and for which the jump
moments in the transition probability approaches zero, the master equation description
approaches the so-called Fokker Planck equation with continuous state space. Tumor
growth system subject to random microenvironmental factors effect within the tumor
site is the main focus of this thesis. We have considered one-dimensional tumor model
in the form of Langevin equation subject to influence from the surrounding tumor mi-
croenvironmental factors effect. The tumor microenvironmental factors are the random
biological processes existing within the immediate neighborhood of the tumor cells,
and whose effects influence tumor growth greatly by either promoting growth, inhibit-
ing growth or sometimes neutral to malignancy. Moreover, the tumor model consist
of the logistic model as the deterministic evolution equation for tumor growth, and
the stochastic component consisting of additive and multiplicative noise terms respec-
tively. The additive noise term represent the surrounding tumor microenvironmental
factors effect which are external to the tumor, while the multiplicative noise term rep-
resent tumor response to the surrounding microenvironmental factors effect, and which
effects are proportional to the state of tumor growth. In addition, the two noise terms
are correlated having originated from the same source.

The tumor model is firstly considered to be driven by correlated additive and multi-



plicative white noises respectively, where the additive noise term represent the non-
immunogenic microenvironmental factors effects within the tumor site. The under-
lying transition probability for the tumor model satisfies the Fokker Planck equation,
and of which the steady state distribution corresponding to the long-term limit solu-
tion for the tumor growth system is obtained. The study revealed that the surrounding
non-immunogenic tumor microenvironmental factors have a diffusive effect on tumor
growth as indicated by the tumor response parameter. The tumor model is further con-
sidered to be driven by correlated noises with non-zero correlation time (colored noise
case), of which consequence yield a non-Markovian tumor model. Consequently, the
underlying transition probability for the tumor model does not obey the Markovian
Fokker Planck equation, and using the Novikov theorem, Fox approach and the Ansatz
of Hanggi, an approximate Fokker Planck equation in the steady state regime is ob-
tained. Further, the steady state properties for the tumor growth system is explored
using numerical simulations, where it is observed that the strength of the correlation
time has a strong influence on the growth effects exerted by the non-immunogenic
component of tumor microenvironment on tumor growth. Finally, the deterministic
component of the tumor model is extended to include the tumor-immune interaction
potential. This allows us to study the tumor response to the dual effects of immuno-
genic and non-immunogenic tumor microenvironmental factors within the tumor site.
It is observed that in the presence of adequate immune response, the growth effects
exerted by the non-immunogenic tumor microenvironmental factors are opposed, and
instead the tumor growth is reduced towards extinction.

The research in this thesis is not directly focused on the biological aspect of tumor
growth, but rather on the theoretical study of complex properties and behaviors likely
exhibited by tumors in response to the surrounding tumor microenvironmental factors
effects, which has great influence on tumor evolution and progression. This type of
research is particularly important towards understanding the tumor growth process at
micro-level for the design of an effective treatment strategy for tumor diagnosis, and
for necessary medical precautions.
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Kebanyakkan sistem biologi tertakluk kepada pengaruh persekitaran rawak yang gagal
difahami melalui pendekatan teori berketentuan. Huraian secara teori bagi sistem ini
hanya dapat difahami dengan betul melalui jurus pandang kebarangkalian (stokastik)
walaupun punca kerawakan mungkin berubah bergantung kepada proses semula jadi
dan keasalan fizikal. Sebagai contoh, proses rawak yang berubah ansur dengan sis-
tem secara intrisik adalah baik dimodelkan dengan persamaan induk dalam bentuk per-
samaan pembezaan kamilan-separa tak linear dengan lompatan momen diskret pada
masa singkat. Untuk sistem yang terkesan secara rawak luaran, dan untuk lompatan
momen dalam peralihan kebarangkalian yang menumpu ke sifar, penghuraian per-
samaan induk akan mirip kepada pendekatan persamaan yang dipanggil persamaan
Fokker Planck dengan ruang keadaan selanjar. Sistem pertumbuhan tumor tertakluk
kepada kesan rawak faktor persekitaran secara mikro dalam tumor adalah menjadi
fokus kajian tesis ini. Kajian memberi tumpuan kepada model tumor satu dimensi
dalam bentuk persamaan Langevin tertakluk kepada pengaruh kesan faktor persekitaran
tumor secara mikro. Faktor persekitaran tumor secara mikro adalah proses rawak bi-
ologi yang wujud bersama kejiranan terdekat bagi sel tumor, dan kesannya yang mem-
pegaruhi secara kuat pertumbuhan tumor sama ada secara pengalakan, perencat atau
kadang kala kemaglinan secara neutral. Tambahan, model ini mengandungi persamaan
pertumbuhan logistik secara persamaan evolusi berketentuan bagi pertumbuhan tumor,
dan komponen stokastik yang mengandungi tempoh hingar masing-masing secara pe-
nambahaan dan pendaraban. Tempoh hingar tertambah mewakili kesan faktor keadaan
sekeliling di persekitaran tumor secara mikro yang dianggap luaran terhadap tumor.
Tempoh hingar secara pendaraban mewakili tindak balas tumor kepada kesan faktor
keadaan sekeliling persekitaran secara mikro, dan memberi kesan secara kadaran ter-
hadap tahap pertumbuhan tumor. Tambahan, kedua-dua tempoh hingar adalah berkore-
lasi oleh kerana terbit dari unsur yang sama.
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Model tumor mula diberi perhatian hasil dorongan hingar putih Gaussian berkol-
erasi positif penambahan dan pendaraban, dengan tempoh hingar penambahan positif
mewakili kesan faktor persekitaran secara mikro tak immunogenik dalam tumor. Ke-
barangkalian transisi pendasar untuk model tumor mematuhi persamaan Fokker Planck,
dan dengan taburan keadaan mantap mewakili penyelesaian had jangka panjang bagi
sistem pertumbuhan tumor dapat dihasilkan. Dapatan kajian menunjukkan faktor seke-
liling persekitaran secara mikro tak immunogenik memiliki kesan resapan terhadap
pertumbuhan tumor seperti ditunjukkan oleh parameter respons tumor. Model tumor
seterusnya dianggap terdorong oleh hingar berkorelasi dengan korelasi masa bukan
sifar (kes berwarna) yang mengakibat terhasilnya model tumor tak Markovan. Ak-
ibatnya, model tumor ini tidak mematuhi persamaan Markovan Fokker Planck, dan
mengunakan teori Novikov, pendekatan Fox dan Ansatz Hanggi, penghampiran per-
samaan Fokker Planck dalam regim keadaan mantap terhasil. Seterusnya, sifat keadaan
mantap bagi sistem pertumbuhan tumor diteroka menerusi simulasi berangka, dimana
didapati kekuatan korelasi masa mempengaruhi secara kuat keatas kesan pertumbuhan
yang dipengaruhi oleh komponen tak immunogenik persekitaran secara mikro keatas
tumor. Akhirnya, komponen berketentuan bagi model tumor dikembangkan untuk
merangkumi potensi interaksi imun-tumor. Ini membolehkan kajian terhadap tindak
balas tumor keatas faktor kesan dual bagi immunogenik dan tak immunogenik dalam
tumor dilakukan. Ia dapat diperhatikan dengan kehadiran respons imun yang cukup,
kesan pertumbuhan yang disebabkan oleh faktor persekitaran mikro tak immunogenik
dalam tumor yang terhalang, dan sebaliknya pertumbuhan tumor dikurangkan sehingga
terhapus. Penyelidikan dalam tesis ini tidak fokus secara terus pada aspek biologi per-

tumbuhan tumor, tetapi menjurus kepada pengajian secara teori kekomplekan ciri-ciri
dan perilaku yang terjana oleh tumor yang terkesan dari persekitaran secara mikro, dan
yang memberi pengaruh besar kepada evolusi dan progressi tumor. Penyelidikan sebe-
gini adalah amat penting dalam memahami proses pertumbuhan tumor pada peringkat
mikro bagi membentuk strategi pemulihan yang berkesan dalam mendiagnosis tumor,
dan keperluan amaran awal dalam perubatan.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Tumor growth and cancer pandemic in both developed and developing countries have
become a great deal of concern in the recent decades. A global surveys conducted in
20 world regions (Figure 1.1) indicated an estimate of about 7.6 million cancer related
death in 2008, and about 8.2 million death in 2012, Ferlay et al. (2010, 2015). Over the

20

1 Eastern Africa 11 South-Eastern Asia @i
2 Middle Africa 12 South-Central Asia

3 Northern Africa 13 Western Asia

4 Southern Africa 14 Central and Eastern Europe

5 Western Africa 15 Northem Europe

6 Caribbean 16 Southern Europe

7 Central America 17 Western Europe

8 South America 18 Australia/New 2ealand

9 Northern America 19 Melanesia

10 Eastem Asia 20 Micronesia,/Polynesia

10a Japan
10b Other E. Asia (China, Korea andMongolia)

Figure 1.1: Global map showing 20 world regions where the survey study for can-
cer related death were conducted, (Source Ferlay et al. (2010)).

years, various models have been developed and papers were published in which each
systematically contributes towards better understanding of the evolutionary dynamics
of tumor growth, Kuznetsov et al. (1994); Boondirek et al. (2006); Roose et al.
(2007); Durrett et al. (2011). Moreover, the study of tumor growth have attracted the
attention of researchers from across many disciplines such as in clinical, experimental,
mathematical biology and mathematical biophysics, Kirschner and Panetta (1998);
de Pillis et al. (2006); Bose and Trimper (2009); Sahoo et al. (2010); Yang et al.
(2014b); Gutiérrez-Sanchez et al. (2014); Guo et al. (2016). Tumor growth from the
microscopic point of view is an open biological process in which the growth pattern



exhibited is non-linear, and interaction between the tumor cells and the surrounding tu-
mor microenvironmental factors induce random effect on the tumor growth system that
cannot be understood from the clinical, experimental and deterministic mathematical
investigations. It is therefore absolutely indispensable in the theoretical study of tumor
growth system to consider impacts from the surrounding tumor microenvironmental
factors, and of which stochastic methods provide a powerful tool for theoretical study.

The study of random (stochastic) systems have been of interest since the semi-
nal presentation of Einstein (1905). Prior to the Einsteins theory on Brownian motion,
many complex systems were studied deterministically which gave a unique solution
neglecting influence from the random perturbations of nature. In addition, the complex
biological, physical and chemical systems were then studied deterministically which
in turn result to insufficient understanding of the systems under study. In most cases,
biological systems are subject to internal and external random environmental influences
that can only be correctly understood from the probabilistic view point, Ai et al. (2003);
Bao-Quan et al. (2003); Zhang and Ai (2010); Liu and Ning (2016); Idris and Bakar
(2016). Theoretical description of these systems inevitably involves the notion of
randomness and uncertainty, thereby establishing a link between deterministic theory
and stochastic process. Even though, the source of randomness may vary depending
on the nature of the process and its physical origin. It is therefore imperative at this
juncture to make a distinction between the internal and external fluctuations before
proceeding further. Internal fluctuations are self originating, it evolves with the system
intrinsically with no external parameter measuring its effect on the system. Further,
internal fluctuations are best modeled or described by the master equation
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at (1.1

—[o(x+1,x1) + o(x—1,x;7)]p (x,7),

where p(x,t) is the probability of the system being at position x at time 7, and
o(x,x £ 1;¢) is the transition probability of moving from state x + 1 to state x at time
t, the condition of detailed balance is satisfied in Eq. (1.1). However for long-time
macroscopic systems, internal fluctuations usually scale with the system size and of-
ten vanish in the thermodynamic limit. In the limit, the master equation description
reduces to deterministic model equation generating the system, Sancho and Miguel
(1984); Horsthemke (1984)

X ) (1.2)
where Eq. (1.2) represent an arbitrary deterministic model equation describing an
evolution of some system, x and ¢ are the system and time variables respectively,
while u is some parameter. On the other hand, external noise which is the central
focus of this thesis is not self originating, its effect on system lies on the existence of
an external body of statistical fluctuations that induce stochastic effect on either the
system variable(s) and or parameter(s), depending on the type of noise and its physical
origin. Theoretical study of random systems subject to external noise effect involves
incorporating a stochastic term to the deterministic model equation generating the
system [such as Eq. (1.2)], and which consequence yields the non-trivial stochastic



differential equation.

Theoretical study of tumor growth is such a heuristic approach where some
mathematical equations that closely captures the general features of tumor growth, and
as well their ability to fit experimental data are considered as deterministic models. The
most popularly used deterministic models for microbial cell growth, and particularly
tumor cell growth in literature are the logistic and Gompertz equations, MaruSic et al.
(1994); Forys and Marciniak Czochra (2003). An experimental data obtained from
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Figure 1.2: Logistic growth equation with carrying capacity £ = 10.

tumor cell cultivation in vitro were shown to fit the logistic growth equation, Bose and
Trimper (2009), with characteristic of exponential growth at the initial stage of growth,
and eventually approaching a maximum size on the long-run known as the carrying
capacity (Figure 1.2). The logistic growth equation is given by

X
@) =a(l- ) (1.3)
where x = x(¢) is the population of tumor cells at time ¢, a is the positive growth
constant (a > 0) and k = (a/b) is the carrying capacity, and b > 0 is the decay constant.
In other word, k is the growth limit allowed for the state variable x.

In literature, tumor models are formulated in terms of differential equation that
link the rate of growth of the tumor to its instantaneous state of growth. The evolution
and progression of tumor from the microscopic point of view is a random biological
process which is due to stochastic effects from the surrounding microenvironmental
factors, and which understanding requires the knowledge of probability distribution
and indeed a stochastic approach. The power of stochastic methods have over
the years proven proficiency especially in the study of properties and behaviors of
random systems, Quan et al. (2003); Zhong et al. (2005); Boondirek et al. (2006); Lo
(2009); Li and Li (2010a); Wang et al. (2011). In addition, the term random refers



to the fluctuations that engulfs the state of a dynamical system and which requires a
probabilistic theoretical framework for its description and analysis.

1.2 Motivation

There is a growing concern over the compelling evidence that tumors are resisting ther-
apy thereby given rise to complications with regards to tumor diagnosis, Albini and
Sporn (2007); Balkwill et al. (2012); Gao et al. (2014). The recent complications in
tumor growth as evident from many clinical research findings necessitated the need for
further research especially on tumor response to the surrounding tumor microenviron-
mental factors effect from the theoretical view point, and which proper understanding
will help towards developing an effective treatment strategy for tumor diagnosis.

1.3 Problem Statement

The main problem this thesis intends to investigate is the tumor response to the ran-
dom influence of internal tumor microenvironmental factors effect within the tumor
site using applied stochastic method. Tumor microenvironment is an integral part of tu-
morigenesis, it has a strong influence on tumor initiation, progression and as well as in
therapeutic control, Cheng and Weiner (2003); Whiteside (2008); Résédnen and Vaheri
(2010). An extensive review of literatures on tumor microenvironment and its role on
tumor growth were reported in Abbott et al. (2008); Lorusso and Riiegg (2008); Witz
(2009); Hanna et al. (2009); Strell et al. (2012), and references therein. In other words,
tumor microenvironment is a complex body of interacting microscopic biological de-
grees of freedom that varies and interact with tumor cells constantly and independently,
each with a specific biological function. Such biological degrees of freedom include
among others the signal transduction in cellular activity, nutrients, fibroblast cells, ex-
tracellular matrix proteins and immune cells. Figure 1.3 shows a schematic diagram of
some components of tumor microenvironment. In addition, tumor microenvironment is
divided into two components of factors:

1. Immunogenic tumor microenvironmental factors

2. Non-immunogenic tumor microenvironmental factors

Indeed, careful study of literatures on tumor microenvironment, especially its influence
on tumor growth shows that application of stochastic method in the study of tumor
response to the surrounding tumor microenvironmental factors effect has not been ex-
actly reported to our knowledge. Meanwhile, application of stochastic methods in the
study of random systems especially biological and physical systems have been quit
successful. It is with this view that we intend to expand the scope of research in tumor
microenvironment from clinical and experimental approach to include stochastic theo-
retical approach. This is with the hope that applied stochastic method in the study of
tumor response to the surrounding tumor microenvironmental factors effect within the



O Toel \%1

Figure 1.3: Schematic Diagram showing components of tumor microenvironment,
(Source Hanna et al. (2009)).

tumor site will give some additional insight into the complex dynamical properties and
behaviors likely exhibited by tumor growth.

1.4 Objectives

The main aim of this thesis is to study the steady state properties for the effect of tumor
microenvironmental factors on tumor growth system using stochastic method with the
following objectives:

1. To derive the steady state distributions and analyze the steady state properties
for the tumor response to non-immunogenic microenvironmental factors effect
modeled by correlated additive and multiplicative white noises (zero correlation
time).

2. To derive the steady state distributions and analyze the steady state properties
for the tumor response to non-immunogenic microenvironmental factors effect
modeled by correlated additive and multiplicative colored noises (non-zero cor-
relation time).

3. To derive the steady state distribution and analyze the steady state properties for
the effect of non-immunogenic microenvironmental factors effect in the presence
of immune response.

4. To verify the theoretical results obtained by numerical computer simulations.



1.5 Limitation

This thesis is limited to the biophysical properties likely exhibited by tumor growth
in response to its surrounding random tumor microenvironmental factors effect mod-
eled as stochastic process, and based on some specified assumptions. The biochemical
component of the tumor is not within the interest of this research.

1.6 Thesis Organization

The subsequent chapters of this thesis are organized as follows:

Chapter 2 - Consist of historical background of the study area as contained in the
works of some prominent scientist, and other related works with particular emphasis
on systems where similar methodological approach were applied.

Chapter 3 - Consist of the basic mathematical background and concept in the
field of applied stochastic process needed to analyze a stochastic model. This chapter
provides an introduction to stochastic process (random function), the Brownian motion
or otherwise Wiener process as a mathematical idealization and other important
concepts. The general methodological framework for the analysis of stochastic
differential equation expressed in terms of Langevin equation and the corresponding
Fokker-Planck equation are highlighted. Moreover, Langevin equation driven by
Ornstein-Uhlenbeck noise (colored noise) with associated correlation time cannot
be described by the Fokker-Planck equation with Markovian assumption, for such
situation an Approximate Fokker Planck equation is also discussed in the chapter.

Chapter 4 - This chapter investigates the steady state properties for the effect of
non-immunogenic microenvironmental factors within the tumor site. The tumor model
is formulated in the form of Langevin stochastic equation driven by correlated additive
and multiplicative noises with zero correlation time (white noise limits).

Chapter 5 - This chapter considers the case of non-zero correlation times (Ornstein-
Uhlenbeck noise) for the tumor model in chapter 4. In addition, the self-correlation
times for the additive and multiplicative noises respectively and the cross-correlation
time between noises are non-zero (colored noise).

Chapter 6 - This chapter considers the tumor model in chapter 5 in the pres-
ence of immune response.

Chapter 7 - The main contribution of this thesis to the complex dynamical
properties of tumor growth system are summarized in this chapter. Suggestions for
further research are also highlighted. This chapter is followed by bibliography, list of
publications and biodata of the author to this thesis.
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