EXTRACTION OF ESSENTIAL OILS FROM ZINGIBERACEACE FAMILI
USING MICROWVE TECHNIQUES

By
NOR AZILA BINTI ABD AZIZ

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in
Fulfillment of the Requirements for the Degree of Doctor of Philosophy

February 2017
The essential oil from Zingiberaceae family has many potential, especially in medicine, cosmetic and food industries. Therefore, the requirement to get the highest yield as well as good quality of essential oil gives the motivation of this research. Nowadays, the conventional extraction, especially in the commercial factory uses a lot of energy, high cost and a lot of extraction times. To overcome these disadvantages, microwave extraction technique (MET) which known as the best alternative extraction methods in terms of the producing of essential oil at shorter time was used at various extractions process parameters. Besides that, the undertaken in this thesis includes the performance of heating process in terms of the absorption power and the electric field strength. The main goal of this research is to study the various factors using microwave-assisted extraction that influences the production of essential oil in terms of the total yield and the total percentages of the oxygenated compound from Zingiberaceae Family’s essential oil (Java turmeric, Mango ginger, Black turmeric and Turmeric). Laboratory studies were carried out at different factors such as the different power of heating source using microwave-assisted extraction, the amount of water added into the fresh and frozen samples, the soaking time of the sample, and the dry sample with different drying methods. Basically, the sample with solvent (distilled water) was put in the container with a hole on top of the cover and the container will placed inside the Microwave Extraction Laboratory System (MELs) which is the laboratory microwave oven. The distillation unit was connected with the container and the extraction process parameter was controlled by using the terminal controller-personal computer where the EasyWave 3.5 software program was installed. The yield of essential oil was collected and stored until used. For Java turmeric, the unique parameter that gives higher yields (6.37 %) is at the combination of dried sample mixture using an open air drying method, 200 ml of water and 600 W of microwave power heating. For Mango ginger, the unique parameter that gives higher yields (1.22 %) is at the combination of dried sample mixture using the electric oven drying method, 200 ml of water and 600 W of microwave power heating. For Black turmeric, it produces higher yields (1.26 %) with the combination of these unique parameter; dried sample mixture using a microwave oven drying method, 200 ml of water and 600 W of microwave power heating. For Turmeric, the highest yields (2.25
% were obtained with the combination of these unique parameter; dried sample mixture using an open air drying method, 200 ml of water and 600 W of microwave power heating. This indicates that every sample has its own parameter to produce the highest yield of essential oil and among those samples, the dried sample was found to be a unique parameter that produce high yield. This happens due to the cell wall of the sample’s structures that already destroy and allow the extraction of essential oil easily. The second goal is to analyze chemical compounds, especially the percentage of oxygenated compound. This analysis was using gas chromatography–mass spectrometry (GC-MS) and found that at every experimental order, it reveals the same compound but different abundance. This happens due to the heating conditions as some compounds were very sensitive. Following the optimum parameter that give higher yield of essential oils, the total percentages of oxygenated compound that used to identify the quality of essential oils is at 64.16%, 73.24%, 64.54% and 77.20% for Java turmeric, Mango ginger, Black turmeric and Turmeric. That means, among all the sample, the essential oil from Turmeric was estimated to be the best oil compared to others. Every experimental order successfully extracted the compounds known to have many advantages such as antimicrobial, analgesic, and antifungal like cedr-8-ene, ar-curcumene, camphor, caryophyllene oxide, α-curcumene, eucalyptol, ar-turmerone, curlone and turmerone. The third goal was comparing the performance of the extraction microwave method (solvent free microwave extraction, SFME and microwave-assisted extraction, MAE) and conventional method (Hydro-distillation, HD) in terms of the yield and the percentages of oxygenated compound. The extraction was done in one combination of extraction process parameter. Microwave-assisted extraction method was determined to give the best result in terms of the total yield as water assist in the extraction process. However, the hydro-distillation was found to produce high percentage of oxygenated compound. These indicate that different techniques of extraction play an important role in the production of essential oil. From the research, microwave-assisted extraction was revealed as a best extraction method in terms of the producing the total yield of essential oil and as many factors influencing the production of essential oil, the result of the combination of extraction process parameter can be used for further research. The extraction process parameter does not affect the compound in the essential oil, but affect the total abundance. This happens due to the compound that very fragile and vanishes at certain condition.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Doktor Falsafah

PENGEKSTRAKAN MINYAK PATI DARI KELUARGA ZINGIBERACEACE MENGGUNAKAN TEKNIK MICROGELOMBANG

Oleh

NOR AZILA BINTI ABD AZIZ

Februari 2017

Pengerusi : Prof. Madya Jumiah Hassan, PhD
Fakulti : Sains

Minyak pati dari Keluarga Zingiberaceace mempunyai banyak potensi, terutamanya dalam industri perubatan, cosmetic dan makanan. Oleh itu, keperluan untuk mendapatkan hasil minyak yang banyak dan berkualiti telah memberi motivasi untuk membuat kajian ini. Pada masa ini, penggunaan pengekstrakan konvensional masih lagi digunakan terutamanya kilang komersial. Ia menggunakan banyak tenaga, kos dan masa pengekstrakan. Untuk mengatasi kelemahan pengekstrakan konvensional, teknik pengekstrakan gelombang mikro (MET) yang dikenali sebagai kaedah pengekstrakan alternative terbaik dari segi penghasilan minyak pada masa yang singkat telah digunakan dalam kajian ini menggunakan pengekstrakan gelombang mikro dengan pelarut (MAE) dengan pelbagai faktor proses pengekstrakan. Selain itu, penyelidikan yang dijalankan didalam tesis ini termasuklah prestasi proses pemanasan dari segi kuasa penyerapan dan kekuatan medan elektrik. Matlamat utama kajian ini adalah untuk mengkaji faktor yang mempengaruhi minyak pati dari Keluarga Zingiberaceace (Temulawak, Temu mangga, Temu hitam dan Kunyit). Kajian makmal telah dijalankan pada factor yang dibentuk oleh kuasa penyinaran, jumlah air yang ditambah, masa rendaman, dan sampel yang digunakan. Hasil yang diperoleh untuk Temulawak paling tinggi (6.37%) dengan pelarut (air suling) dan kuasa 200 W. Temu mangga memberikan hasil yang lebih tinggi (1.22%) dengan pelarut (air suling) dan kuasa 200 W. Temu hitam pula mengeluarkan hasil yang lebih tinggi (1.26%) dengan pelarut (air suling) dan kuasa 200 W.
dikeringkan menggunakan ketuhar gelombang mikro kaedah pengeringan oven, 200 ml air dan 600 W pemanasan kuasa gelombang mikro. Kadar penghasilan minyak yang tertinggi bagi Kunyit (2.25%) diperoleh dengan kombinasi campuran sampel dikeringkan menggunakan kaedah pengeringan udara terbuka, 200 ml air dan 600 W pemanasan kuasa gelombang mikro. Ini menunjukkan bahawa setiap sampel mempunyai parameter sendiri untuk menghasilkan minyak pati yang banyak dan sampel yang dikerikan didapati menghasilkan hasil yang tinggi. Ini berlaku kerana dinding sel struktur sampe itelah memusnahkan dan ini membolehkan pengekstrakan minyak pati dengan mudah. Matlamat kedua adalah untuk menganalisis komposisi minyak terutamanya peratusan sebatian oksigen. Analisis ini menggunakan kromatografi gas spektrometri -mass (GC-MS) dan diperhatikan bahawasanya setiap experiment mempunyai kompaun sama namun berbeza jumlahnya. Ini berlaku disebabkan oleh keadaan pemanasan dimana beberapa kompaun adalah sangat sensitif. Mengikut optimum parameter yang memberikan hasil minyak pati yang tinggi, jumlah peratusan sebatian oksigen yang digunakan untuk mengenal pasti kualiti minyak pati adalah pada 64.16%, 73.24%, 64.54% dan 77.20% untuk Temu lawak, Temu mangga, Temu hitam dan Kunyit. Setiap eksperimen telah Berjaya mengekstrak sebatian yang diketahui mempunyai banyak kelebihan seperti antimikrob, analgesic dan anti-kulat seperti cedr-8-ene, ar-curcumene, camphor, caryophyllene oksida, α-curcumene, eucalyptol, ar-turmerone, curretonedan turmerone. Matlamat ketigadalah membandingkan prestasi kaedah pengekstrakan gelombang mikro (pengekstrakan gelombang mikro tanpa pelarut, SFME dan pengekstrakan gelombang mikro dengan pelarut, MAE) dan kaedah konvensional (penyulingan air, HD) dari segi hasil dan peratusan sebatian oksigen. Pengekstrakan dilakukan dengan satu kombinasi proses pengekstrakan parameter. Pengekstrakan gelombang mikro dengan pelarut telah menghasilkan minyak yang banyak.Walau bagaimanapun, penyulingan air menghasilkan peratusan sebatian oksigen yang tertinggi. Ini menunjukkan bahawa teknik pengekstrakan memainkan peranan yang penting dalam pengeluaran minyak pati. Dari penelitian pengekstrakan gelombang mikro dengan pelarut adalah kaedah pengekstrakan terbaik dari segi menghasilkan jumlah hasil minyak dan disebabkan banyak factor mempengaruhi pengeluaran minyak pati, keputusan penelitian yang diperolehi boleh digunakan pada masa hadapan. Parameter proses pengekstrakan tidak menjejaskan sebatian namun iamenjejaskan jumlah peratusan. Ini berlaku disebabkan oleh sebatian yang sangat rapuh dan hilang pada keadaan tertentu.
ACKNOWLEDGEMENTS

First of all, thanks to Allah who gave me the strength and patience to finish this study until the end. I wish to express my deep gratitude to my supervisor and also the chair of the supervisory committee, Assoc. Prof. Dr. Jumiah Binti Hassan, Department of Physics, Faculty of Science, Universiti Putra Malaysia for her guidance, support, and encouragement throughout the progression of my studies.

Many thanks to my co-supervisor, Prof. Madya Dr. Zulkifly Bin Abbas, Department of Physics, Faculty of Science, Universiti Putra Malaysia for allowing me to access his various experimental equipments and gives me the knowledge, suggestions and support throughout the study.

My deep gratitude goes to my co-supervisor, Dr. Nurul Huda Binti Osman, Department of Physics, Faculty of Science, Universiti Putra Malaysia. Her constructive advice, support and suggestions are valuable for this research.

Many thanks to Encik Roslim, Puan Radziah, Encik Zainal and Encik Zulambiar, staff of Physics Department and Chemistry Department, Universiti Putra Malaysia for their help and support.

I am grateful to my parents, Encik Abd Aziz Bin Yaacob and Puan Siti Ngajah Binti Ngadiman for their prayers and blessings, loves and solid supports from the beginning and throughout my studies.

I wish to thank the Ministry of Education Malaysia (MOE) for MyBrain (PhD) scholarship and Department of Physics and Department of Chemistry, Faculty of Science, Universiti Putra Malaysia for the use of their facilities. May Allah reward them all the best of the rewards in the Hereafter. Amin.
I certify that a Thesis Examination Committee has met on 7 February 2017 to conduct the final examination of Nor Azila binti Abd Aziz on her thesis entitled "Extraction of Essential Oils from Zingiberaceae Famili using Microwave Techniques" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Azmi bin Zakaria, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Abdul Halim bin Shaari, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Zainal Abidin bin Talib, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Mitra Djamal, PhD –Ing.
Professor
Institute of Technology Bandung
Indonesia
(External Examiner)

[Signature]

NOR AINI AB. SHUKOR, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 28 April 2017
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Jumiah Hassan, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Zulkifly Abbas, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

Nurul Huda Osman, PhD
Senior Lecturer
Faculty of Science
Universiti Putra Malaysia
(Member)

ROBIAH BINTI YUNUS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

- This thesis is my original work;
- Quotations, illustrations and citations have been duly referenced;
- This thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- Intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- Written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- There is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ___________________________ Date: _______________________

Name and Matric No.: Nor Azila Binti Abd Aziz, GS 35582
Declaration by Members of Supervisory Committee

This is to confirm that:

- The research conducted and the writing of this thesis was under our supervision;
- Supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature:______________________
Name of Chairman of Supervisory Committee: __________________

Signature:______________________
Name of Member of Supervisory Committee: __________________

Signature:______________________
Name of Member of Supervisory Committee: __________________
TABLE OF CONTENTS

ABSTRACT i
ABSTRAK iii
ACKNOWLEDGEMENTS v
APPROVAL vi
DECLARATION viii
LIST OF TABLES xiv
LIST OF FIGURES xv
LIST OF ABBREVIATIONS AND SYMBOLS xx

CHAPTER
1 INTRODUCTION
1.1 Research Background 1
1.2 Research Benefit and Potential 3
1.3 Microwave Extraction Technique (MET) and Conventional Extraction Technique (CET) 3
1.4 Essential Oils 4
1.5 Statement of the Problem 5
1.6 Purpose of the Study 5
1.7 Hypothesis 6
1.8 Scope and Limitation of the Study 6
1.9 Thesis Outline 6

2 LITERATURE REVIEW
2.1 Introduction 7
2.2 Microwave Extraction 7
2.3 Extraction from Zingiberaceae Familia ... 9

3 THEORY
3.1 Microwave 12
3.1.1 Fundamentals of Microwave 12
3.2 Dielectric Materials and Electric Polarization 13
3.3 Microwave Heating 14
3.4 Dielectric Mixture 16
3.5 Moisture Content 17
3.6 Density 17
3.7 Estimation of Absorbed Power of Fresh Sample Mixture during SFME and MAE in MET 18
3.8 Input Data 18
3.8.1 Power Output of Microwave Oven 19
3.8.2 Dielectric Properties of Water at Specific Frequency (0.13 GHz < f = 2.45 GHz < 20 GHz) and Temperature (26°C < Tw < 90°C) 19
3.8.3 Electric Field Strength inside Microwave Oven Cavity during MET 19
3.8.4 Dielectric Properties of Fresh Sample Mixture 20
3.8.5 Dielectric Properties of Fresh Sample Mixture during 20
SFME and MAE
3.8.6 Electric Field Strength inside the Fresh Samples Mixture during SFME and MAE in MET 20
3.8.7 Absorbed Power inside the Fresh Samples Mixture during SFME and MAE in MET 21

4 METHODOLOGY
4.1 Introduction 22
4.2 Sample Preparation 22
4.3 Sample Characterization 24
 4.3.1 Moisture Content of Fresh Sample, MC_{fs} (%) 25
 4.3.2 Wet and Dry Density of Java turmeric, Mango ginger, Black turmeric and Turmeric, ρ_{fs} and ρ_{ds} 25
 4.3.3 Dielectric Properties of Water, Fresh and Dry Samples 26
4.4 Essential Oils Extraction 27
 4.4.1 Tools for Essential Oils Extraction 28
 4.4.1.1 Microwave Extraction Laboratory Systems (MELs) 28
 4.4.1.2 Microwave Generator 29
 4.4.1.3 Microwave Controller 30
 4.4.1.4 Heating Mantle 31
4.5 Setup for Essential Oils Extraction 31
 4.5.1 Microwave Extraction Technique (MET) 31
 4.5.2 Conventional Extraction Technique (CET) 31
4.6 Essential Oils Extraction Procedure 32
 4.6.1 Solvent-free Microwave Extraction (SFME) and Microwave-assisted Extraction (MAE) for ME 32
 4.6.2 Hydro-distillation (HD) Method for CET 33
4.7 Quality and Quantity Identification of Essential Oils 33
 4.7.1 Gas Chromatography-Mass Spectrometry (GC-MS) Standard Identification Method 33
4.8 Water Heating 34
 4.8.1 Water Heating using Microwave Extraction Laboratory System (MELs) 34
 4.8.2 Water Heating using Heating Mantle (HM) 34
 4.8.3 Power Output of Heating Source by Water Heating 35
4.9 List of Input Parameters 35
4.10 Experiment Errors 36

5 RESULT AND DISCUSSION
5.1 Introduction 38
5.2 Determining the Absorption Power of Fresh Sample Mixture during MET using SFME and MAE 38
 5.2.1 Moisture Content of Fresh Samples 38
 5.2.2 Dry and Wet Density of Java turmeric, Mango ginger, Black turmeric and Turmeric 39
 5.2.3 Volume Fraction of Water in Fresh Samples Mixture, Volume Fraction of Air during SFME and Volume Fraction of Water during MAE 42
 5.2.4 Dielectric Properties of Water, Fresh and Dry Samples 43
5.2.5 Power Output of Heating Source by Water Heating Process 51
5.2.6 Electric Field Strength Inside and Outside (air) Water 62
5.2.7 Absorbed Power of Fresh Samples Mixture 69
5.3 Java turmeric, Mango ginger, Black turmeric and Turmeric Essential Oils Extraction
5.3.1 Java turmeric, Mango ginger, Black turmeric and Turmeric Essential Oils Extracted using Different Method of Extraction 70
5.3.2 Java turmeric, Mango ginger, Black turmeric and Turmeric Essential Oils Extracted using Different Powers of Extraction 74
5.3.3 Java turmeric, Mango ginger, Black turmeric and Turmeric Essential Oils Extracted using Different Amount of Water for Fresh Sample 80
5.3.4 Java turmeric, Mango ginger, Black turmeric and Turmeric Essential Oils Extracted using Different Amount of Water for Frozen Sample 81
5.3.5 Java turmeric, Mango ginger, Black turmeric and Turmeric Essential Oils Extracted from Sample with Different Soaking Times 82
5.3.6 Java turmeric, Mango ginger, Black turmeric and Turmeric Essential Oils Extracted from Dried Sample using Different Drying Methods 83
5.4 Java turmeric, Mango ginger, Black turmeric and Turmeric Essential Oils Quality Analysis
5.4.1 Java turmeric, Mango ginger, Black turmeric and Turmeric Essential Oils Extracted using Different Methods of Extraction 90
5.4.2 Java turmeric, Mango ginger, Black turmeric and Turmeric Essential Oils Extracted using Different Powers of Extraction 92
5.4.3 Java turmeric, Mango ginger, Black turmeric and Turmeric Essential Oils Extracted with Different Amount of Water using Fresh Sample 97
5.4.4 Java turmeric, Mango ginger, Black turmeric and Turmeric Essential Oils Extracted with Different Amount of Water using Frozen Sample 100
5.4.5 Java turmeric, Mango ginger, Black turmeric and Turmeric Essential Oils Extracted from Sample with Different Soaking Times 103
5.4.6 Java turmeric, Mango ginger, Black turmeric and Turmeric Essential Oils Extracted from Dried Sample using Different Drying Methods 106
5.5 Summary 109

6 CONCLUSION 111
6.1 Further Research 112
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>10</td>
</tr>
<tr>
<td>3.1</td>
<td>12</td>
</tr>
<tr>
<td>4.1</td>
<td>24</td>
</tr>
<tr>
<td>4.2</td>
<td>27</td>
</tr>
<tr>
<td>5.1(a)</td>
<td>45</td>
</tr>
<tr>
<td>5.1(b)</td>
<td>45</td>
</tr>
<tr>
<td>5.1(c)</td>
<td>45</td>
</tr>
<tr>
<td>5.1(d)</td>
<td>46</td>
</tr>
<tr>
<td>5.1(e)</td>
<td>46</td>
</tr>
<tr>
<td>5.2</td>
<td>53</td>
</tr>
<tr>
<td>5.3</td>
<td>54</td>
</tr>
<tr>
<td>5.4</td>
<td>54</td>
</tr>
<tr>
<td>5.5</td>
<td>63</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Summary of previous work</td>
</tr>
<tr>
<td>3.1</td>
<td>Microwave Spectrum</td>
</tr>
<tr>
<td>4.1</td>
<td>Detail information about the sample used</td>
</tr>
<tr>
<td>4.2</td>
<td>Limitation of Open-ended Coaxial Line Probe (OECP)</td>
</tr>
<tr>
<td>5.1(a)</td>
<td>Dielectric properties of water (Experiment and Theory) at 2.45 GHz at temperature from 26 to 90°C</td>
</tr>
<tr>
<td>5.1(b)</td>
<td>Dielectric properties of Java turmeric at 2.45 GHz at various evaporated moisture</td>
</tr>
<tr>
<td>5.1(c)</td>
<td>Dielectric properties of Mango ginger at 2.45 GHz at various evaporated moisture</td>
</tr>
<tr>
<td>5.1(d)</td>
<td>Dielectric properties of Black turmeric at 2.45 GHz at various evaporated moisture</td>
</tr>
<tr>
<td>5.1(e)</td>
<td>Dielectric properties of Turmeric at 2.45 GHz at various evaporated moisture</td>
</tr>
<tr>
<td>5.2</td>
<td>Time consumption, Δt (s), absorption power of water, $\left(\frac{PA}{Vol}\right)_w$ (W/m3) and power output of heating source, PO (W) or PA_w (W) during the water heating process using different size of containers at different volumes of water to obtain the specific temperature at 90°C</td>
</tr>
<tr>
<td>5.3</td>
<td>Time consumption, Δt (s), absorption power of water, $\left(\frac{PA}{Vol}\right)_w$ (W/m3) and power output of heating source, PO (W) or PA_w (W) during the water heating process using MELs at different power of heating source to obtain the specific temperature at 90°C</td>
</tr>
<tr>
<td>5.4</td>
<td>Time consumption, Δt (s), absorption power of water, $\left(\frac{PA}{Vol}\right)_w$ (W/m3) and power output of heating source, PO (W) or PA_w (W) during the water heating process using MELs and HM at different volumes of water to obtain the specific temperature at 90°C</td>
</tr>
<tr>
<td>5.5</td>
<td>Electric field strength inside, $E_{in(w)}$ (V/m) and outside (air), $E_{o(w)}$ (V/m) of water during water heating process using MELs for different size containers and volumes of water to obtain the specific temperature of 90°C at 2.45 GHz</td>
</tr>
</tbody>
</table>
5.6 Electric field strength inside, $E_{in(w)}$ (V/m) and outside (air), $E_{o(w)}$ (V/m) of water during water heating process using MELs for different power of heating to obtain the specific temperature of 90°C at 2.45 GHz

5.7 Electric field strength inside, $E_{in(w)}$ (V/m) and outside (air), $E_{o(w)}$ (V/m) of water during water heating process using MELs and HM for different volumes of water to obtain the specific temperature of 90°C at 2.45 GHz

5.8 Time for the first droplet, total yield of essential oil (%) and yield of essential oils per second extracted using SFME, MAE and HD methods

5.9 Time for the first droplet, total yield of essential oil (%) and yield of essential oils per second extracted using the MAE method at different power of extraction heating

5.10 Time for the first droplet, total yield of essential oil (%) and yield of essential oils per second extracted by the MAE method with different amount of water using fresh sample

5.11 Time for the first droplet, total yield of essential oil (%) and yield of essential oils per second extracted by the MAE method with different amount of water using the frozen sample

5.12 Time for the first droplet, total yield of essential oil (%) and yield of essential oils per second extracted by MAE method using sample with different soaking times

5.13 Time for the first droplet, total yield of essential oil (%) and yield of essential oils per second extracted by MAE method using fresh sample and dried sample (different drying methods)

5.14 Number of compounds, percentages of oxygenated and non-oxygenated compound in the essential oils extracted using MELs (SFME and MAE) and HM (HD)

5.15 Major compounds with the percentages and the formula of compound in the essential oils extracted using MELs (SFME and MAE) and HM (HD)

5.16 Number of compounds, percentages of oxygenated and non-oxygenated compounds in the essential oils extracted using MELs at different powers of extraction

5.17 Major compounds with the percentages and the formula of compounds in the essential oils extracted using MELs at different powers of extraction
5.18 Number of compounds, percentages of oxygenated and non-oxygenated compounds in the essential oils extracted using MELs with different amount of water using fresh sample

5.19 Major compounds with the percentages and the formula of compounds in the essential oils extracted using MELs with different amount of water using fresh sample

5.20 Number of compounds, percentages of oxygenated and non-oxygenated compounds in the essential oils extracted using MELs with different amount of water using frozen sample

5.21 Major compounds with the percentages and the formula of compounds in the essential oils extracted using MELs with different amount of water using frozen sample

5.22 Number of compounds, percentages of oxygenated and non-oxygenated compounds in the essential oils extracted using MELs from sample with different soaking times

5.23 Major compounds with the percentages and the formula of compounds in the essential oils extracted using MELs from sample with different soaking times

5.24 Number of compounds, percentages of oxygenated and non-oxygenated compounds in the essential oils extracted using MELs from fresh sample and dried sample using different drying method

5.25 Major compounds with the percentages and the formula of compounds in the essential oils extracted using MELs from fresh sample and dried sample with different drying methods
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>13</td>
</tr>
<tr>
<td>4.1</td>
<td>23</td>
</tr>
<tr>
<td>4.2</td>
<td>28</td>
</tr>
<tr>
<td>4.3</td>
<td>30</td>
</tr>
<tr>
<td>4.4</td>
<td>35</td>
</tr>
<tr>
<td>4.5</td>
<td>37</td>
</tr>
<tr>
<td>5.1</td>
<td>39</td>
</tr>
<tr>
<td>5.2(a)</td>
<td>40</td>
</tr>
<tr>
<td>5.2(b)</td>
<td>41</td>
</tr>
<tr>
<td>5.2(c)</td>
<td>42</td>
</tr>
<tr>
<td>5.3</td>
<td>47</td>
</tr>
<tr>
<td>5.4</td>
<td>48</td>
</tr>
<tr>
<td>5.5</td>
<td>49</td>
</tr>
<tr>
<td>5.6</td>
<td>50</td>
</tr>
<tr>
<td>5.7</td>
<td>51</td>
</tr>
</tbody>
</table>
5.8 Water heating process profile in term of elapsed temperature of water using (a) 4 ℓ container (b) 2 ℓ container for four different volumes of water at 600 W power of heating with respect to the elapsed time of the process to obtain the specific temperature at 90°C

5.9 Water heating process profile in term of elapsed temperature of water using different powers for 1000 ml of water of with respect to the elapsed time of the process to obtain the specific temperature at 90°C

5.10 Water heating process profile in term of elapsed temperature of water using (a) MELs at 600 W power of heating (b) HM at 450 W power of heating (the highest power for HM) for four different volumes of water with respect to the elapsed time of the process to obtain the specific temperature at 90°C

5.11 The time consumption, Δt (s) profile during the water heating process to obtain 90°C using (a) Different size containers (600 W power of heating with 1000 ml of water) (b) Different powers of heating (1000 ml of water) (c) Different methods of heating (600 W for MELs and 450 W for HM with 1000 ml of water)

5.12 The absorption power of water, \((PA/Vol)_w \) (Wm⁻³) profile during the water heating process to obtain 90°C using (a) Different size containers (600 W power of heating with 1000 ml of water) (b) Different powers of heating (1000 ml of water) (c) Different methods of heating (600 W for MELs and 450 W for HM with 1000 ml of water)

5.13 The power output of heating source, PO(W) profile during the water heating process to obtain 90°C using (a) Different size containers (600 W power of heating with 1000 ml of water) (b) Different powers of heating (1000 ml of water) (c) Different methods of heating (600 W for MELs and 450 W for HM with 1000 ml of water)

5.14 Electric field strength inside, \(E_{in(w)} \) (V/m) of water during water heating process using MELs for different size containers (a) 4 ℓ container (b) 2 ℓ container for four different volumes of water at 600 W power heating process to obtain the specific temperature of 90°C at 0.13 to 20 GHz

5.15 Electric field strength inside, \(E_{in(w)} \) (V/m) of water during water heating process using MELs at different powers of heating with 1000 ml of water to obtain the specific temperature of 90°C at 0.13 to 20 GHz

5.16 Electric field strength inside, \(E_{in(w)} \) (V/m) of water during water heating process using different methods (a) MELs at 600 W (b)
HM at 450 W for four different volumes of water to obtain the specific temperature of 90°C at 0.13 to 20 GHz

5.17 Electric field strength outside, $E_{o(w)}$ (V/m) of water during water heating process using MELs for different size containers (a) 4ℓ container (b) 2ℓ container for four different volumes of water at 600 W power heating to obtain the specific temperature of 90°C at 0.13 to 20 GHz

5.18 Electric field strength outside, $E_{o(w)}$ (V/m) of water during water heating process using MELs at different powers of heating for four different volumes of water at 600 W power of heating to obtain the specific temperature of 90°C at 0.13 to 20 GHz

5.19 Electric field strength outside, $E_{o(w)}$ (V/m) of water during water heating process using different methods (a) MELs at 600 W (b) HM at 450 W for four different volumes of water to obtain the specific temperature of 90°C at 0.13 to 20 GHz

5.20(a) Java turmeric heating or extraction profile during SFME and MAE using MELs of MET and HD using HM of CET with respect to time and temperature to obtain the first droplet of EO

5.20(b) Mango ginger heating or extraction profile during SFME and MAE using MELs of MET and HD using HM of CET with respect to time and temperature to obtain the first droplet of EO

5.20(c) Black turmeric heating or extraction profile during SFME and MAE using MELs of MET and HD using HM of CET with respect to time and temperature to obtain the first droplet of EO

5.20(d) Turmeric heating or extraction profile during SFME and MAE using MELs of MET and HD using HM of CET with respect to time and temperature to obtain the first droplet of EO

5.21 Total yield of essential oil (%) using SFME, MAE and HD methods

5.22(a) Java turmeric heating or extraction profile during MAE using MELs of MET at different powers of heating with respect to time and temperature to obtain the first droplet of EO

5.22(b) Mango ginger heating or extraction profile during MAE using MELs of MET at different powers of heating with respect to time and temperature to obtain the first droplet of EO

5.22(c) Black turmeric heating or extraction profile during MAE using MELs of MET at different powers of heating with respect to time and temperature to obtain the first droplet of EO
5.22(d) Turmeric heating or extraction profile during MAE using MELs of MET at different powers of heating with respect to time and temperature to obtain the first droplet of EO

5.23 Total yield of essential oil (%) extracted using MAE at different powers of heating

5.24 Total yield of essential oil (%) extracted with different amount of water using fresh sample

5.25 Total yield of essential oil (%) extracted with different amount of water using frozen sample

5.26 Total yield of essential oil (%) extracted from sample with different soaking times

5.27 Total yield of essential oil (%) extracted from fresh sample and dried sample using different drying methods

5.28 Oxygenated compounds (%) in the essential oils extracted using SFME, MAE and HD

5.29 Oxygenated compound (%) in the essential oils extracted using MELs at different powers of extraction

5.30 Oxygenated compound (%) in the essential oils extracted using MELs at different amount of water

5.31 Oxygenated compound (%) in the essential oils extracted using MELs with different amount of water using frozen sample

5.32 Oxygenated compound (%) in the essential oils extracted using MELs from the samples with different soaking times

5.33 Oxygenated compound (%) in the essential oils extracted using MELs from the sample with different drying methods
LIST OF ABBREVIATIONS AND SYMBOLS

Glossary of terms
ANA Automatic Network Analyzer
AIRTC Automatic infrared temperature controller
Cal Calculation
CET Conventional extraction technique
EO Essential oils
GC Gas Chromatography
GC-MS Gas Chromatography couple with Mass Spectrometry
HD Hydro distillation
HM Heating mantle
HP Hewlett Packard
IEEE Institute Electric Electronic Engineering
MAE Microwave Assisted Extraction
MET Microwave Extraction Technique
MELs Microwave Extraction Labstation System
NDT Non-destructive measurement technique
NMR Nuclear Magnetic Resonance
OECP Open-ended coaxial line probe
P Power
PTEE Polytrtraflouroethylene
SFME Solvent free Microwave Extraction
Th Theory
WD Wet distillation

Symbols
MC_{fs} Moisture content of fresh samples
EM_{Avgfs} Average evaporated moisture of fresh sample
EM_{fs} Evaporated moisture of fresh sample
MC_{Js} Moisture content of Java turmeric
MC_{Ms} Moisture content of Mango ginger
MC_{Bs} Moisture content of Black turmeric
MC_{Ts} Moisture content of Turmeric
ρ_{ds} Density of dry samples
ρ_{fs} Density of wet samples
V_{mfs} Volume fraction of fresh samples mixture
V_{a} Volume fraction of air
Volume fraction of water

Dielectric properties of fresh samples mixture

Dielectric constant of fresh samples mixture

Dielectric loss factor of fresh samples mixture

Dielectric properties of fresh samples mixture during solvent free microwave extraction

Dielectric constant of fresh samples mixture during solvent free microwave extraction

Dielectric loss factor of fresh samples mixture during solvent free microwave extraction

Dielectric properties of fresh samples mixture during microwave-assisted extraction

Dielectric constant of fresh samples mixture during microwave-assisted extraction

Dielectric loss factor of fresh samples mixture during microwave-assisted extraction

Dielectric properties of water

Dielectric constant of water

Dielectric loss factor of water

Loss tangent of water

Dielectric properties of fresh samples

Dielectric constant of fresh samples

Dielectric loss factor of fresh samples

Dielectric properties of dry samples

Dielectric constant of dry samples

Dielectric loss factor of dry samples

Dielectric constant of Java turmeric

Dielectric loss factor of Java turmeric

Loss tangent of Java turmeric

Dielectric properties of fresh Java turmeric

Dielectric constant of fresh Java turmeric

Dielectric loss factor of fresh Java turmeric

Dielectric properties of dry Java turmeric

Dielectric constant of dry Java turmeric

Dielectric loss factor of dry Java turmeric

Dielectric constant of Mango ginger

Dielectric loss factor of Mango ginger
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tan \delta_{sM}$</td>
<td>Loss tangent of Mango ginger</td>
</tr>
<tr>
<td>ε_{fsM}^*</td>
<td>Dielectric properties of fresh Mango ginger</td>
</tr>
<tr>
<td>ε_{fsM}'</td>
<td>Dielectric constant of fresh Mango ginger</td>
</tr>
<tr>
<td>ε_{fsM}''</td>
<td>Dielectric loss factor of fresh Mango ginger</td>
</tr>
<tr>
<td>ε_{dsM}^*</td>
<td>Dielectric properties of dry Mango ginger</td>
</tr>
<tr>
<td>ε_{dsM}'</td>
<td>Dielectric constant of dry Mango ginger</td>
</tr>
<tr>
<td>ε_{dsM}''</td>
<td>Dielectric loss factor of dry Mango ginger</td>
</tr>
<tr>
<td>ε_{sB}^*</td>
<td>Dielectric loss factor of Black Turmeric</td>
</tr>
<tr>
<td>ε_{sT}^*</td>
<td>Loss tangent of Black turmeric</td>
</tr>
<tr>
<td>ε_{fsB}^*</td>
<td>Dielectric properties of fresh Black turmeric</td>
</tr>
<tr>
<td>ε_{fsB}'</td>
<td>Dielectric constant of fresh Black turmeric</td>
</tr>
<tr>
<td>ε_{fsB}''</td>
<td>Dielectric loss factor of fresh Black turmeric</td>
</tr>
<tr>
<td>ε_{dsB}^*</td>
<td>Dielectric properties of dry Black turmeric</td>
</tr>
<tr>
<td>ε_{dsB}'</td>
<td>Dielectric constant of dry Black turmeric</td>
</tr>
<tr>
<td>ε_{dsB}''</td>
<td>Dielectric loss factor of dry Black turmeric</td>
</tr>
<tr>
<td>ε_{sT}^*</td>
<td>Dielectric loss factor of Turmeric</td>
</tr>
<tr>
<td>ε_{sT}'</td>
<td>Loss tangent of Turmeric</td>
</tr>
<tr>
<td>ε_{fsT}^*</td>
<td>Dielectric properties of fresh Turmeric</td>
</tr>
<tr>
<td>ε_{fsT}'</td>
<td>Dielectric constant of fresh Turmeric</td>
</tr>
<tr>
<td>ε_{fsT}''</td>
<td>Dielectric loss factor of fresh Turmeric</td>
</tr>
<tr>
<td>ε_{dsT}^*</td>
<td>Dielectric properties of dry Turmeric</td>
</tr>
<tr>
<td>ε_{dsT}'</td>
<td>Dielectric constant of dry Turmeric</td>
</tr>
<tr>
<td>ε_{dsT}''</td>
<td>Dielectric loss factor of dry Turmeric</td>
</tr>
<tr>
<td>j</td>
<td>Constant value (-1)</td>
</tr>
<tr>
<td>Vol_w</td>
<td>Volume of water</td>
</tr>
<tr>
<td>$T_w(f)$</td>
<td>Specific temperature</td>
</tr>
<tr>
<td>$PO_{w(MELs)}$</td>
<td>Power output of water using MELs</td>
</tr>
<tr>
<td>$PO_{w(HM)}$</td>
<td>Power output of water using HM</td>
</tr>
<tr>
<td>Δt</td>
<td>Time consumption (min)</td>
</tr>
<tr>
<td>$(PA/Vol)_w$</td>
<td>Absorption power of water</td>
</tr>
<tr>
<td>POC</td>
<td>Power output consumption</td>
</tr>
</tbody>
</table>
E_{in} Electric strength inside

$E_{in(w)}$ Electric strength inside of water

$E_{o(w)}$ Electric strength outside of water (air)

$(PA/\text{Vol})_{\text{mfs}}$ Absorption power of fresh samples mixture

ε^* Dielectric properties of fresh samples mixture

$\varepsilon^*_{\text{mfsMAE}}$ Dielectric properties of fresh samples mixture during microwave-assisted extraction

$\varepsilon^*_{\text{mfsSFME}}$ Dielectric properties of fresh samples mixture during solvent free microwave extraction

$\varepsilon''_{\text{mfs}}$ Dielectric loss factor of fresh samples mixture

$E_{in(\text{mfsMAE})}$ Electric strength inside of fresh samples mixture during microwave-assisted extraction

$E_{in(\text{mfsSFME})}$ Electric strength inside of fresh samples mixture during solvent free microwave extraction
CHAPTER 1

INTRODUCTION

This chapter covers the research background with the information about essential oils and microwave extraction technique (MET), some benefits and potentials of this research, problem statement, limitations, objectives and hypothesis of the research.

1.1 Research Background

Curcuma xanthorrhiza Roxb or known as ‘Temu lawak’ (Java turmeric) in Malaysia is a member of the ginger family (Zingiberaceae). It is a native Indonesian plant and grown in Thailand, Philippines, Sri Lanka and Malaysia. Curcuma xanthorrhiza’s rhizome (root) is similar to ginger with bitter taste, aromatic and pungent odor (Devaraj et al., 2013). The color and shape of rhizome are similar to turmeric.

Java turmeric has been chosen as one from nine ‘unusual’ plants in Indonesia. It has many applications and can be used as food, medical purposes and as a tonic (Hwang and Rukayadi, 2006). Curcuminoid is the component that gives the yellow colour and usually it is used in cosmetic. Atsiri oil is used for cosmetic, medicine, and aroma. Both of these components have antibacterial effect (Dzen et al.). Starch is the biggest component in the Java turmeric. It has the ability for food digestion and is mixed in baby food (Br et al., 2006).

Curcuma xanthorrhiza has been reported to be useful to treat hepatitis, liver disease, cancer, diabetes, rheumatism, hypertension and heart disorder. It also has anti-bacterial, anti-spasmodic, anti-inflammatory, anti-oxidant and antifungal effects (Devaraj et al., 2013).

Curcuma amada is apart from Zingiberaceae family and commonly known as mango ginger. It originated from Indo-Malayan and has been distributed widely from Asia to Africa and Australia. It is called mango ginger and is quite famous for this type of species because the smell and flavor are the same as mango and morphologically similar to ginger.

In the food industry, mango ginger has been used in the manufacture of pickles, culinary preparations for salads as a flavor, candy and sauce (Kullu et al., 2013). In medical application, it can be used to treat psychological problems. It is also used in traditional medicine and Ayurvedic medicine. Mango ginger has many bioactive molecules where it demonstrates antibacterial, antifungal, anti-inflammatory, anti-hypercholesterolemic, insecticidal, antipyretic and antioxidant properties (Singh et al., 2010). Mangiferin is one of the important bioactive molecules. Mangiferin very useful in the treatment of skin diseases, asthma, bronchitis and inflammation because of xanthone-C-glycoside inside
the mangiferin has antidiabetic, cardioprotective, immunomodulatory, antioxidant, antitumor, hepatoprotective and vasorelaxant properties (Karchuli and Pradhan, 2011).

Curcuma aeruginosa, the member of Zingiberaceae family is popular known as ‘Temu Hitam’ in Malaysia, wild arrowroot or East Indian arrowroot in India and Waan-Ma-Haa-Mek in Thailand. It is available in Malaysia, Burma, Indonesia, and in South India (Ranjini and Vijayan, 2005).

In medicine, the rhizome of this plant is used to treat asthma, cough, scurvy, and mental derangements. It also helps women in confinement to accelerate the lochia and decrease pain and inflammation of uterus by adding in beverage. Other than internal consumption, this rhizome can be used for external application. For example, it is used as poultice for inching (Reanmongkol et al., 2006).

The 1,8-cineol, curzerenone, zedoarol, furanodienone, curcumol and germacrone are some of the compounds identified from the essential oil of the rhizomes and leaves of Curcuma aeruginosa. The 1,8-cineol compound displayed antinociceptive and anti-inflammatory effects in experimental animals (Santos et al., 2000).

Turmeric (the common name for Curcuma longa) is derived from the rhizomes of the plant. It is a perennial herb and member of the Zingiberaceae (ginger) family. It is cultivated extensively in Asian countries, especially in India and China. It is known by many names such as Curcum (Arab), Indian saffron, Haridra (Sanskrit, Ayurvedic), Jianghuang (yellow ginger in Chinese) and Kyoo or Ukon (Japanese).

In Asian cuisines, turmeric is used for color and flavor and became an important ingredient in curry powder. In Ayurvedic and Chinese medicine, it is used as an anti-inflammatory and to treat jaundice, menstrual difficulties, hematuria, hemorrhage, and colic (Labban, 2014). For internal, it is used as a stomachic, tonic and blood purifier. For external, it is used in the prevention and treatment of skin diseases (Jayaprakasha et al., 2005).

The bioactive compound from the turmeric was found to be antimicrobial, anti-inflammatory, anticancer and antiviral (Pa et al., 2012). ar- Turmerone, zingiberene, tumeron and curnone are major compounds found in volatile oil. It can be identified using GC-MS (Jayaprakasha et al., 2005).

To obtain good quality essential oils with high yield, the extraction process is very laborious. For many decades, conventional method of extraction such as hydrodistillation method was used. Generally, the conventional technique required a long experimental process and a large quantity of solvent. Because of this, the operation cost increased and environmental problem occurred (Tatke and Rajan, 2014). In addition, the temperature of extraction cannot be controlled and can cause overheating of the sample. Some volatile compounds will be lost to the environment in this condition. However, it
depends on the type of sample used (Nurdin, 2007). The research was done to overcome the disadvantages of the conventional extraction technique and come up with alternative extraction techniques such as the microwave extraction technique, supercritical fluids and ultrasound.

Microwave extraction technique is one of the alternative techniques developed to overcome the disadvantages of the conventional extraction technique. This technique has the ability to minimize the time of extraction process due to the microwave energy that can penetrate the materials. The volumetrically heat source is produced as the molecules start to collide with each other (Zhou and Liu, 2006). This can be done automatically with the reduction in organic consumption (Zygmunt and Namieśnik, 2003).

1.2 Research Benefit and Potential

Microwave energy has been known for heating and drying in microwave chemistry, and stellar application. The microwave energy involved in the extraction of essential oils is in the microwave extraction technique (MET). Because of the advantages of MET, many researches were done using this technique and the essential oil extracted was studied based on the chemistry and biological aspects such as antioxidant, antimicrobial, antivenom, anti-tumor and anti-inflammatory properties. However, the studies using MET to extract the essential oil from Zingiberaceace family (Java turmeric, Mango ginger, Black turmeric and Turmeric) has been known from time immemorial in medicine, and food industry was so limited. Therefore, this project has high potential in raising the level of the country’s economy because apart from the low cost, energy and time saving to produce the best quality essential oil with a bigger amount than the conventional method. It is also a green technology where chemical usage is unnecessary and the handling process is safe. This project results in appropriate parameters needed to produce good quality essential oil in large amounts and more time saving.

1.3 Microwave Extraction Technique and Conventional Extraction Technique

The demand for a new extraction technique with shortened extraction times, reduced organic solvent consumption, pollution prevention and low operating cost was increased. Driven by these goals, the alternative extraction techniques such as ultrasonic-assisted extraction (UAE), supercritical fluid extraction (SFE) and microwave extraction technique (MET) were developed (Abert et al., 2008).

MET was found to be the best method in terms of the production of essential oil in shorter period of time compared with other alternative extraction techniques (Tatke and Rajan, 2014). This technique involves the use of microwave energy which is electromagnetic wave with frequencies ranging between 300 MHz to 1000 GHz and this leads to the fact that MET is a fast extraction technique compared with others. The MET depends on many factors like types of solvent used rather it is non-polar or polar solvent, duration of
extraction process, the irradiation power, the temperature and the matrix (Devgun et al., 2012).

The conventional processes or the conventional extraction technique (CET) have been used for decades in the extraction of essential oils. Until today, it is still used especially in industrial scale. The main disadvantages of this technique are the long extraction time and the large amount of solvent used. Furthermore, this technique is not suitable to extract a thermo-sensitive compound as the possibility to decomposition is high due to the long extraction time at the boiling point of solvent used (Bimakr et al., 2010). Usually, this technique could extract 0.005 to 10% of the essential oils from plants. The distillation duration, the temperature, the operating pressure, the type and quality of raw plant materials are the factors that can influence the production of essential oils (Li et al., 2014).

1.4 Essential Oils

Essential oil is a complex mixture. It can be defined as the volatile material extracted from trees, flowers, stems, herbs and roots through distillation. This mixture consists of oxygenated terpenes, terpenes, oxygenated sesquiterpenes and sesquiterpenes. Some of the compounds obtain in the essential oil cannot be classified as it can belong to any of the family of compounds mentioned earlier. There are other compounds that can be extracted especially from vegetable and usually in a small amount. There are fatty acid methyl esters (FAMES), coloring matters (p-carotene), sterols, coumarins and flavones (Reverchon, 1997).

Essential oil is a valuable natural product. It can be used as raw materials as spices, in cosmetics, perfumes, aromatherapy and nutrition. For many decades, it was claimed to have useful effect in aromatherapy together with the additional aromatic compounds (George et al., 2015). It has also been used as food preservatives, alternative medicine, pharmaceuticals and natural therapies for thousands of years. Until today, it has various functions including conferring pest and disease resistant. In the cosmetic industry, it is used for the production of shampoo, lotion, cologne, cream and other make-up tools (Lis-Balchin and Deans, 1997)

The quality of essential oil is described by the presence of the aromatic compounds in the essential oils such as oxygenated and terpenes compound. If the oxygenated compound is of high value or a major compound, the essential oil can be acknowledged as a good quality essential oil. This is because the oxygenated compound is highly odoriferous. Alcohols, aldehydes, ketones, acids and ester are the usually oxygenated compound found in the essential oils (Ranasinghe et al., 2003)
1.5 Statement of the Problem

The essential oil from Zingiberaceae family has much goodness, especially in medicine, cosmetic and food industries. However, this goodness was not used extensively as the knowledge about it so limited. So, this research was conducted as an attempt to introduce this kind of sample as well as the right way to extract and get the high yield and good quality of essential oil. In this research, microwave technique was used to extract the essential oil as it has many advantages compared with other alternative and conventional technique. Besides providing low cost and saving time and energy, microwave technique also the best method among the alternative technique to extract the high yield of essential oil at a shorter time. There are many factors that affect the extraction, such as extraction of solvent, time of extraction process, microwave power level, temperature and contact surface area. Therefore, this research, undertaken various extraction process parameters to obtain high yield and good quality of essential oil. Various extraction methods which are SFME and MAE in microwave technique and HD in conventional technique were done to compare the performance in terms of total yield and quality of essential oil.

1.6 Purpose of the Study

The primary purpose of this study is to investigate the optimized parameters of microwave extraction technique in order to obtain high yield and better quality of essential oils from Zingiberaceae family. The performance of microwave extraction technique in terms of their rapidity, the total yield and the quality of essential oil was compared with conventional extraction method. The physical properties of water and samples such as the moisture content, wet and dry density and dielectric properties were measured. It is important to measure the physical properties as it is the parameter needed to estimate the absorption power of the fresh sample mixture during microwave and conventional extraction technique at frequency 2.45 GHz. The objectives of this research are:

- to extract essential oils from Zingiberaceae family (Java turmeric, Mango ginger, Black turmeric and Turmeric) using microwave extraction technique by controlling the parameter of extraction process to obtain high yield essential oils. The parameters include the power of extraction, volume of solvent used, the nature of the samples (fresh and frozen samples), time of soaking and the drying method of samples.
- to analyze chemical compounds in the essential oils from Zingiberaceae family at different parameters of the extraction process and identified the valuable essential oils
- to compare the extraction performance between microwave (Solvent-free Microwave Extraction and Microwave-assisted Extraction) and conventional (Hydro-distillation) extraction technique in terms of rapidity, quality and quantity.
1.7 Hypothesis

The hypotheses for the research are:
1. Each sample would have its own extraction process parameter (power of extraction, volume of solvent used, the nature of the samples (fresh and frozen samples), time of soaking and the drying method of samples) to obtain high yield and good quality of essential oil.
2. Microwave-assisted extraction (MAE) would produce more essential oil in a shorter time.

1.8 Scope and Limitations of the Study

This study was limited by the following characteristics:
1. The sample consisted of the four types of rhizome in the Zingiberaceace family, which is Java turmeric, Mango ginger, Black turmeric and Turmeric. The samples were choosing because it has more medical values. It was assumed originated from the same place as it bought from same market.
2. The temperature of extraction was specific to 100°C, as this is the boiling point of water where it act as solvent to the sample.
3. The extraction time is about 1 and 4 hours, as this is the duration normally no more essential oil can be extracted for microwave and conventional, respectively.
4. For the dielectric properties of water, the frequency measurement was set at the range between 0.2 to 20 GHz, because it is the microwave frequency.
5. The total percentage of oxygenated compound was used to define the quality of essential oil as it is one of the methods.
6. The comparison between the extraction method (SFME, MAE and HD) was done in one combination of extraction process parameter as it is enough to determine the best method among them.

1.9 Thesis outline

The literature review and theory related to the study were discussed in Chapter 2. This includes the relationship between the characteristics of the sample which is the moisture content, density and dielectric properties with the microwave mechanism during the extraction using Solvent-free Microwave Extraction (SFME) and Microwave-assisted Extraction (MAE). The tools and equipment used during the experiment as well as the experimental methodology were discussed in Chapter 3. This chapter also discussed the errors that can influence the data together with their precautionary steps to minimize it during the experiment. In Chapter 4, the results of all the data including the characteristics of the sample, the yield of essential oil with the compound composition from the various samples used (Java turmeric, Mango ginger, Black turmeric and Turmeric), the rapidity of the extraction tools are presented and discussed in detailed. Finally, Chapter 5 concluded all the results obtained and the conclusions were drawn relating it to the original purpose of the study.
REFERENCES

Dorthe, A. M. 1999. Optimization by factorial design of focused microwave assisted extraction of polycyclic aromatic hydrocarbons from marine sediment, 228–237.

Karchuli, M. S., Pradhan, D. 2011, 952, 947–952

Khajeh, M., Reza, A., Moghaddam, A. 2010. Application of Doehlert Design in the optimization of microwave-assisted extraction for determination of zinc and copper in cereal samples using FAAS, 133–137.

Quan, P. T., Hang, T. Van, Ha, N. H., De, N. X., Tuyen, T. N. 2006. Microwave-assisted extraction of polyphenols from fresh tea shoot, 1, 69–75.

Technology, B. 2012. Lymphocyte proliferation by Temu Lawak (Curcuma xanthorrhiza ROXB) Essential Oil. 29, 205–209.

Xiao, W., Han, L., Shi, B. 2008. Microwave-assisted extraction of flavonoids from Radix Astragali, 62, 614–618.

Books

Thesis

Conferences

Webpage

