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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of
the requirement for the degree of Doctor of Philosophy

RUNGE-KUTTA TYPE METHODS FOR SOLVING SPECIAL THIRD
AND FOURTH ORDER ORDINARY DIFFERENTIAL EQUATIONS

By

KASIM ABBAS HUSSAIN

March 2017

Chair: Professor Fudziah Ismail, PhD
Faculty: Science

This thesis is focused on developing Runge-Kutta type methods for solving two types
of ordinary differential equations (ODEs). The first type is the special third-order
ODEs which do not depend on the first derivative y′(x) and the second derivative y′′(x)
explicitly. The second is the special fourth-order ODEs which are not dependent on the
first derivative y′(x), the second derivative y′′(x) and third derivative y′′′(x) explicitly.
These types of ODE often used to describe the mathematical models for problems
arises in several fields of applied sciences and engineering.

Traditionally, these ODEs are solved by reducing them to an equivalent system of
first-order ordinary differential equations. However, it is more efficient in terms of
accuracy, the number of function evaluations as well as computational time, if they can
be solved directly by using numerical methods.

The first part of the thesis described the construction of the Improved Runge-Kutta type
method for directly solving the special third-order ODEs where the method is denoted
as IRKD method. Taylor series expansion is used to derive the order conditions of
the IRKD method. Based on these order conditions, three-stage fourth-order and
four-stage fifth-order IRKD methods are derived. Codes based on these methods are
developed and then used to solve the special third-order ODEs. The IRKD methods
are also used to solve physical problem in thin film flow.

The second part of the thesis is focused on the derivation of the direct Runge-Kutta
type method denoted as RKFD method for solving the special fourth-order ODEs.
The order conditions of the RKFD methods are derived by using two approaches; the
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first approach is using the Taylor series expansion and the second approach is using
the B-series and the associated relevant-colored trees. Based on the order conditions,
three-stage fourth-order, three-stage fifth-order and four-stage sixth-order RKFD
methods are derived. Codes based on the RKFD methods are developed and used for
solving the special fourth-order ODEs. The RKFD methods are also applied to solve
engineering problem which is the ill-posed problem in a beam on elastic foundation.
Then two embedded RFKD pairs of order four in five and order five in six are derived.
Based on the embedded RKFD methods, the variable step-size codes are developed
and used to solve the special fourth-order ODEs.

In conclusion, the new IRKD and RKFD methods developed in this thesis are suit-
able for directly solving special third-order and fourth-order ODEs respectively. The
methods are also more efficient than the existing Runge-Kutta type methods in terms
of accuracy, computational time and number of function evaluations.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

JENIS KAEDAH RUNGE-KUTTA UNTUK MENYELESAIKAN
PERSAMAAN PEMBEZAAN BIASA KHAS PERINGKAT TIGA DAN

EMPAT

Oleh

KASIM ABBAS HUSSAIN

Mac 2017

Pengerusi: Profesor Fudziah Ismail, PhD
Fakulti: Sains

Tesis ini tertumpu kepada membangunkan kaedah Runge-Kutta untuk menyelesaikan
dua jenis persamaan pembezaan biasa (PPB). Jenis yang pertama adalah persamaan
pembezaan khas peringkat ketiga yang tidak bersandar kepada pembezaan pertamanya
y′(x) dan pembezaan keduanya y′′(x) secara tak tersirat. Yang kedua ialah persamaan
pembezaan biasa khas peringkat keempat yang juga tidak bersandar kepada pembezaan
pertamanya y′(x), pembezaan keduanya y′′(x) dan pembezaan yang ketiganya y′′′(x)
secara tak tersirat. Persamaan pembezaan jenis ini biasa digunakan untuk menerangkan
model bermatematik untuk masalah yang timbul dalam beberapa bidang sains gunaan
dan kejuruteraan.

Secara tradisinya, PPB ini diselesaikan dengan menurunkannya kepada sistem
perasamaan pembezaan peringkat pertama yang setara. Walau bagaimanapun, adalah
lebih cekap dari segi kejituan, bilangan penilaian fungsi dan masa pengiraan, jika ia
boleh diselesaikan secara terus menggunakan kaedah berangka.

Bahagian pertama tesis menerangkan tentang membangunkan kaedah Runge-Kutta
Penambaikan yang disebut IRKD untuk menyelesaikan secara terus PPB khas per-
ingkat ketiga. Kembangan siri Taylor digunakan untuk menerbitkan syarat peringkat
kaedah IRKD tersebut. Berdasarkan syarat peringkat ini, kaedah IRKD tahap-tiga,
peringkat-keempat dan kaedah tahap-empat, peringkat-kelima diterbitkan. Kod
berdasarkan kaedah IRKD ini dibangunkan dan digunakan untuk menyelesaikan PPB
khas peringkat ketiga. Kaedah IRKD ini juga digunakan untuk menyelesaikan masalah
fizikal dalam aliran filem nipis.
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Bahagian kedua tesis ini tertumpu kepada menerbitkan kaedah Rung-Kutta yang dike-
nali sebagai RKFD untuk menyelesaikan secara terus PPB khas peringkat keempat.
Syarat peringkat bagi kaedah RKFD ini diterbitkan menggunakan dua pendekatan;
yang pertama menggunakan kembangan siri Taylor dan yang kedua menggunakan
Siri-B dan pokok berwarna yang bersesuaian dan berkaitan dengannya. Berdasarkan
syarat peringkat tersebut, kaedah RKFD tahap-tiga peringkat-keempat, tahap-tiga
peringkat-kelima dan tahap-empat peringkat-keenam diterbitkan. Kod berdasarkan
kaedah RKFD tersebut dibangunkan dan digunakan untuk menyelesaikan PPB khas
peringkat keempat. Kaedah RKFD itu juga digunakan untuk menyelesaikan masalah
kejuruteraan, iaitu masalah tak teraju rapi dalam rasuk yang mempunyai asas elastik.
Seterusnya dua pasang kaedah RKFD terbenam peringkat-empat dalam peringkat-lima
dan peringkat-lima dalam peringkat-enam diterbitkan. Berdasarkan kaedah tersebut
kod dengan panjang langkah berubah dibangunkan untuk menyelesaikan PPB khas
peringkat keempat.

Kesimpulannya, kaedah baharu IRKD dan RKFD yang dibangunkan dalam tesis ini
adalah sesuai untuk menyelesaikan secara terus PPB khas peringkat ketiga dan keempat
masing-masingnya. Kaedah ini juga lebih cekap daripada jenis kaedah Runge-Kutta
sedia ada dari segi kejituan, masa pengiraan dan bilangan penilaian fungsi.
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CHAPTER 1

INTRODUCTION

Differential equations are the essential tools which are used to model several problems
in the applied sciences and engineering in terms of unknown function and their deriva-
tives. For instance, mathematical models of electrical circuits, chemical processes, the
problem of determining the motion of a rocket or satellite and mechanical systems.
They can be categorized into two types, Ordinary Differential Equations (ODEs) and
Partial Differential Equations (PDEs) based on the number of independent variables
exist in the differential equations.

Several theoretical and numerical studies for ODEs have appeared in scientific liter-
ature. Finding the analytical solutions to these ODEs are too complicated. Thereby,
there are several numerical methods which used as an alternative. It is important to
obtain the approximate numerical solutions of these ODEs so that, we can understand
the behaviour of their solutions.

In the nineteenth century, the early work on numerical solutions of ODEs has begun,
through the research paper of Bashforth and Adams in1883 and the research paper of
Runge in 1895. They have offered the initial ideas that lead to develop the modern
software on numerical methods (Butcher (2000)). Since then, ideas with the proper
techniques have been proposed for solving ODEs by several authors.

1.1 Ordinary Differential Equation

If f is a function of x,y, and nth derivative of y, therefore the following form of equation

f (x,y,y′,y′′, . . . ,y(n)) = 0. (1.1)

is called an Ordinary Differential Equation (ODE) of order n.

In (1.1) the quantity being differentiated, y is called as the dependent variable, while
the quantity with respect to which y is differentiated, x is called as the independent
variable.

1.1.1 Initial Value Problem of First-Order ODE

The initial value problems (IVPs) for a system of s first order ordinary differential
equations (ODEs) is defined by

y′ = f (x,y), y(a) = β . (1.2)

1



© C
OPYRIG

HT U
PM

where

f : ℜ×ℜ
m→ℜ

m,

y(x) = [y1(x),y2(x), . . . ,ym(x)]T ,

f (x,y) = [ f1(x,y), f2(x,y), . . . , fm(x,y)]T , a≤ x≤ b

and β = [β1,β2, . . . ,βm]
T is a vector of initial conditions.

1.1.2 Initial Value Problem of Special Second-Order ODE

The general form of initial value problem (IVP) of second-order ODE can be written
as follows:

y′′ = f (x,y), (1.3)

with initial conditions

y(a) = β , y′(a) = γ

where f : ℜ×ℜm→ℜm, which is independent on y′ explicitly and

y(x) = [y1(x),y2(x), . . . ,ym(x)]T ,

y′(x) = [y′1(x),y
′
2(x), . . . ,y

′
m(x)]

T ,

f (x,y) = [ f1(x,y), f2(x,y), . . . , fm(x,y)]T , a≤ x≤ b

with

β = [β1,β2, . . . ,βm]
T ,

γ = [γ1,γ2, . . . ,γm]
T .

are the vector of initial conditions.

In this thesis, we will focus on the following initial value problems

1. Initial value problems of special third-order ODE.

2. Initial value problems of special fourth-order ODE

2
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1.1.3 Initial Value Problem of Special Third-Order ODE

The general form of initial value problem (IVP) of special third-order ODEs is defined
as follows:

y′′′ = f (x,y), (1.4)

with initial conditions

y(a) = β , y′(a) = γ, y′′(a) = α,

where f : ℜ×ℜm→ℜm, which is independent on y′ and y′′ explicitly and

y(x) = [y1(x),y2(x), . . . ,ym(x)]T ,

y′(x) = [y′1(x),y
′
2(x), . . . ,y

′
m(x)]

T ,

y′′(x) = [y′′1(x),y
′′
2(x), . . . ,y

′′
m(x)]

T ,

f (x,y) = [ f1(x,y), f2(x,y), . . . , fm(x,y)]T , a≤ x≤ b

with

β = [β1,β2, . . . ,βm]
T ,

γ = [γ1,γ2, . . . ,γm]
T ,

α = [α1,α2, . . . ,αm]
T .

are the vector of initial conditions. If the initial value problem (1.4) is in m dimensional
space, it can be simplified to

u′′′(x) = g(u(x)),

with initial conditions

u(a) = β̃ , u′(a) = γ̃, u′′(a) = α̃,

where

u(x) =


y1(x)
y2(x)

...
ym(x)

x

 , g(u) =


f1(u1,u2, . . . ,um,um+1)
f2(u1,u2, . . . ,um,um+1)

...
fn(u1,u2, . . . ,um,um+1)

0

 ,

β̃ = [β1,β2, . . . ,βm,a]T ,

γ̃ = [γ1,γ2, . . . ,γm,1]T ,

α̃ = [α1,α2, . . . ,αm,0]T .

3
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1.1.4 Initial Value Problem of Special Fourth-Order ODE

The general form of initial value problem (IVP) of special fourth-order ODEs is written
as follows:

y(iv) = f (x,y), (1.5)

with initial conditions

y(a) = β , y′(a) = γ, y′′(a) = α, y′′′(a) = ζ ,

where f : ℜ×ℜm→ℜm, which is independent on y′,y′′ and y′′′ explicitly, and

y(x) = [y1(x),y2(x), . . . ,ym(x)]T ,

y′(x) = [y′1(x),y
′
2(x), . . . ,y

′
m(x)]

T ,

y′′(x) = [y′′1(x),y
′′
2(x), . . . ,y

′′
m(x)]

T ,

y′′′(x) = [y′′′1 (x),y′′′2 (x), . . . ,y′′′m (x)]T ,

f (x,y) = [ f1(x,y), f2(x,y), . . . , fm(x,y)]T , a≤ x≤ b

with

β = [β1,β2, . . . ,βm]
T ,

γ = [γ1,γ2, . . . ,γm]
T ,

α = [α1,α2, . . . ,αm]
T ,

ζ = [ζ1,ζ2, . . . ,ζm]
T .

are the vector of initial conditions. If the initial value problem (1.5) is in m dimensional
space, it can be simplified to

w(iv)(x) = g(w(x)),

with initial conditions

w(a) = β̃ , w′(a) = γ̃, w′′(a) = α̃, w′′′(a) = ζ̃ ,

where

w(x) =


y1(x)
y2(x)

...
ym(x)

x

 , g(w) =


f1(w1,w2, . . . ,wm,wm+1)
f2(w1,w2, . . . ,wm,wm+1)

...
fn(w1,w2, . . . ,wm,wm+1)

0

 ,
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β̃ = [β1,β2, . . . ,βm,a]T ,

γ̃ = [γ1,γ2, . . . ,γm,1]T ,

α̃ = [α1,α2, . . . ,αm,0]T ,

ζ̃ = [ζ1,ζ2, . . . ,ζm,0]T .

In this thesis, we suppose that the unique solution of the problems always exists. There-
fore the hypothesis of the following theorem of existence and uniqueness is satisfied by
each component of the system.

Theorem 1.1 :(Existence and Uniqueness)
Let f (x,y) be defined and continuous for all points (x,y) in the region D defined by
a≤ x≤ b,−∞ < y < ∞,a and b finite, and let there exists a constant L such that

| f (x,y)− f (x,y∗)| ≤ L|y− y∗|. (1.6)

satisfies for all (x,y),(x,y∗) ∈ D. Then if y0 ∈ R is any number, there exists a unique
solution y(x) of initial value problem (1.2), where y(x) is continuous and differentiable
for all (x,y) ∈ D. The requirement (1.6) is known as a Lipschitz condition and the
constant L as a Lipschitz constant.

The proof of Theorem 1.1 can be found in Henrici (1962).

Definition 1.1 :(see Burden and Faires (2011))
The initial-value problem (1.2), is said to be an ill-posed problem if it is not satisfied
any one of the following conditions:

1. the solution y(x), to the problem (1.2) exists,

2. the solution y(x), is unique,

3. for any ε , there exist constants ε0, and κ , such that ε0 > ε > 0, whenever β (x)
is continuous with |β (x)| < ε, for all x in [a,b], and when |β0| < ε,, the initial
value problem

z′ = f (x,z)+β (x), a≤ x≤ b, z(a) = α +β0,

has a unique solution z(x) that satisfies
|z(x)− y(x)|< κε, for all x in [a,b].

5
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1.2 Numerical Methods for Solving Initial Value Problem

Numerical methods for solving initial value problems of ODEs are commonly classified
into one-step methods or two-step methods. In one-step methods, the approximation of
the solution is computed using the information of only one previous point. On the other
hand, multistep methods, the approximation of the solution is computed using the in-
formation of n previous points. These techniques have their advantages and drawbacks.

1.2.1 Runge-Kutta Method

The general s-stage Runge-Kutta method for solving first-order ODEs (1.2) can be
defined as follows:

yn+1 = yn +h
s

∑
i=1

biki, (1.7)

where

k1 = f (xn,yn), (1.8)

ki = f
(

xn + cih,yn +h
s

∑
j=1

ai jk j

)
, i = 1,2, . . . ,s, (1.9)

and the following row-sum assumption holds

ci =
s

∑
j=1

ai j, i = 1,2, . . . ,s. (1.10)

It is appropriate to display the coefficients of RK method (1.7)–(1.9) as in Butcher
notation or Butcher tableau as shown in Table 1.1.

Table 1.1: Butcher tableau for RK method

c A

bT
=

c1 a11 a12 . . . a1s
c2 a21 a22 . . . a2s
...

...
...

. . .
...

cs as1 as2 . . . ass
b1 b2 . . . bs

The s-dimension vectors b and c and the s× s matrix A can be defined as follows

b = [b1,b2, . . . ,bs]
T ,

c = [c1,c2, . . . ,cs]
T ,

A = [ai j].

6



© C
OPYRIG

HT U
PM

The RK method is said to be explicit if ai j = 0 for i ≤ j, i = 1,2, . . . ,s, and semi
implicit if ai j 6= 0 for i≤ j, i = 1,2, . . . ,s and fully implicit otherwise.

1.2.2 Runge-Kutta-Nyström Method

A numerical method for solving second-order ODEs (1.3) was introduced in 1925 by
E.J. Nyström denoted as Runge-Kutta-Nyström (RKN) method.

The general s-stage RKN method can be expressed as follows:

yn+1 = yn +hy′n +h2
s

∑
i=1

biki, (1.11)

y′n+1 = y′n +h
s

∑
i=1

b′iki, (1.12)

where

ki = f
(

xn + cih,yn +hciy′n +h2
i−1

∑
j=1

ai jk j

)
, i = 1,2, . . . ,s, (1.13)

All the coefficients ci,bi,b′i and ai j of RKN method are supposed to be real. The s-
dimension vectors b,b′ and c and the s× s matrix A can be defined as follows

b = [b1,b2, . . . ,bs]
T ,

b′ = [b′1,b
′
2, . . . ,b

′
s]

T ,

c = [c1,c2, . . . ,cs]
T ,

A = [ai j].

and the following Nyström row condition holds

1
2

ci =
s

∑
j=1

ai j, i = 1,2, . . . ,s. (1.14)

The RKN method (1.11)–(1.13) can be represented in Butcher tableau as illustrated in
Table 1.2.

Table 1.2: Butcher tableau for RKN method

c A

bT

b′T

=

c1 a11 a12 . . . a1s
c2 a21 a22 . . . a2s
...

...
...

. . .
...

cs as1 as2 . . . ass
b1 b2 . . . bs
b′1 b′2 . . . b′s

7
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1.2.3 Improved Runge-Kutta Method

Rabiei (2012) derived explicit Improved Runge-Kutta (IRK) method for solving first
order ordinary differential equation (1.2). The general s-stage of explicit IRK method
is given by

yn+1 = yn +h
(

b1k1−b−1k−1 +
s

∑
i=2

bi(ki− k−i)
)
, 1≤ n≤ N−1, (1.15)

where

k1 = f (xn,yn), (1.16)
k−1 = f (xn−1,yn−1), (1.17)

ki = f
(

xn + cih,yn +h
i−1

∑
j=1

ai jk j

)
, (1.18)

k−i = f
(

xn−1 + cih,yn−1 +h
i−1

∑
j=1

ai jk− j

)
, i = 2,3, . . . ,s. (1.19)

and the row-sum condition (1.10) must be satisfied. The values of ki and k−i are based
on the values of k j and k− j respectively. In every step we only require to evaluate the
values of k j, i = 1,2, . . . , i−1, while k− j is computed from the previous step. The extra
k values aimed to make the method more precise. The IRK method (1.15)–(1.19) are
written in Butcher tableau as depicted in Table 1.3.

Table 1.3: Butcher tableau for IRK method

0 0
c2 a21
c3 a31 a32
...

...
...

. . .
cs as1 as2 . . . ass−1

b−1 b1 b2 . . . bs−1 bs

8
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The idea of the IRK method can be described in Figure 1.1.

Figure 1.1: General concept for IRK method

1.2.3.1 Algebraic Order Conditions for IRK method

The order conditions of IRK method up to sixth order have been obtained by Rabiei
(2012) as follows:

order 1: b1−b−1 = 1 (1.20)

order 2: b−1 +∑
i

bi =
1
2

(1.21)

order 3: ∑
i

bici =
5

12
(1.22)

order 4: ∑
i

bic2
i =

1
3

(1.23)

∑
i, j

biai jc j =
1
6

(1.24)

order 5: ∑
i

bic3
i =

31
120

(1.25)

∑
i, j

biciai jc j =
31

240
(1.26)

∑
i, j

biai jc2
j =

31
360

(1.27)

∑
i, j,k

biai ja jkck =
31
720

(1.28)

9
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order 6: ∑
i

bic4
i =

1
5

(1.29)

∑
i, j

bic2
i ai jc j =

1
10

(1.30)

∑
i, j,k

biai jc jaikck =
1

20
(1.31)

∑
i, j,k

biciai jc2
j =

1
15

(1.32)

∑
i, j

biai jc3
j =

1
20

(1.33)

∑
i, j,k

biciai ja jkck =
1

30
(1.34)

∑
i, j,k

biai jc ja jkck =
1
40

(1.35)

∑
i, j,k

biai ja jkc2
k =

1
60

(1.36)

∑
i, j,k

biai ja jkakmcm =
1

120
(1.37)

1.2.4 Improved Runge-Kutta-Nyström Method

Rabiei and Ismail (2012) constructed an explicit Improved Runge-Kutta-Nyström
(IRKN) method for solving second-order ODEs (1.3). The general s-stage explicit
IRKN method is defined by

yn+1 = yn +
3h
2

y′n−
h
2

y′n−1 +h2
s

∑
i=2

b′i(ki− k−i), (1.38)

y′n+1 = y′n +h
(

b1k1−b−1k−1 +
s

∑
i=2

bi(ki− k−i)
)
, (1.39)

where

k1 = f (xn,yn), (1.40)
k−1 = f (xn−1,yn−1), (1.41)

ki = f
(

xn + cih,yn +hciy′n +h2
i−1

∑
j=1

ai jk j

)
, i = 2,3, . . . ,s, (1.42)

k−i = f
(

xn−1 + cih,yn−1 +hciy′n−1 +h2
i−1

∑
j=1

ai jk− j

)
, i = 2,3, . . . ,s. (1.43)

10
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It is appropriate to express of the explicit IRKN (1.38)–(1.43) method in Butcher
tableau as shown in Table 1.4.

Table 1.4: Butcher tableau for IRKN method

0 0
c2 a21

c3 a31 a32
...

...
...

. . .

cs as1 as2 . . . ass−1

b−1 b1 b2 . . . bs−1 bs

b′2 . . . b′s−1 b′s

also the Nyström row condition (1.14) must be satisfied.

1.3 Taylor Series Expansion

If the function y(x) is sufficiently differentiable, then y(x+h) can be expanded in Taylor
series form as follows:

y(x+h) = y(x)+hy′(x)+
h2

2
y′′(x)+ · · ·+ hq

q!
y(q)(x)+ . . . (1.44)

where y(q) = dqy
dxq ,q = 1,2, · · · .

Similarly, we can write the Taylor series expansion of y(xn +h) as follows

y(xn +h) = y(xn)+hy′(xn)+
h2

2
y′′(xn)+ · · ·+

hq

q!
y(q)(xn)+ . . . (1.45)

In practice all terms up to involve hq are included, that is

y(xn+1) = y(xn +h)

= y(xn)+hy′(xn)+
h2

2
y′′(xn)+ · · ·+

hq

q!
y(q)(xn)+hq+1Eq+1(εn). (1.46)

where Eq+1(εn),xn ≤ εn ≤ xn +h, is the residual term. By removing the residual term
from (1.46), we obtain the Taylor series expansion of order q as follows

y(xn+1) = y(xn +h) = y(xn)+hy′(xn)+
h2

2
y′′(xn)+ · · ·+

hq

q!
y(q)(xn). (1.47)

From (1.47) the general form of explicit one-step method can be defined as

yn+1 = yn +hψ(xn,y(xn),h). (1.48)

11
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where the function ψ(x,y,h) is called the increment function and yn is the estimation
of the exact solution y(xn).

Definition 1.2 :(see Dormand (1996))
The exact solution y(xn) will satisfy

y(xn+1) = y(xn)+hψ(xn.y(xn),h)+ tn+1. (1.49)

where tn+1 is called the local truncation error.

Definition 1.3 :(see Dormand (1996))
The one-step method (1.48) is said to have order q if q is the largest positive integer
such that

y(x+h)− y(x)−hψ(x,y(x),h) = O(hq+1). (1.50)

Definition 1.4 :(see Dormand (1996))
The one-step method (1.48) is consistent if ψ(x,y,0) = f (x,y).

1.4 Problem Statement

The common technique for solving higher order ODEs is by transforming the problems
into a system of first order ODEs and solving it using a suitable numerical method in
the literature. The disadvantage of this technique is that more function evaluations are
needed to be evaluated or computed, which leads to a longer execution time and more
computational effort. Hence, the direct numerical method for solving higher order
ODEs becomes essential in the field of numerical analysis.

Herein, we will derive the Improved Runge-Kutta type method for directly solving spe-
cial third-order ODEs. In addition, we are going to cover the formulation and consider
the implementation in details.

When this research study began, no study had been carried on the Runge-Kutta method
for directly solving special fourth-order ODEs. Therefore, the following problems are
treated in this thesis to handle the gap in the scientific literature on numerical solutions
of special fourth-order ODEs; the construction of Runge-Kutta type method for directly
solving special fourth-order ODEs denoted as RKFD methods; the derivation of order
conditions for RKFD methods; the derivation of direct numerical RKFD methods of
different orders for solving special fourth-order ODEs; and the derivation of different
orders of embedded RKFD pairs for solving special fourth-order ODEs.
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1.5 Scope of the Thesis

The research focuses on special third and fourth order ODEs because the methods de-
rived in this thesis are nonlinear (Runge-Kutta type methods). Therefore, it is not easy
and it is not computationally efficient to solve the general form of the third and fourth
order ODEs using these methods. Hence, the methods derived are limited to solve the
special form of the third and fourth order ODEs.

1.6 Objectives of the Thesis

The objectives of this thesis are:

1. to derive the order conditions of Improved Runge-Kutta type method for directly
solving special third-order ODEs, denoted by IRKD methods. Based on the order
conditions, IRKD methods of orders four and five will be constructed.

2. to derive the order conditions of Runge-Kutta type method for directly solving
special fourth-order ODEs, known as RKFD methods. Based on the order con-
ditions, RKFD methods of orders four, five and six will be derived.

3. to construct embedded RKFD methods of orders 5(4) and 6(5) for directly solv-
ing special fourth-order ODEs using variable step size codes.

4. to compare the efficiency of the new proposed methods with the existing meth-
ods.

5. to apply the new IRKD and RKFD methods to solve physical problem and engi-
neering problem respectively.

1.7 Outline of the Thesis

This thesis consists of eight chapters which are organized as follows:

Chapter 1 gives a brief introduction on the development of the numerical methods
for solving differential equations, which involves the definitions and properties of
ODEs. Numerical methods particularly Runge-Kutta methods, Runge-Kutta-Nyström
methods, Improved Runge-Kutta methods and Improved Runge-Kutta-Nyström
methods will also be introduced.

Chapter 2 deals with the review of the earlier works on the numerical methods for
solving ODEs, which covers the literature review on numerical methods for first-order
and second-order ODEs. Followed by the literature review on numerical methods for
solving third-order and fourth-order ODEs.
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Chapter 3 devotes to the derivation of Improved Runge-Kutta type method for solving
third order ODEs, denoted as IRKD methods by finding the order conditions using
Taylor series expansions. The order conditions up to the sixth-order are presented.

Chapter 4 is focused on the derivation of a three-stage fourth-order and four-stage
fifth-order IRKD methods. Comparison of the numerical results using IRKD methods
and the existing methods will also be given. The application of the new IRKD methods
for solving the physical problem in thin film flow is shown.

Chapter 5 focuses on the derivation of the order conditions of Runge-Kutta type
methods for directly solving special fourth-order ODEs, denoted as RKFD methods
using two techniques; the first technique is using the Taylor series expansion and the
second technique is using the relevant-colored trees and the corresponding B-series
theory. The order conditions up to order seven are also presented.

Chapter 6 is devoted to the derivation of the explicit three-stage fourth-order RKFD
method, followed by the derivation of the explicit three-stage fifth-order and four-stage
sixth-order RKFD methods. Based on the constant step-size code the new RKFD
methods are used for solving special fourth-order ODEs, and numerical results are
compared with the results obtained by the existing RKN methods and RK methods
after converting the fourth-order ODEs to a system of second-order ODEs and to
a system of first order ODEs respectively. The implementation of the new RKFD
methods to solve the engineering problem in an ill-posed problem of a beam on the
elastic foundation is presented.

Chapter 7 presents the derivation of the two pairs of embedded RKFD methods for the
direct solution of special fourth- order ODEs of the form y(iv) = f (x,y). The first pair
is the RKFD5(4) which is fourth order RKFD method embedded in fifth order method.
The second pair is the RKFD6(5) pair which is fifth order RKFD method embedded in
sixth order method. Based on the newly proposed methods a variable step-size code is
developed for solving special fourth-order ODEs.

Finally, the summary of the thesis, conclusion and recommendation for future research
are given in Chapter 8.
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