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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of 

the requirement for the degree of Doctor of Philosophy 

BLOCK BACKWARD DIFFERENTIATION ALPHA-FORMULAS FOR 
SOLVING STIFF ORDINARY DIFFERENTIAL EQUATIONS 

By

ISKANDAR SHAH BIN MOHD ZAWAWI 

March 2017 

Chair: Zarina Bibi Binti Ibrahim, PhD 
Faculty: Science 

A new family of block methods, namely block backward differentiation alpha-formulas 

(BBDF-� ) are developed for solving first and second order stiff ordinary differential 

equations (ODEs) directly. By selecting the appropriate values of parameter �  that can 

be controlled by user, the derived methods give better approximation compared to the 

existing methods. Initially, the derivation of BBDF-�  using constant and variable step 

size approach for solving first order stiff ODEs is presented. The consistency and zero 

stability that lead to the convergence properties are discussed theoretically. Meanwhile, 

the stability regions are displayed to show that the derived methods are A-stable for 

certain values of � . Numerical results reveal the superiority of the derived formulas in 

terms of total number of steps, accuracy and computation time.  

Subsequently, the BBDF-�  is constructed for solving second order stiff ODEs 

directly. This method is specially designed to cater the second order ODEs without 

reducing it into the first order. The convergence aspects are investigated and the 

stability region is illustrated to verify the suitability of the method in solving stiff 

problems. Numerical results demonstrate the advantage of the method in terms of 

execution time due to its capability as direct solver. Furthermore, the BBDF-�  is 

formulated using variable step size scheme for solving second order stiff ODEs 

directly. In order to describe the whole process of implementation, the numerical 

algorithm is exhibited. The results indicate that the developed method has advantage in 

terms of accuracy and total number of step. Finally, the application of derived methods 

in damped oscillation problems is presented. To test the performance of the methods,

several experiments on over-damped, critically-damped and under-damped oscillation 

in mass-spring systems are conducted. In conclusion, the derived methods can be used 

as viable alternative solver for stiff ODEs and real-life problem.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra sebagai memenuhi 

keperluan untuk ijazah Doktor Falsafah 

FORMULA-ALFA BLOK PEMBEZAAN KE BELAKANG BAGI 
MENYELESAIKAN PERSAMAAN PEMBEZAAN BIASA KAKU 

Oleh 

ISKANDAR SHAH BIN MOHD ZAWAWI 

Mac 2017 

Pengerusi: Zarina Bibi Binti Ibrahim, PhD 
Fakulti: Sains 

Keluarga baru kaedah blok iaitu formula-alfa blok pembezaan ke belakang (FBPB-� )

dibangunkan bagi menyelesaikan persamaan pembezaan biasa (PPB) kaku peringkat 

pertama dan kedua. Dengan memilih nilai parameter �  yang sesuai yang boleh 

dikawal oleh pengguna, kaedah yang diterbitkan memberi penghampiran yang lebih 

baik daripada kaedah sedia ada. Pada mulanya, penerbitan FBPB-�  menggunakan 

pendekatan saiz langkah malar dan berubah bagi menyelesaikan PPB kaku peringkat 

pertama dibentangkan. Konsistensi dan kestabilan sifar yang membawa kepada sifat-

sifat penumpuan dibincangkan secara teori. Sementara itu, rantau-rantau kestabilan 

dipaparkan untuk menunjukkan kaedah yang diterbitkan adalah A-stabil bagi nilai-nilai 

�  tertentu. Keputusan berangka mendedahkan keunggulan kaedah-kaedah yang 

diterbitkan dalam terma jumlah bilangan langkah, kejituan dan pengiraan masa.  

Seterusnya, FBPB-�  dibina bagi menyelesaikan PPB kaku peringkat kedua secara 

langsung. Kaedah ini direka khas untuk memenuhi PPB peringkat kedua tanpa 

menurunkannya kepada peringkat pertama. Aspek penumpuan diselidik dan rantau-

rantau kestabilan diilustrasikan untuk mengesahkan kesesuaian kaedah dalam 

menyelesaikan masalah-masalah kaku. Keputusan berangka menunjukkan kelebihan 

kaedah dalam terma pengiraan masa disebabkan keupayaannya sebagai penyelesai 

langsung. Selain itu, FBPB-�  diformulasi menggunakan skim saiz langkah berubah 

bagi menyelesaikan PPB kaku peringkat kedua secara langsung. Untuk menerangkan 

keseluruhan proses perlaksanaan, algoritma berangka dipamerkan. Keputusan 

menunjukkan kaedah yang dibangunkan mempunyai kelebihan dalam terma kejituan 

dan jumlah bilangan langkah. Akhir sekali, aplikasi kaedah-kaedah dibangunkan dalam 

masalah-masalah ayunan teredam dibentangkan. Untuk menguji prestasi kaedah,

beberapa eksperimen terhadap teredam lebih, teredam kritikal dan teredam bawah 

ayunan dalam sistem jisim-spring dijalankan. Kesimpulannya, kaedah yang diterbitkan 

boleh digunakan sebagai penyelesai alternatif berdaya maju bagi PPB kaku dan 

masalah kehidupan sebenar. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

Differential equations have long been an essential part in most branches of physical 

sciences and engineering all over the world. Scientists and engineers often study the 

changes of variables in a system of equations to gain a deeper understanding of the 

underlying phenomena. One of the most well known differential equations is ordinary 

differential equations (ODEs) which can be categorized into stiff and non-stiff. In real 

life situations, the undamped and damped oscillation problems like mass-spring system 

are often modeled as second order ODEs. However, it is unfortunate that the majority 

of ODEs encountered in practice is difficult or impossible to be solved analytically. For 

this reason, a suitable numerical method must be derived where the approximated 

solutions are produced in the form of a graph or a table of numbers.

Nowadays, various accurate and efficient numerical methods are available to give a 

reasonable degree of confidence in the solution of ODEs. Numerical method can be 

classified as one step method and multistep method. For instance, the Runge-Kutta 

method is one step method, whereas the backward differentiation formula (BDF) is the 

method in the family of linear multistep method (LMM). The one step method is used 

to approximate the solution using one previous point while the multistep method 

computes the solution using several previous points. Since the BDF method is 

important in dealing with stiffness, here the attention will be directed towards the 

phenomenon of LMM which is confined to the new class of block backward 

differentiation formulas (BBDF) for solving stiff ODEs and some applied problems. 

1.2 Problem statement 

The dynamic behavior of any systems in real-life can be described in the form of 

ODEs. In this thesis, the numerical solution of ODEs is presented. The attention will be 

focused on solving single, system, first order linear and non-linear ODEs. Then the 

numerical method is extended to solve second order ODEs directly. It has to be pointed 

out that for all initial value problems (IVPs), there may exist analytical solutions. The 

general form of first order ODEs is defined as


 � 
 �' , ,� �y f x y y a �  (1.1) 

where the interval is 
 �,�x a b . The order of ODEs is the order of the highest

differential coefficient appears in the equation. Hence, the general form of second order 

ODEs is given by 


 �, , , 1, 2, , ,�� �� � , ,i i i iy f x y y i s (1.2) 

where 
 � �i iy a �  and 
 �� ��i iy a �  are initial conditions with the interval 
 �,a b .
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Equation (1.2) can be reduced to the system of first order ODEs as follows: 


 �,1 ,2 ,2 ,1 ,2, , , ,� �� �i i i i i iy y y f x y y (1.3) 

which is equivalent to 


 � 
 �, ,� � �
 � 
 �,�� � �
 � 
 �Y F x Y Y a �
where 


 � 
 � 
 �
 �

 � 
 �

1,1 1,2 ,1 ,2 1,1 1 1,1 1,2 ,1 ,1 ,2

1,1 1,2 ,1 ,2

, , , , ,  , , , , , , , , ,

, , , , .

� � � � � �� �

�


 1,1 1,21 21 2
� � �
� 
 � 
 � 
 �
 �, , , 
 ,��� 
� 
 �
,1 ,2 1,1 1 
1 1 1 
 �,  � 
1 2 1 1 1 
� � ��

 � 
 1� ,1 ,21 2

TT
s s s s s s

T
s s

Y y y y y Y y f x y y y f x y y

Y a � � � �

Throughout the thesis, the following theorem which states the conditions on 
 �, �f x Y
guarantee the existence of a unique solution of (1.1). 

Theorem 1.1 
Let 
 �, �f x Y  be defined and continuous for all points 
 �, �x Y  in the region D defined by

� �a x b , � �� �Y , where a  and b  are finite, and let there exists a constant L known 

as Lipschitz constant such that for every ,x Y  and **Y  such that 
 �, �x Y  and 
 �*, �x Y  are 

both in D , 


 � 
 �* *, , .	 � 	� 
 � *�� 
 .	 � 	
 ��
f x Y f x Y L Y Y  (1.4) 

Then it �  is any given number, there exists a unique solution 
 �
 �Y x  of (1.1) where


 �
 �Y x  is continuous and differentiable for all 
 �, �x Y  in D . The requirement (1.4) is

known as Lipschitz condition. See Henrici (1962) for the proof. This assumption 

establishes the existence of a unique solution of (1.1). 

1.3 Stiff ordinary differential equations 

Based on Aliyu et al. (2014), the phenomenon of stiffness is not precisely defined in 

the literature. Some attempts on describing a stiff problem are: 

i) A differential equation of the form ' ,( ( ))�y f t y t  is said to be stiff if its

exact solution 
 �y t  includes a term that decays exponentially to zero as

t increases, but whose derivatives are much greater in magnitude than

the term itself. An example of such a term is 	 te � , where �  is a large, 

positive constant, because its thk  derivative is 	k tc e � . Because of the 

factor of kc , this derivative decays to zero much more slowly than 	 te �

as t  increases. Because the error includes a term of this form, evaluated

at a time less than t , the error can be quite large if h which is the step

size is not chosen sufficiently small to offset this large derivative.

Furthermore, the larger � is, the smaller h  must be to maintain

accuracy.
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ii) A problem is stiff if it contains widely varying time scales where some 

components of the solution decay much more rapidly than others. 

iii) A problem is stiff if the step size is dictated by stability requirements 

rather than by accuracy requirements. 

iv) A problem is stiff if explicit methods do not work or work only 

extremely slowly. 

v) A linear problem is stiff if all of its eigenvalues have negative real part, 

and the stiffness ratio (the ratio of the magnitudes of the real parts of the 

largest and smallest eigenvalues) is large. 

 

It is pertinent to note that this thesis follows the definition of stiff problem which is 

given by Lambert (1991) as follows: 

 

Definition 1.1 
The system of (1.1) is said to be stiff if 
 � 0, 1, ,e 2,R � � �t t m�  and 


 � 
 �max Re min Remin Ret t t t� �  where t�  are the eigenvalues of the Jacobian matrix,

.
� ��

� � ��� �

fJ
y

 

 

1.4 Linear multistep method 

The concept of linear multistep method (LMM) which is developed by Dahlquist 

(1956) has attracted considerable attention through the exposition by Henrichi (1962, 

1963). Hence some definitions of LMM are presented which has been established by 

Lambert (1991). 

 

Definition 1.2 
The general forms of LMM for first and second order ODEs are given as follows: 

For first order ODEs: 

0 0

' ,
�

� �
�

�� �
j j

k k

j n j j n jya y h b                                           (1.5) 

For second order ODEs: 

2

0 0 0

,� � �
� � �

� ��� �� � �
k k k

j n j j n j j n j
j j j

a y h b y h c y                                (1.6) 

where ,  j ja b  and jc  are constants coefficients subject to the conditions 0�ka  and not 

all 
00 0,  ,  ca b  are zero. k  is defined as the order of the method and h  is the step size. 

The method (1.5) is explicit if 0�kb  and it is implicit if 0�kb . The associated linear 

difference operator, L  for (1.6) is 


 � 
 � 
 � 
 �2

0

;
�

� �� !� � 	 � 	 � !" # " #�
k

j j j
j

L y x h a y x jh hb y x jh h c y x jh ,     (1.7) 

where 
 �y x  is an arbitrary function, continuously differentiable on 
 �,a b . The 

function 
 �y x  may have many higher derivatives. By the Taylor expansion of 
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functions 
 � 
 �, �� �y x jh y x jh  and 
 ��� �y x jh  about the point x , and subsequently

collecting the derivatives y  gives  


 � 
 � 
 � 
 � 
 � 
 �2

0 1 2

0

; .
�

!� ��� � � � � � !  " # " #� 
 � 
 � .
 � !� �
 � 
 �
 � 
 � #
k

qq
q

j
L y x h C y x C hy x C h y x C h y x  (1.8) 

The constant qC  is defined as 


 � 
 �

0

0

1

0

1 2

0

( ),

2

,

1 1 1
,  .

! 1 !
,  3,  4,  

2 !

�

�

	 	

�

� �
� 	 	� �� �	 	� �

�

� 	

�

�

�

�

.

j

j

k

j

k

j j

k
q q q

q j j j
j

a b

C a

C j

qC j a j b j c
q q q

(1.9) 

Henrici (1962) stated that the order of the LMM for first and second order ODEs can 

be determined based on the following definitions. 

Definition 1.3 
The LMM (1.5) is said to be of order p if

0 1 10,  0�� ��� � �p pC C C C  where 
1�pC

is error constant. 

Definition 1.4
The LMM (1.6) is said to be of order p if

0 1 1 20,  0� �� ��� � ��p p pC C C C C where 

2�pC  is error constant. 

The ability of a method to approximate the exact solutions of differential equations to 

any required accuracy as the step size tends to zero is called convergence. Bausys 

(1996) stated that the convergence requires consistency and unconditionally stable 

which can be determined by the spectral radius. The definition of unconditionally 

stable is given as follows:

Definition 1.5
The numerical method is unconditionally stable if the spectral radius is less than or 

equal to unity, 
 � 1�A� . The spectral radius, �  of amplification matrix, A  is defined

by 
 � 
 �max . 1,2, ,� � �i iA t A i N� where N  is the dimension of amplification 

matrix, A . 

Another alternative definition of convergence has been discussed by Butcher (2008). 

The author mentioned that the LMM is convergent if and only if it is consistent and 

zero-stable. The definitions of consistency and zero stability are given as follows: 

Definition 1.6
The LMM is consistent if and only if the following conditions are satisfied: 
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0

0 0

0,

,

�

� �

�

�

�

� �

k

j

k k

j

j

j j
j

a

ja b
                                              (1.10) 

Definition 1.7 
The LMM is said to be zero-stable if no root of the first characteristic polynomial, 


 �p t  has modulus greater than one, and if every root with modulus one is simple. 

 

Shampine and Watts (1969) emphasized that the stability problem would appear to be 

the most serious limitation of LMM. Therefore, the stability properties of any LMM 

must be considered to ensure an effectiveness of the solutions. The following 

definitions demonstrate the absolute stability and A-stable of LMM. 

 

Definition 1.8 
The LMM is said to be absolutely stable in a region $  (real part) of the complex plane 

if, for all ˆ�$h , all roots of the stability polynomial, 
 �ˆ,p t h  associated with the 

method, satisfy 1,  1,  2, ,  .� � ,  .st s k  

 
Definition 1.9 
The LMM is A-stable if its region of absolute stability contains the whole of the left-

hand half-plane, 

 � 0$ �h� . 

 

1.5 Objectives 

This thesis aims to achieve the following objectives: 
i) To derive the constant step block backward differentiation alpha-

formulas for solving first and second order stiff ODEs. 

ii) To develop the block backward differentiation alpha-formulas using 

variable step size strategy for solving first and second order stiff ODEs. 

iii) To establish the stability and convergence properties of the derived 

methods. 

iv) To compare the performance of the derived methods with the existing 

methods in terms of accuracy and computational time. 

v) To analyze the numerical solutions of damped oscillation problems using 

the developed methods. 

1.6 Scope and Limitation 

This thesis concentrates on the derivation of block alpha methods for solving first and 

second order stiff ODEs. Note that the second order stiff initial value problems (IVPs) 

of ODEs will be solved directly without reducing it into a system of first order. The 

proposed methods will be derived using constant step and variable step approach to 

produce the approximated solutions at two points simultaneously. To evaluate the 
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effectiveness of the derived methods in solving stiff ODEs, the numerical results will 

be compared with the results obtained in the scientific literature. The comparison 

parameters consist of the total number of steps, successful steps, failure steps, 

maximum errors, average errors and computation time. However, the computation time 

is limited to some numerical results due to the difference environment and equipments. 

In addition, the under-damped, critically-damped and over-damped oscillation 

problems of second order IVPs in mass-spring systems are solved to ensure the 

capability of the derived methods in solving applied problems. 

 

1.7 Framework of the thesis 

This chapter begins with a brief background of the thesis followed by some basic 

concepts of problems considered and relevant definitions which will be referred later in 

the next chapters. 

 

Chapter 2 gives the summary of earlier numerical methods and reviews some theories 

and formulation of existing � -methods to support the contribution of the current 

research. 

 

Chapter 3 presents the derivation of constant step BBDF-�  of order three and four for 

solving first order stiff ODEs. The order of the method is verified. The conditions of 

consistency and zero stability are satisfied to show the convergence properties of the 

method. The strategy of choosing the suitable �  is presented. In order to show the 

BBDF-�  is A-stable for some values of � , the graph of stability region is plotted. The 

implementation of the method using Newton iteration is also discussed. The 

performance of the derived method is compared with the numerical results obtained in 

the literature. 

 

Chapter 4 focuses on the derivation of variable step BBDF-�  of order three and order 

four for solving first order stiff ODEs. The strategy of varying the step size is 

discussed. The order, convergence and stability properties of the method are 

investigated. At the end of this chapter, the numerical results of the derived method are 

compared with several existing methods and MATLAB’s solvers. 
 

In Chapter 5, the constant step BBDF-�  is constructed for solving second order stiff 

ODEs directly. The details derivation and order conditions are described. The 

convergence properties are verified while the stability region is illustrated. Numerical 

results and the comparison with several existing methods are provided. 

 

Chapter 6 pays full attention to the derivation of BBDF-�  using variable step size 

strategy for solving second order stiff ODEs directly. The strategy of maintaining or 

varying the step size ratio is also discussed. The algorithm of the implementation is 

presented. This chapter ends with the comparison of its performance with the existing 

methods and MATLAB’s solvers. 
 

Numerical solution of damped oscillation problems presented in Chapter 7 relies 

heavily on the previous chapters. A brief introduction of oscillation problems is 
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discussed. Subsequently, the formulas derived in Chapter 3, 4, 5 and 6 are adopted to 

deal with under-damped, over-damped and critically-damped oscillation problems in 

mass-spring systems. Some numerical experiments are presented to demonstrate the 

capability of the derived methods in solving real-life application. Finally, this thesis is 

summarized and recommendation for future research is stated in Chapter 8.
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