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Abstract of thesis presented to the Senate of Universiti Putra Malysia in fulfillment 
of the requirement for the Degree of Doctor of Philosophy 

FOLIC ACID-CONJUGATED CHITOSAN-BASED Mn(2+)-DOPED ZnS 
QUANTUM DOT FOR BREAST CANCER CELL IMAGING AND 

TARGETED DRUG DELIVERY 

By 

IBRAHIM BIRMA BWATANGLANG 

March 2017 

Chairman : Professor Nor Azah Yusof, PhD 
Faculty : Science 

For the past few decades, many acquisitions were developed to unraveled cancer 
chemistry by designing smarter nanomaterials that can selectively target cancer cells, 
respond to its microenvironment and possibly support non-invasive diagnosis. 
However, despites the encouraging achievements in line with this concept in vitro, the 
use of these theranostics nanomaterials in vivo remain an unfinished business. Based 
on this account, a nanocomposite for targeted delivery and imaging application was 
developed. The rational was implemented by exploring chitosan-biopolymer based 
system mediated by folic acid-conjugation with affinity towards folate receptors 
expressed by cancer cells. The folic acid conjugated chitosan-based system was 
further equipped with a fluorescence imaging contrast agent (Mn:ZnS) to deliver 5-
Fluororaucil anti-cancer drugs selectively into tumor-microenvironment. On the basis 
of these strategies, four sequential wet chemistry methods was adopted to prepare the 
5-FU@FACS-Mn:ZnS nanocomposite. The as-prepared nanocomposite shows an 
average particle size distribution of 8.42 ± 1.79 nm and emit orange-red fluorescence 
at ~600nm. The strategy for the preparation involves physicochemical optimization of 
the nanocomposites for controlled drug release, tumor targeting specificity and 
bioavailability. The result was accomplished by testing and optimizing the physical 
properties of the materials using Fourier transform infrared, ultraviolet-visible 
spectroscopy, thermogravimetric analysis/differential scanning calorimetry, 
transmission electron microscopy, field emission scanning electron 
microscopy/energy dispersive X-ray, X-ray diffraction, X-ray fluorescence, X-ray 
photoelectron spectroscopy, fluorescence microscopy and dynamic light scattering 
instrumentations. The in vitro result showed that the as-synthesized 5-FU@FACS-
Mn:ZnS nanocomposite when compared to the pure 5-FU anti-cancer drugs induced 
high level of apoptosis, selectivity and allowed fluorescence imaging in the cancer cell 
(MCF-7 and MDA-MB231) lines. This was evident based on the MTT cell 
proliferation assay, the arrest in the cell cycle and the quadrant-pattern from Annexin 
assay respectively. In addition to the superior anti-cancer effects demonstrated by the 
5-FU@FACS-Mn:ZnS in vitro, the nanocomposite was able to reduce the tumor 
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burden by inhibiting the tumor growth by 51 % compared to 42% induced by the pure 
5-FU drugs and effectively suppress the expression of pro-inflammatory NO and 
MDA activity levels in the 4T1 induced mice in vivo. Furthermore, the as-synthesized 
5-FU@FACS-Mn:ZnS nanocomposite in comparison to the 5-FU drugs has 
significantly allowed the stimulation of arsenal T-cells agents (CD3+/CD4+, 
CD3+/CD8+) , natural killer cells (NK 1.1/CD3+) and the anti-inflammatory 
cytokines (IL-2, IFN- γ), thus inhibiting cancer progression/metastasis as evident in 
the clonogenic assay of the lungs section. Furthermore, in comparison to the pure 5-
FU drugs, the 5-FU@FACS-Mn:ZnS has markedly decreased the pathological 
alterations caused by the 4T1 cell lines in the liver, spleen, kidney and the lungs of the 
cancer induced mice. These superior anti-tumor efficacy and anti-metastasis induced 
by the 5-FU@FACS-Mn:ZnS nanocomposite compared to the pure 5-FU drug is due 
to the enhanced selectivity of the folic acid conjugation towards the folate receptors 
expressing cancer cells, thus mediating enhanced cellular uptake of the folate-5-FU 
loaded conjugate into the tumor cells as evident from the tissue-biodistribution results 
in the 4T1 induced mice. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malysia sebagai 
memenuhi keperluan untuk Ijazah Doktor Falsafah 

ASID FOLIK-TERKONJUGASI DENGAN KITOSAN-BERDASARKAN 
SISTEM KUANTUM DOT UNTUK PENGIMEJAN DAN TERAPI SEL 

KANSER 

Oleh 

IBRAHIM BIRMA BWATANGLANG 

Mac 2017 

Pengerusi : Profesor Nor Azah Yusof, PhD 
Fakulti : Sains 

Untuk beberapa dekad yang lalu, banyak kajian telah dibangunkan untuk 
menyelesaikan kimia berkaitan dengan kanser dengan mereka bentuk bahan nano 
lebih pintar boleh mensasarkan sel-sel kanser secara terpilih, bertindak balas terhadap 
persekitaran mikro dan menyokong diagnosis bukan invasif. Walaupun pencapaian 
memberangsangkan selaras dengan konsep in vitro, penggunaan teranostik bahan 
nano in vivo kekal sebagai penyelidikan yang belum selesai. Berdasarkan ini, 
komposit nano teranostik dibangunkan untuk kegunaan penghantaran dan aplikasi 
pengimejan. Kajian dilaksanakan dengan meneroka rangsangan sistem berasaskan 
kitosan-biopolimer difungsikan dengan konjugasi folik asid berinteraksi dengan 
reseptor folat yang diekspresi oleh sel-sel kanser. Sistem berasaskan FACS telah 
dilengkapi dengan ejen pengimejan pendarfluor kontras (Mn:ZnS) untuk 
menyampaikan ubat antikanser terpilih 5-fluororaucil ke dalam persekitaran mikro 
tumor. Berdasarkan strategi ini, empat kaedah kimia telah diterima pakai untuk 
menyediakan 5-FU @ FACS-Mn: ZnS komposit nano. Strategi ini melibatkan 
pengoptimuman fizikokimia daripada komposit nano  5-FU @ FACS-Mn: ZnS untuk 
melepaskan ubat secara terkawal, menyasarkan tumor secara spesifik dan kesediaan 
bio. Keputusan ini telah dicapai dengan menguji dan mengoptimumkan sifat fizikal 
bahan menggunakan spektroskopi inframerah, spektroskopi lembayung-cahaya 
nampak, kaedah analisis terma/pengimbasan pembezaan kalorimeter, transmisi 
mikroskop elektron, mikroskop elektron imbasan  dan sinar X tenaga serakan,  
pembelauan sinar X, sinar X berpendarfluor, sinar X spektroskopi fotoelektron, 
mikroskop pendarfluor dan penyerakan cahaya dinamik instrumentasi. Hasil in vitro 
menunjukkan bahawa 5-FU @ FACS-Mn: ZnS komposit nano tulen mendorong 
apoptosis pada tahap tinggi, pemilihan yang ketara dan membenarkan pengimejan 
pendarfluor dalam sel kanser (MCF-7 dan MDA-MB231) berbanding 5-FU ubat anti-
kanser tulen. Ini terbukti berdasarkan ujian MTT, penangkapan dalam kitar sel dan 
corak kuadran Annexin. Selain kesan anti-kanser yang lebih tinggi ditunjukkan oleh 
5-FU @ FACS-Mn: ZnS in vitro, komposit nano dapat mengurangkan beban tumor 
dengan menghalang pertumbuhan tumor sebanyak 51% berbanding dengan 42% 
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disebabkan oleh 5-FU tulen dan berkesan mengurangkan ekspresi tahap aktiviti NO 
dan MDA dalam tikus 4T1 in vivo. Tambahan pula,  komposit nano 5-FU @ FACS-
Mn: ZnS  yang berkaitan dengan 5-FU membolehkan rangsangan ejen senjata T-sel 
(CD3 + / CD4 +, CD3 + / CD8 +), sel-sel pembunuh semulajadi (NK 1.1 / CD3 +) dan 
sitokin anti-radang (IL-2, IFN- γ) dan dengan itu mengawal selia aktiviti sitotoksik T-
sel dan sel-sel NK untuk bertindak agresif ke arah menghalang perkembangan kanser 
/ metastasis seperti yang terbukti dalam cerakin clonogenic dan histologi paru-paru 
seksyen. Tambahan pula, jika dibandingkan dengan ubat 5-FU tulen, 5-FU @ FACS-
Mn: ZnS dengan ketara dapat mengurangkan perubahan patologi yang disebabkan 
oleh 4T1 di bahagian sel di dalam hati, limpa, buah pinggang, paru-paru dan tumor 
tikus kanser dicabar. Ini merupakan kesan anti-tumor yang unggul dan anti-metastasis 
disebabkan oleh 5-FU @ FACS-Mn: ZnS NPS berbanding ubat 5-FU tulen adalah 
kerana selektiviti yang disebabkan oleh konjugasi FA berinteraksi dengan FR yang 
diekspresikan oleh sel-sel kanser, sekali gus mempertingkatkan pengambilan sel 
konjugat folat-5-FU ke dalam sel tumor seperti yang terbukti dari taburan bio tisu 
dalam tikus yan dirangsang dengan sel 4T.  
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CHAPTER I 

INTRODUCTION 

1.1 Background 

Globally today, millions in resources and unquantifiable amount in human energy has 
being expended and channeled into research and development in the fight against all 
classes of malignant diseases. And despite these efforts, cancer remain one of the 
major causes of mortality due to its ability to evade treatments (Bray et al., 2013; 
Ferlay et al., 2013; Misra et al., 2010). The unique feature of cancer cells that makes 
its deadly is characterized based on their tumor-clonality; which is a systemic step 
towards the development of tumor from a single cell, into a multistep and finally 
transforming into a malignant tissues through a progressive series of cells alteration 
(Cooper, 2000). The cause of these cells abnormalities is a complex event that usually 
involved many causal factors (environmental related risk factors) which are in one 
way or the other causally interrelated to other salient factors (eating habits and life-
style related risk factors) (Gago-Dominguez et al., 2016; Kenfield et al., 2016).  

In 2012, the statistics of cancer reported cases globally were estimated at 14.1 million 
new cases and 8.2 million cancer-related deaths (Bray et al., 2013; Ferlay et al., 2013). 
Among the commonly diagnosed cancers worldwide, breast cancer is single out 
largely as a gender biased malignancy. Historically speaking, breast cancer anciently 
referred to as a humoral disease was discovered way back 3500 years ago in Egypt 
(Akram and Siddiqui, 2012; Papavramidis, and Demetriou, 2010) and up to date 
remains the most common form of cancer in women worldwide, with nearly 1.7 
million new cases diagnosed and about 521,900 deaths cases recorded in 2012 (Torre 
et al., 2015). Statistically, among the 14.1 million reported new cancer cases in 2012, 
breast cancer accounts for over 25% of all cancer related cases and 15% of all cancer 
deaths recorded among female population (Torre et al., 2015).  

Though, significant progress has being achieved in cancer diagnostic, about 30% of 
patients with early-stage cancer have recurrent metastatic-related cases (Jamal et al., 
2003). Therefore, cancer treatment, not only should be design to oblate cancer cells, 
but also should possess properties that can disrupt or inhibit possible metastatic 
processes (Zijl et al., 2011). Cancer cell metastasis is typically responsible for more 
than 90% of cancer-related death, exerting clonality through tissue invasion, 
extravasation, migration, angiogenesis and circulation (Fidler, 2000; Finger and 
Giaccia, 2010). 

1.2 Cancer-Based Therapeutics 

Conventionally, one of the commonest response strategy toward advanced malignancy 
is surgery followed by series of other conventional approaches such as radiation 
therapy and regimental chemotherapy (Nounou et al., 2015).  
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Chemotherapy is a regimental approach following the use of cytotoxic drugs to 
systemically kill cancer cells. For the past seven decades, more than 175 anti-tumor  
drugs hit the market out of which 65% are derived from nature (Mišković et al., 2013). 
Chemotherapeutic drugs are mostly categories based on their ability to target cells in 
a particular phase of the cell growth cycle and can either induced cytotoxic effect to 
actively dividing cells or cells in the proliferating and resting phases (Barbour and 
Engemann, 2015). Most antimetabolites based drugs enter the cells kinetics by killing 
proliferating cells during a specific part or parts of the cells cycle or enters the s-phase 
by inhibiting DNA synthesis or the M-phase by inhibiting the formation and alignment 
of chromosomes (Barbour and Engemann, 2015). However, as typical of cytotoxic 
drugs, they exert their killing spree irrespective of cell cycle stages (proliferating or 
resting) and without recourse to tumor and normal cells (Barbour and Engemann, 
2015). Antimetabolites exert similar chemistry to naturally occurring metabolites 
within the body system, but rather than taking part in the essential metabolic activity, 
chooses a different pathway by disrupting the normal essential metabolic activities in 
a toxic way (Hertz and Rae, 2015).  
 
 
There are basically classified into three analogues form; antifolate (proguanil, 
pyrimethamine and trimethoprim), pyrimidine and purin analogues. The antifolate 
analogues work as an inhibitor of dihydrofolate reductase, a co-enzyme that catalyzes 
the conversion of folic acid (FA) to tetrahydrofolate (THF). Deficiency in THF 
impaired the normal activities of the folate coenzymes thereby disrupting both 
deoxyribonucleic acid (DNA) and Ribonucleic acid (RNA) synthesis (Hertz and Rae, 
2015). 5-fluorouracil (5-FU) are popular pyrimidine derivatives and in their converted 
5-fluoro-2′-deoxyuridine-5′-phosphate form readily bind to thymidylate synthases 
(TS) an essential coenzyme needed for DNA/RNA replication and in the process 
inhibit their synthesis (Hertz and Rae, 2015; Mišković et al., 2013). While the purine 
analogue works by inhibiting nucleotide biosynthesis by direct incorporation into 
DNA (Hertz and Rae, 2015; Mišković et al., 2013).   
 
 
Up to date, cancer therapy using antineoplastic drugs assumed a quantitative success 
rather than qualitative due to its non-specific killing spree on both normal and 
cancerous cells (Mišković et al., 2013). From the pharmacokinetics study reported by 
some researchers (Chen and Li, 2006; Duan et al., 2012; Guimarães et al., 2015; Ma 
et al., 2014), the administration of free anti-cancer drugs lacks the inherent ability to 
selectively target only the cancer cells and grossly exerts strong side effects on healthy 
tissues. In addition, free cytotoxic drugs suffer premature clearance from circulation 
owing to their low molecular weight and precipitate readily in aqueous media. 
Furthermore, as a results of possible degradation in vivo, patients are usually subjected 
to schedule administrations to meets the required therapeutic dosage which more or 
less could induces drug resistance (Longley et al., 2003). 
 
 
To deal with the aforementioned limitations in the use of cytotoxic drugs for cancer 
therapy, scientist over the years proactively combine the basic fundamental properties 
of nanomaterials and biomolecules with the existing anti-cancer drug to conveniently 
administer chemotherapeutics with certain degree of efficiency (Bharali and Mousa, 
2010; Dhankhar et al., 2010; Wang and Thanou, 2010). The incorporation of 
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engineered nanomaterials in the management of cancer has significantly extended 
research in clinical oncology as most formulation demonstrated sufficient solubility in 
aqueous media, encouragingly reduces the associated adverse cytotoxic effects of the 
free anti-cancer drugs and interestingly allows systemic drug release and accumulation 
to be achieved (Guimarães et al., 2015; Kim et al., 2010; Ma et al., 2014; Wang and 
Thanou, 2010; Yuan et al., 2010). For example, the administration of free 5-FU 
induces some associated side effects ranging from neural to hematological and 
gastrointestinal disorders. Other side effects reported are myelosuppression and 
dermatological adverse side effects (Longley et al., 2003), but of greater concern is 
the development of resistance by the tumor cells toward 5-FU showing only ~10% 
response rate for the treatment of colorectal cancer with slight improvement to about 
~45% response rate in combination form with other anti-cancer drugs (Arias, 2008). 
And similarly, report indicated that prolonged exposure to 5-FU induces thymidine 
synthase overexpression, that ends up inducing 5-FU resistance in cancer cells; thus 
limiting its application in cancer treatment (Vinod et al., 2013). Therefore, one-way 
to overcome the associated tumor-resistance to 5-FU is by exploring targeted delivery 
approaches. Engineered nanoparticles (NPs) with selective targeting characteristics 
are reported to be an effective approach towards improving the anti-cancer properties 
and selective bioavailability of 5-FU (Blanco et al., 2011; Ma et al., 2014; Ngernyuang 
et al., 2016).   
 
 
Though most of the nano-based cancer therapeutics for example DoxilTM and 
AbraxanTM approved by FDA might have reduced some of the toxicity concerns 
commonly associated with free anti-cancer drug, the critical questions that requires 
answer are meeting the specific and selective targeted drug delivery to tumor cells 
exclusively with limited side effects to healthy cells. For that, the choice for targeted 
delivery approaches using engineered nanomaterials become inevitable. Therefore, 
engineered nanomaterials consisting of nature derived materials come handy in these 
noble efforts. The use of nature derived polymeric NPs such as chitosan (CS) has made 
a considerable debut as a material of choice in the formulation of theranostics 
nanocomposites. The interest in the use of CS as a pharmaceutical excipient is not 
limited to the positive appealing properties such as biocompatibility, biodegradability 
and muco-adhesiveness; but also because of its ability to be fully involved in the entire 
therapeutic chemistry. This unique signature serves as a good transportation system, 
protecting encapsulated molecules from physiological matrix species, thus allowing 
control delivery to be achieved in vivo with well-regulated systemic toxicity.  
 
 
It’s a clinical fact that, most of the current anti-cancer drugs rarely dissolve in aqueous 
solution, readily suffers premature clearance and hence making it nearly impossible to 
achieve the required therapeutic dosage. And of greater concerns, they can easily 
trigger cytotoxic effects that could further spur more cellular damage (Bharali and 
Mousa, 2010; Walko and McLeod, 2009). Thus, the formulation of nontoxic, water 
soluble, biocompatible and a highly specific targeted drug delivery probe remains an 
essential crux for most research work. Talking of targeted delivery, ligands such as 
folic acid, antibody, peptides, protein, aptamer, etc., are reported to demonstrate an 
active role in specific targeting of cancer cells (Garcia-Bennett et al., 2011). This 
specific targeting ability is exerted through the molecular-cellular interactions 
between the ligands and some specific receptors that are uniquely expressed in large 
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number on the surface of the tumor cells compared to normal cell lines (Basal et al., 
2009; Garcia-Bennett et al., 2011). These ligand-receptors interactions provides 
researchers with an acceptable blue-print toward engineering a targeted drug delivery 
probe mediated by cell receptor pathways (Deng et al., 2009; McGuire, 2003; Zhang 
et al., 2011). Functionalization of therapeutics with strong ligands-cell receptors 
chemistry conjugated unto a biodegradable polymer-based system could support 
specific targeting of cancer cells with sufficient systemic drugs release and acceptable 
cargo residence time (Bansal et al., 2011).  
 
 
In an effort to formulate such an integrated nanotherapeutic system which can 
diagnose and deliver targeted therapy simultaneously, researchers over the years 
brought into a single construct, fluorescent emitting contrast agents, a receptor 
targeting ligands and an anti-cancer drug all stabilized within a biopolymer to suit both 
diagnostic and therapeutic functions simultaneously (Choi et al., 2012). For that, 
engineered quantum dots (QDs) based system have being reported to serve as an 
efficient fluorescence actors towards non-invasive imaging and assessment of drug 
bioavailability in vitro (Bharali and Mousa, 2010; Mathew et al., 2010). Quantum dots 
possessed excellent characteristics owing to its high degree of intense luminescence 
efficiencies at room temperature, resistance to photo-bleaching, broad excitation and 
narrow emission bands. These aforementioned properties makes QDs a unique 
contrast agent for optical imaging applications (Costa-Fernández et al., 2006; Labiadh 
et al., 2013). These intrinsic properties have opened a new chapter for advance 
molecular and cellular imaging of diseases.  A cited example shows that QDs homed 
to tumor sites either through passive or guided by active targeting ligands allows real 
time imaging and tracking of receptors molecule on the surface of living cells with 
improved sensitivity and resolution. (Gao et al., 2004). Targeted imaging using QDs 
based system were successfully achieved in vitro in combination with a specific tumor 
receptor ligand (Bhattacharya et al., 2011; Bhattacharya et al., 2007; Chen et al., 2013; 
Gaspar et al., 2015), and similarly allowed in vitro delivery of therapeutic agents 
stabilized within a biopolymer materials (Aswathy et al., 2012; Mathew et al., 2010). 
Thus, the choice of a NPs with the above-mentioned characteristics offers a great 
advantage in the formulation of cancer theranostics system which includes among 
many: (i) To attenuate the toxic side effects of the free anti-cancer drugs; (ii) To 
facilitate tumor targeting efficacy following ligands-receptor binding; (iii) To aid 
fluorescence imaging of the cancer cells; (iv) and finally, to support prolong and 
systemic drug release and bioavailability. Therefore, suffice to say that, targeted drug 
delivery using nano-based formulations not only will provides remedy for the 
conventional invasive surgery and radiation therapy, it might also revolutionize early 
detection and prognosis of variety of cancer. Thus, the concept behind this project was 
deduced by applying a chemistry which involves the loading of anti-cancer drugs into 
encapsulated CS-quantum dots system with FA-conjugation as schematically 
represented in Fig-1.1 
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Figure 1.1 : Schematics describing therapy and imaging using targeted cancer-
based theranostics NPs 

1.3 Problem Statement 

The effective use of QDs-based systems for cancer imaging and drug delivery 
applications remain a subject of concern due to its non-specific cytotoxicity especially 
in in vivo environment. Available data on ZnS QDs toxicity relates largely to in vitro 
settings and widely limited to MTT related assays with some efforts related to its 
imaging potentials (Aswathy et al., 2012; Geszke et al., 2011; Malgorzata Geszke-
Moritz et al., 2013; Mathew et al., 2010). Exploration of QDs-based systems in 
targeted drug delivery applications in addition to its imaging potentials remains 
attractive; which draws the attention for further in vitro study in addition to in vivo 
toxicity evaluation of the QDs-based systems.  

Based on this account, this work will utilize low-toxic ZnS quantum dots doped with 
Mn(2+). In this work, post treatment of the QDs under microwave irradiation will be 
carried out to improve the dispersity of the colloidal suspension. The direct in-core 
homogenous temperature gradient is expected to lead to the formation of smaller 
particles of uniform size and shape. The synthesized QDs will be stabilize using 
biodegradable chitosan biopolymer system to improve it biocompatibility and 
attenuate the none-specific cytotoxic effects of the anticancer drugs. The system will 
be incorporated with FA, a specific folate receptor targeting ligands, widely 
upregulated in the body and highly needed for DNA synthesis for selective targeting 
of cancer cells. In this work, rather than the usual EDC-based chemistry (Geszke et 
al., 2011; Mathew et al., 2010), anchorage of the FA to the CS will be initiated through 
electrostatic interactions between the carboxylate groups on FA to the amine group of 
chitosan. This is to minimized any possible structural changes that may affect the 
essential ingredients following the preparation (Bhattacharya et al., 2007; Castillo et 
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al., 2013; Nakayama et al., 2007). The strategy will be utilized to selectively deliver 
a highly cytotoxic anticancer (5-FU) drugs to cancer cells. Is therefore hypothesizes 
that, the strategy will render the 5-FU anti-cancer drugs less toxic, improve its plasma 
half-life and bioavailability and same time stabilize the colloidal QDs contrast agents 
toward in vitro and in vivo targeted delivery and imaging applications. 
 
 
The protocols for the preparation of the 5-FU@FACS-Mn:ZnS nanocomposite is 
developed with the view to ensure sufficient fluorescence characteristic from the QDs, 
to also ensure the FA and the anti-cancer drugs retain their characteristic bioactive 
properties. Therefore, a step-wise synthetic route will be employ in this work. The 
sequential step-wise methods are to ensure the nanocomposite retains significant part 
of their properties following each modification. For that, wet chemistry method and 
room temperature synthesis following electrostatic interaction and non-covalent 
loading route will be consider throughout the experiment. 
 
 
The biological safety indices of the as-prepared 5-FU@FACS-Mn:ZnS 
nanocomposite will be evaluated on normal (MCF-1-A) and cancer breast cell (MCF-
7 and MDA-MB231) lines using in vitro cell viability assay and apoptosis study. 
Further in vivo sub-chronic toxicity evaluation will be conducted using animal models. 
The in vivo toxicity study will include the activity of both liver and kidney function 
enzymes, evaluate the level of proinflammatory agent (NO and MDA) in addition to 
evaluating the level of QDs bioaccumulation in some major organs base on Zn2+ ion 
distribution. Furthermore, the histology of the harvested organs will be evaluated to 
ascertain possible toxic induce effect. 
 
 
Finally, the fully characterized 5-FU@FACS-Mn:ZnS nanocomposite will be tested 
for its anti-cancer efficacy and anti-metastasis effects base on the activity of 4T1 
cancer cells inoculated into female Balb/c mice. 
 
 
While mindful of the toxicity of QDs and its clearance/excretion from the body 
system, this work is however limited to studying the biodistribution profile and 
targeting selectivity of the 5-FU@FACS-Mn:ZnS nanocomposite in relation to both 
in vivo toxicity, anti-cancer efficacy and in vivo anti-metastasis effects. Detail study 
into the QDS biodistribution kinetic and clearance/excretion pattern is not covered in 
this study. Which often require extended period and large number of text subjects with 
the attending regulations in animal use and utilization act. However, this does not limit 
the significance and practicability of the scope of this study towards understanding 
QDs-based system for biomedical application. 
 
 
1.3.1 Objectives of the Study 

 
I. To synthesize and characterize manganese-doped zinc sulphide (Mn:ZnS) 

QDs based system embedded in chitosan biopolymer with folic acid 
conjugation (FACS) following three sequential wet chemistry methods 
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II. To assess the cyto-biocompatibility of the FACS-Mn:ZnS nanocomposite and 
to investigate the in vitro fluorescent imaging in normal and breast cancer cell 
lines 

III. To study the loading of 5-Fluororaucil (5-FU) on biocompatible FACS-
Mn:ZnS nanocomposite and evaluate its control release characteristics 

IV. To investigate the suitability and biocompatibility of the 5-FU@FACS-
Mn:ZnS nanocomposite in vitro and in female Balb/c mice in vivo. 

V. To investigate the anti-tumor efficacy and folate receptor targeting efficiency 
of the as-synthesized 5-FU@FACS-Mn:ZnS nanocomposite in vitro and in 
4T1 induced mice in vivo 
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