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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of
the requirement for the degree of Doctor of Philosophy

FRACTIONAL DIFFERENTIAL CALCULUS ON RIEMANNIAN
MANIFOLDS AND CONVEXITY PROBLEMS

By

AL-LEHABI WEDAD SALEH

February 2017

Chairman: Professor Adem Kılıçman, PhD
Faculty: Science

A Riemannian manifold embodies differential geometry science. Moreover, it has many
important applications in physics and some other branches of sciences. Based on the
above perspectives, the present thesis focuses on the study of some new results relating
concept geodesic-ray property, convexity and starshapedness in complete simply con-
nected smooth Riemannian manifold without conjugate points. In addition, the above
terms are studied in the Cartesian product of two complete simply connected smooth
Riemannian manifolds without conjugate points. Furthermore, this thesis introduces
the concept of geodesic strongly E-convex functions and geodesic E-b-vex functions
and discusses some of their properties. Moreover, examples in nonlinear programming
problems are used to illustrate the applications of the results.

Fractional calculus is a field of mathematics study that grows out of the traditional def-
initions of calculus integral and derivative operators in much the same way fractional
exponents is an outgrowth of exponents with integer value. This thesis shows some re-
sults related to fractional Riemannian manifolds such as fractional connection, Torsion
tensor of a fractional connection and difference tensor of two fractional connections.
Moreover, area and volume on fractional differentiable manifolds are studied.

In conclusion, some new integral inequalities of generalized Hermite-Hadamard’s type
integral inequalities for generalized s-convex functions in the second sense on fractal
sets are discussed. In addition, a new class of generalized s-convex functions in both
senses on real linear fractal sets is defined. The definition of generalized s-convex
functions in both senses on the co-ordinates on fractal sets and some of its properties
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are studied. Some new inequalities for product of generalized s-convex functions on
the co-ordinates on fractal sets are presented.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

KALKULUS PERBEZAAN PECAHAN KE ATAS MANIFOLD
RIEMANNAN DAN MASALAH KECEMBUNGAN

Oleh

AL-LEHABI WEDAD SALEH

Februari 2017

Pengerusi: Profesor Adem Kılıçman, PhD
Fakulti: Sains

Manifold Riemann merangkumi sains geometri pembezaan. Selain itu, ia mempun-
yai banyak aplikasi penting dalam fizik dan dalam beberapa cabang sains yang lain.
Berdasarkan perspektif di atas, tesis ini memfokuskan kajian tentang beberapa dapatan
baharu yang berkaitan dengan konsep sifat sinar geodesi, kecembungan, dan bentuk
bebintang dalam manifold Riemann rata terkait mudah lengkap tanpa titik konjugat. Di
samping itu, istilah di atas telah dikaji dalam produk Cartesian dua manifold Riemann
rata terkait mudah tanpa titik konjugat. Seterusnya, tesis ini memperkenalkan konsep
fungsi E-cembung terkuat geodesi dan fungsi E-b-vex geodesi dan membincangkan
beberapa sifatnya. Selain itu, contoh-contoh dalam masalah pengaturcaraan tak linear
digunakan untuk menggambarkan aplikasi dapatan tersebut.

Kalkulus pecahan merupakan bidang matematik yang berpunca daripada definisi tradi-
sional mengenai kamiran kalkulus dan operator pembeza, seperti juga cara yang sama,
eksponen pembezaan merupakan pertumbuhan keluar tentang eksponen dengan nilai
integer. Tesis ini dikhususkan pada dapatan manifold Riemann, seperti perkaitan pec-
ahan, tensor Torsion bagi perkaitan pecahan dan perbezaan tensor bagi dua perkaitan
pecahan. Tambahan pula, kawasan dan isi padu ke atas manifold pembezaan pecahan
telah dikaji.

Kesimpulannya, beberapa ketaksamaan kamiran baharu bagi ketaksamaan kamiran je-
nis Hermite-Hadamard teritlak bagi fungsi s-cembung teritlak dalam kedua-dua mak-
sud tentang set fraktal linear sebenar telah dibincangkan. Di samping itu, kelas baharu
fungsi s-cembung teritlak dalam kedua-dua maksud tentang set fraktal telah ditakrifkan.
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Definisi fungsi s-cembung teritlak dalam kedua-dua maksud tentang kordinat ke atas set
fraktal dan beberapa sifatnya telah dikaji. Beberapa ketaksamaan baharu untuk produkl
fungsi s-cembung teritlak mengenai kordinat ke atas set fraktal telah dibentangkan.
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CHAPTER 1

INTRODUCTION

1.1 General Introduction

Manifolds crop up every where in mathematics. These generalizations of curves and
surfaces to arbitrarily many dimensional space and provide the mathematical context
for understanding space in all of its manifestations. Today, the tools of manifold the-
ory are indispensable in most major subfields of pure mathematics and are becoming
increasingly important in such diverse fields as genetics, robotics, econometrics, statis-
tics, computer, graphics, and of course, the undisputed leader a mong consumers of
mathematics-theoretical physics. There are many types of manifolds such as manifolds
without conjugate points, manifolds without focal points, manifolds with non-positive
curvature and manifolds with positive curvature.

As in Euclidean geometry, the concept of convexity and starshapedness play an impor-
tant role also in Riemannian geometry, since in a Riemannian manifold geodesic joining
two given points is not necessarily unique, the situation is somewhat complicated.

Integer order derivative and integer order integral have geometrical interpretation. Also,
they have been applied in every field of sciences, engineering and mathematics as a
tool to solve the diverse problems. A different approach to geometrical interpretation
of fractional integration and fractional differentiation have been suggested by several
authors (Podlubny et al. (2007) and Machado (2003)).

1.2 Problem Statement

There is no doubt that a Riemannian manifold plays an important role in differential
geometry science see (Do Carmo Valero, 1992). In addition, it has many important
applications in physics and some other branches of sciences see (Gutkin, 2011) and
(An et al., 2013). Due to these reasons, we introduce some new definitions which help
us to focus on convexity in Riemannian manifold and we need more discussion on the
importance of relationship between convexity and starshapedness in Riemannian man-
ifold. Next, the fractional differential calculus on a differentiable manifold is studied
in (Albu and Opris, 2008) and (Jumarie, 2013). Even though fractional calculus is a
highly useful and important topic, however the research on the geometric interpretation
and applications are limited in current literature. Thus, in this study we focus on the
area and volume on fractional differentiable manifold and discuss some related proper-
ties. Finally, since there are some important inequalities in plane which have not been
studied in fractal sets, then one of the problem statements in this thesis is devoted to
the introduction and discussion of several integral inequalities of generalized Hermite-
Hadamard’s type for generalized s-convex functions on fractal sets.
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1.3 Research Objectives

Based on the identified problem, the objectives of this investigation are:

1. To introduce a new definition of geodesic-ray property in a C∞ complete Rie-
mannian manifold and the relation of geodesic-ray property with convexity and
starshapedness.

2. To study geodesic-ray property, convexity and starshapedness in the Cartesian
product of two complete simple connected smooth Riemannian manifolds with-
out conjugate points.

3. To establish and present the basic facts and results of convex and generalized
convex functions defined on Riemannian manifold.

4. To show possible definition for fractional connection in differential manifold and
find many new desirable properties of Torsion tensor of a fractional connection
and difference tensor of two fractional connections.

5. To modify the definition of s-convex functions on the co-ordinates on set in order
to generalize some results in the plane to fractal sets and obtain several new
integral inequalities of generalized Hermite-Hadamard’s type for generalized s-
convex function on fractal sets.

1.4 Research Methodology

A description of the methodology is as follows:

1. Problem identification and literature review: A comprehensive literature review
on the related problems.

2. Mathematical analysis of formulated problems: Different types of invariants will
be created and their behaviors investigated.

3. Result and discussion: Papers have been prepared and published after completion
of the analysis of the results and discussion.

1.5 Outline of the Thesis

Below is an outline of this thesis organization, which consists of seven chapters.

Chapter 1 gives a general introduction of the research work where the motivation and
objectives are defined.

2
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Chapter 2 focuses on the previous work done by other researchers. Some historical
background on Riemannian geometry is presented in this chapter. Also, fractional dif-
ferential calculus in manifold is mentioned. The development of ideas that leads to
generalized s-convex functions in both senses of fractal sets is outlined.

In Chapter 3, geodesic-ray property is defined. Futhermore, this chapter proposes and
proves some new results related to geodesic-ray property, convexity and starshaped-
ness in the Cartesian product of two complete simple connected smooth Riemannian
manifolds without conjugate points. A finite collection

A = {Ai(x) : x ∈ S\kerS,Ai(x)* A j(x) ∀1≤ i, j ≤ n}

whose union is S and intersection is kerS is proved.

Chapter 4 is devoted to the study of geodesic strongly E-convex functions and geodesic
E-b-vex functions. Motivated by Youness and Emam (2005b) and Mishra et al. (2011),
this chapter introduces the above functions on Riemannian manifold. In addition, some
of their basic properties are established. At the end of this chapter an optimization
problem is considered.

Chapter 5 deals with fractional differential calculus on Riemannian manifold. In this
chapter, several new definitions, properties and examples are added which are related
to fractional differential calculus on Riemannian manifold.

Chapter 6 includes the proposal of some new definitions, which are: A new class of gen-
eralized s-convex functions in both senses on fractal sets, generalized s-convex func-
tions in both senses on the co-ordinates on fractal sets. A number of new integral in-
equalities of generalized Hermite-Hadamard’s type for generalized s-convex functions
in the second sense on fractal sets are presented.

Chapter 7 concludes with some important points arising from the research describes in
this thesis and provides directions for further investigations.

3
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168



© C
OPYRIG

HT U
PM

Breen, M. (1980). (d-2)-Extreme points and a Helly-type theorem for starshaped sets.
Canad. J. Math., 32(3):703–713.

Cambini, A. and Martein, L. (2009). Generalized convexity and optimization. Springer-
Verlag, Berlin.

Chen, S., Shi, P., Zhang, W., and Zhao, L. (2014). Finite-time consensus on strongly
convex balls of Riemannian manifolds with switching directed communication
topologies. J. Math. Anal. Appl., 409(2):663–675.

Chen, X. (2002). Some properties of semi-E-convex functions. J. Math. Anal. Appl.,
275(1):251–262.

Coxeter, H. S. M. (1961). Introduction to geometry. John Wiley & Sons, Inc., New
York-London-Sydney.

Cresson, J. (2007). Fractional embedding of differential operators and lagrangian sys-
tems. J. Math. Phys., 48(3):033504.

Dalir, M. and Bashour, M. (2010). Applications of fractional calculus. Appl. Math. Sci.
(Ruse), 4(21–24):1021–1032.

Das, S. (2011). Functional fractional calculus. Springer-Verlag, Berlin.

Do Carmo Valero, M. P. (1992). Riemannian geometry. Birkhauser.

Dragomir, S. (1991). A mapping in connection to Hadamard’s inequality. Anz. Öster-
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