LABOUR PRODUCTIVITY MEASUREMENT METHOD FOR MALAYSIAN HOUSING INDUSTRY

LEE WAH PENG

FK 2005 41
LABOUR PRODUCTIVITY MEASUREMENT METHOD FOR MALAYSIAN HOUSING INDUSTRY

By

LEE WAH PENG

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of Requirement for the Degree of Doctor of Philosophy

March 2005
DEDICATION

TO:

My FATHER and My MOTHER
The industrialised building system (IBS) was introduced in Malaysia in 1966, but it failed to establish itself though there is a sustained large market for residential projects. One of the main reasons behind this failure is a lack of scientific data on labour productivity in the construction industry. Hence, the objective of this study is to establish a labour productivity measurement method for the Malaysian housing construction industry. Labour productivity (manhours/m²) is defined as the manhours (the multiplication of number of workers and work time) required to complete a structural element of a house. Two data collection methods were used to collect the labour productivity data, namely time study on-site observation (ideal labour productivity) and survey questionnaire (actual and pre-planned labour productivity).

For the time study on-site observation method, a total of 499 ideal labour productivity data were obtained from seven residential projects constructed between January 2003 and April 2004. Results indicated that the mean ideal labour productivity for conventional building system was 4.20 manhours/m² followed by cast in-situ table form
(2.70 manhours/m²), cast *in-situ* tunnel form (1.88 manhours/m²) and precast concrete system (1.33 manhours/m²). The mean cycle time measured in days for conventional building system, cast *in-situ* table form system, cast *in-situ* tunnel form and precast concrete systems were 4.93, 3.91, 2.90 and 2.31 days respectively. The mean crew size for conventional building system was 24 workers while for IBS was 22 workers. The subsequent analysis developed the ideal labour productivity measurement method using multiple regression analysis. The results indicated that the independent variables, namely type of building system, crew size, gross building floor area and floor level have significant impact on ideal labour productivity with coefficient of determination, R^2 of 82.1%.

A total of 102 respondents which included 72 contractors, 19 consultants and 11 developers responded to the survey questionnaire. The data obtained from the questionnaire were actual labour productivity data from actual residential projects and pre-planned labour productivity from hypothetical projects. The results indicated that the mean actual labour productivity for conventional building system was 7.00 manhours/m² compared to IBS of 2.10 manhours/m² while the mean pre-planned labour productivity for conventional building system was 7.40 manhours/m² compared to IBS of 2.13 manhours/m². Finally, the factors causing the gaps between actual and ideal labour productivity were established and ranked.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah doktor falsafah

KAEDAH PENGUKURAN PRODUKTIVITI BURUH UNTUK INDUSTRI PERUMAHAN DI MALAYSIA

Oleh

LEE WAH PENG

Mac 2005

Pengerusi: Profesor Madya Mohd Razali Abdul Kadir, PhD

Fakulti: Kejuruteraan

Sistem binaan berindustri (IBS) telah dilaksanakan pada 1966, tetapi ia gagal berkembang walaupun terdapat pasaran luas untuk sektor pembinaan perumahan. Salah satu sebab utama kegagalan ini adalah kekurangan sainstifik data di dalam produktiviti buruh industri pembinaan. Oleh itu, matlamat utama kajian ini adalah untuk membangunkan satu kaedah standard untuk mengukur produktiviti buruh bagi sektor pembinaan perumahan di Malaysia. Produktiviti buruh (pekerja-masa/m²) ditaksirkan daripada jumlah pekerja dan masa yang diperlukan untuk menyiapkan struktur elemen bagi sebuah rumah. Dua kaedah pengumpulan data yang digunakan adalah penyelidikan masa di tapak (produktiviti buruh ideal) dan soal selidik (produktiviti buruh sebenar dan terancang).

Bagi kaedah penyelidikan data di tapak, sebanyak 499 data telah diperolehi daripada tujuh tapak pembinaan perumahan yang dibina pada Januari 2004 sehingga April 2004. Keputusan menunjukkan bahawa min produktiviti buruh ideal bagi sistem bangunan konvensional adalah 4.2 pekerja-masa/m² diikuti oleh sistem konkret meja di-situ (2.7
pekerja-masa/m²), sistem konkrit terowong di-situ (1.88 pekerja-masa/m²) dan sistem konkrit pra-tuang (1.33 pekerja-masa/m²). Min masa kitar untuk menyiapkan sebuah rumah bagi sistem bangunan konvensional, sistem konkrit meja di-situ, sistem konkrit terowong di-situ and sistem konkrit pra-tuang adalah 4.93, 3.91, 2.90 dan 2.31 hari masing-masing. Jumlah min pekerja yang diperlukan untuk sistem bangunan konvensional adalah 24 orang manakala untuk IBS adalah 22 orang. Analisis seterusnya adalah membangunkan kaedah standard untuk mengukur produktiviti buruh ideal dengan menggunakan model analisis regresi. Keputusan menunjukkan bahawa pembolehubah-pembolehubah jenis bangunan bersktruktur, saiz pekerja, keluasan rumah dan ketinggian bangunan adalah signikans dengan pekali penentuan model regresi, R² (82.1%).

Sebanyak 102 responden yang mengandungi 72 kontraktor, 19 perunding dan 11 pemaju telah menjawab soalon-soalon soal selidik. Data yang diperolehi daripada soal selidik adalah produktiviti buruh sebenar and produktiviti buruh terancang. Keputusan menunjukkan bahawa min produktiviti buruh sebenar bagi sistem bangunan konvensional adalah 7.00 pekerja-masa/m² berbanding dengan 2.10 pekerja-masa/m² bagi IBS sementara min produktiviti buruh terancang bagi sistem bangunan konvensional adalah 7.40 pekerja-masa/m² berbanding dengan 2.13 pekerja-masa/m² bagi IBS. Akhir sekali, analisis faktor-faktor yang menyebabkan jurang diantara produktiviti buruh ideal dan sebenar telah dibangunkan dan dirank.
ACKNOWLEDGEMENTS

I would like to express my utmost gratitude to Associate Professor Ir. Dr. Mohd Razali Abdul Kadir, Associate Professor Ir. Dr. Mohd Saleh Jaafar and Associate Professor Ir. Dr. Mohd Sapuan Salit for their guidances, suggestions, advices, supportive encouragement and time spent throughout this study.

Valuable appreciation are also extended to all the contractors, consultants, developers and friends for their co-operation in answering the survey questionnaire and allowing me to access to their construction sites for data collection.

Last but not least, I wish to express my deepest appreciation to my parent, brother and sister for their continuous support, motivation and encouragement.
I certify that an Examination Committee met on 16th March 2005 to conduct the final examination of Lee Wah Peng on his Doctor of Philosophy thesis entitled "Labour Productivity Measurement Method for Malaysian Housing Industry" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulation 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of Examination Committee are as follows:

Rosnah Mohd Yusuff, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Abang Abdullah Abang Ali
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Napsiah Ismail, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Mahyuddin Ramli, PhD
Professor
School of Housing Building Planning
Universiti Sains Malaysia
(Examiner Examiner)

\[Signature\]

GULAM RUSUL RAHMAT ALI, PhD
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 20 \textbf{JUN} 2005
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follows:

Mohd Razali Abdul Kadir, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Mohd Saleh Jaafar, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Mohd Sapuan Salit, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

AINI DERIS, PhD
Professor/Dean
Dean of Graduate School
Universiti Putra Malaysia

Date: 15 JUL 2005
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that is has not been previously or concurrently submitted for any other degree at UPM or other institutions.

Lee Wah Peng

Date: 16/5/2005
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>viii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xx</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxiii</td>
</tr>
<tr>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td>1 INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Potential areas of productivity improvement</td>
<td>2</td>
</tr>
<tr>
<td>1.2.1 Structural work</td>
<td>3</td>
</tr>
<tr>
<td>1.2.2 Architectural and finishing work</td>
<td>5</td>
</tr>
<tr>
<td>1.2.3 Mechanical and electrical work</td>
<td>7</td>
</tr>
<tr>
<td>1.3 Malaysian housing needs</td>
<td>8</td>
</tr>
<tr>
<td>1.4 Problem statement</td>
<td>12</td>
</tr>
<tr>
<td>1.5 Justification</td>
<td>14</td>
</tr>
<tr>
<td>1.6 Conceptual framework</td>
<td>17</td>
</tr>
<tr>
<td>1.7 Research objectives</td>
<td>21</td>
</tr>
<tr>
<td>1.8 Scope and limitation</td>
<td>22</td>
</tr>
<tr>
<td>1.9 Layout of thesis</td>
<td>24</td>
</tr>
<tr>
<td>1.10 Conclusion</td>
<td>25</td>
</tr>
<tr>
<td>2 LITERATURE REVIEW</td>
<td></td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>26</td>
</tr>
<tr>
<td>2.2 Type of building systems in Malaysia</td>
<td>27</td>
</tr>
<tr>
<td>2.3 Classification of IBS</td>
<td>29</td>
</tr>
<tr>
<td>2.4 Elements of IBS</td>
<td>33</td>
</tr>
<tr>
<td>2.4.1 Frame systems</td>
<td>33</td>
</tr>
<tr>
<td>2.4.2 Panel systems</td>
<td>36</td>
</tr>
<tr>
<td>2.4.3 Box systems</td>
<td>39</td>
</tr>
<tr>
<td>2.4.4 Formwork systems</td>
<td>41</td>
</tr>
<tr>
<td>2.4.5 Block systems</td>
<td>46</td>
</tr>
<tr>
<td>2.5 Essential characteristics of IBS</td>
<td>47</td>
</tr>
<tr>
<td>2.5.1 Closed system</td>
<td>47</td>
</tr>
<tr>
<td>2.5.2 Open system</td>
<td>48</td>
</tr>
<tr>
<td>2.5.3 Modular coordination</td>
<td>49</td>
</tr>
<tr>
<td>2.5.4 Standardisation and tolerances</td>
<td>50</td>
</tr>
</tbody>
</table>
2.5.5 Mass Production
2.5.6 Specialisation
2.5.7 Good organisation
2.5.8 Integration
2.5.9 Production facility
2.5.10 Transportation
2.5.11 Equipment at site
2.6 Benefits of IBS
2.7 Shortcomings of IBS
2.8 Malaysian experience in IBS
2.9 Experience of other countries in IBS
2.9.1 Japan
2.9.2 Argentina
2.9.3 Singapore
2.9.4 The U.K.
2.9.5 Germany
2.9.6 The Netherlands
2.9.7 The U.S.A
2.9.8 Canada
2.10 The definition of productivity
2.11 Hierarchical of productivity
2.12 Scientific model for construction productivity
2.12.1 Work study
2.12.2 Work sampling
2.12.3 Time study
2.12.4 Delay model
2.12.5 Factor model of construction productivity
2.13 Scientific data collection methods
2.13.1 Video camera technique
2.13.2 Questionnaire
2.13.3 Foreman delay survey
2.13.4 Arranged interview
2.13.5 Stopwatch time study
2.13.6 Still photograph
2.14 Comparison of construction productivity
2.15 Determinants of labour productivity
2.16 Conclusion

3 METHODOLOGY
3.1 Introduction
3.2 Questionnaire
3.3 Observational study
3.3.1 Time Study on-site observation
3.3.2 Sample size
3.3.3 Productivity comparison methodology
3.4 Analytical methodology
3.4.1 Data identification and correlational technique 159
3.4.2 Analysis of variance 160
3.4.3 Multiple regression analysis 163
3.5 Conclusion 168

RESULTS AND DISCUSSIONS
4.1 Introduction 169
4.2 Result of time study on-site observation 169
 4.2.1 The impact of types of structural building systems on ideal labour productivity 172
 4.2.2 The impact of crew size on ideal labour productivity between structural building systems 176
 4.2.3 The impact of cycle time on ideal labour productivity between structural building systems 182
 4.2.4 The impact of floor level on ideal labour productivity between structural building systems 187
 4.2.5 The impact gross floor area on ideal labour productivity between structural building systems 189
 4.2.6 The impact of worker daily salary on ideal labour productivity between structural building systems 190
 4.2.7 The impact of types of project contracts on ideal labour productivity between structural building systems 191
 4.2.8 The development of ideal labour productivity forecasting measurement method 194
4.3 Results of Survey Questionnaire 210
 4.3.1 Respondents’ demographics 210
 4.3.2 Project characteristics of the actual housing projects 215
 4.3.3 The impact of types of structural building systems on actual labour productivity 220
 4.3.4 The impact of structural cost on actual labour productivity between structural building systems 223
 4.3.5 The impact of crew size on actual labour productivity between structural building systems 226
 4.3.6 The impact of cycle time on actual labour productivity between structural building systems 229
 4.3.7 The impact of worker daily salary on actual labour productivity 232
 4.3.8 The impact of quantity completed on actual labour productivity between structural building systems 233
 4.3.9 Relationship between structural cost and actual labour productivity 234
 4.3.10 Relationship between structural cost and cycle time 235
 4.3.11 The impact of hypothetical projects on pre-planned labour productivity between structural building systems 236
 4.3.12 Comparison between ideal, actual and pre-planned labour productivity 238
4.3.13 Factors causing gaps between actual and ideal labour productivity

4.4 Conclusion

5 CONCLUSION

5.1 Introduction

5.2 The Impact of Types of Structural Building Systems, Crew Size, Cycle Time, Floor Level, Gross Floor Area, Worker Daily Salary, Types of Contracts on Ideal Labour Productivity (Time Study On-site Observation)

5.3 Ideal Labour Productivity Measurement Method (Time Study On-site Observation)

5.4 The Impact of Types of Structural Building Systems, Structural Cost, Crew Size, Cycle Time, Worker Daily Salary, Quantity Completed on Actual Labour Productivity (Survey Questionnaire)

5.5 The Impact of Hypothetical Projects on Pre-planned Labour Productivity (Survey Questionnaire)

5.6 Factors Causing Gaps Between Actual and Ideal Labour Productivity (Survey Questionnaire)

5.7 Recommendation

5.8 Summary

REFERENCES

APPENDICES

BIODATA OF THE AUTHOR
LIST OF TABLES

<table>
<thead>
<tr>
<th>Tables</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Usage of workers and potential for productivity improvement in building work</td>
<td>3</td>
</tr>
<tr>
<td>1.2 Productivity improvement for structural work</td>
<td>5</td>
</tr>
<tr>
<td>1.3 Productivity improvement for architectural work</td>
<td>7</td>
</tr>
<tr>
<td>1.4 Categories of housing during seventh Malaysia Plan</td>
<td>11</td>
</tr>
<tr>
<td>2.1 Building system classification according to relative weight of components</td>
<td>32</td>
</tr>
<tr>
<td>2.2 Prefabricated housing market share in Japanese Fiscal Year 1999</td>
<td>60</td>
</tr>
<tr>
<td>2.3 Argentina market for industrialised housing system</td>
<td>62</td>
</tr>
<tr>
<td>2.4 Characteristics of construction industry versus manufacturing industry</td>
<td>78</td>
</tr>
<tr>
<td>2.5 Sample sizes for selected confidence limits and category proportions</td>
<td>81</td>
</tr>
<tr>
<td>2.6 Results of work sampling studies in percentage</td>
<td>82</td>
</tr>
<tr>
<td>2.7 Time study data for placing formwork</td>
<td>86</td>
</tr>
<tr>
<td>2.8 Typical MPDM data collection form</td>
<td>88</td>
</tr>
<tr>
<td>2.9 Typical foreman delay survey</td>
<td>102</td>
</tr>
<tr>
<td>2.10 Main features of analysed construction methods</td>
<td>109</td>
</tr>
<tr>
<td>2.11 Labour requirement</td>
<td>110</td>
</tr>
<tr>
<td>2.12 Labour requirement on-site in different construction alternatives</td>
<td>112</td>
</tr>
<tr>
<td>2.13 Characteristics of building A and building B</td>
<td>113</td>
</tr>
<tr>
<td>2.14 Productivity rates for structural beam formwork</td>
<td>114</td>
</tr>
<tr>
<td>2.15 Mean national productivity rates for each type of formwork system</td>
<td>115</td>
</tr>
<tr>
<td>2.16 Labour adjustment factors for Northern Europe</td>
<td>116</td>
</tr>
<tr>
<td>2.17 Labour adjustment factors for Central and Southern Europe</td>
<td>117</td>
</tr>
</tbody>
</table>
4.1 Cycle time (days) comparison between projects
4.12 Cycle time (days) per house comparison between structural building systems
4.13 ANOVA output for cycle time comparison between structural building systems
4.14 Pearson's correlation between ideal labour productivity and cycle time
4.15 Pearson's correlation between ideal labour productivity and floor level
4.16 Gross floor area comparison between structural building systems
4.17 Daily worker salary comparison between projects
4.18 Types of project contracts comparison between projects
4.19 ANOVA statistics output for final regression model
4.20 Variables coefficients
4.21 Correlation matrix between variables
4.22 Frequency distribution on the respondents' working experiences
4.23 Frequency distribution on the respondents' academic qualification
4.24 Frequency distribution on the respondents' company nature of business
4.25 Frequency distribution on the respondents' race
4.26 Frequency distribution on the types of structural building systems
4.27 Distribution of project total construction cost
4.28 Distribution of types of housing projects
4.29 Actual labour productivity comparison between structural building systems
4.30 ANOVA output for actual labour productivity comparison between structural building systems
4.31 Structural cost comparison between structural building systems
4.32 ANOVA output for structural cost comparison between structural building systems 225
4.33 Crew size comparison between structural building systems 227
4.34 ANOVA output for crew size comparison between structural building systems 228
4.35 Cycle time comparison between structural building systems 230
4.36 ANOVA output for cycle time comparison between structural building systems 230
4.37 Worker daily salary for all types of skill 232
4.38 Average number of house per project comparison between structural building systems 233
4.39 Pre-planned labour productivity comparison between structural building systems 237
4.40 ANOVA output for pre-planned labour productivity comparison between structural building systems 238
4.41 Labour productivity comparison between survey questionnaire and time study on-site observation for conventional building system 240
4.42 Labour productivity comparison between survey questionnaire and time study on-site observation for cast in-situ table form system 241
4.43 Labour productivity comparison between survey questionnaire and time study on-site observation for cast in-situ tunnel form system 241
4.44 Labour productivity comparison between survey questionnaire and time study on-site observation for full precast concrete system 241
4.45 Labour productivity comparison between survey questionnaire and time study on-site observation for composite system 241
4.46 Labour productivity comparison between survey questionnaire and time study on-site observation for block system 242
4.47 Ranking of importance of project delay factors on labour productivity 245
4.48 Ranking of frequency of project delay factors on labour productivity 254
4.49 Ranking of severity of project delay factors on labour productivity
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figures</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Badir-Razali Building System Classification</td>
<td>19</td>
</tr>
<tr>
<td>1.2 Conceptual framework adopted from factor model</td>
<td>20</td>
</tr>
<tr>
<td>2.1 Examples of linear systems for public buildings</td>
<td>35</td>
</tr>
<tr>
<td>2.2 Different systems of panel elements</td>
<td>38</td>
</tr>
<tr>
<td>2.3 Different arrangement of box systems</td>
<td>40</td>
</tr>
<tr>
<td>2.4 Cast \textit{in-situ} tunnel form system</td>
<td>43</td>
</tr>
<tr>
<td>2.5 Cast \textit{in-situ} table form systems</td>
<td>45</td>
</tr>
<tr>
<td>2.6 HDB precast concrete implementation</td>
<td>64</td>
</tr>
<tr>
<td>2.7 The hierarchy of productivity measurement indicators</td>
<td>76</td>
</tr>
<tr>
<td>2.8 Factor model of construction productivity</td>
<td>90</td>
</tr>
<tr>
<td>2.9 Percentage use of productivity monitoring methods</td>
<td>93</td>
</tr>
<tr>
<td>2.10 (a) Digital deck stopwatch, (b) digital handheld stopwatch, and</td>
<td>105</td>
</tr>
<tr>
<td>(c) analogue stopwatch</td>
<td></td>
</tr>
<tr>
<td>2.11 Details of multi-story concrete frame</td>
<td>125</td>
</tr>
<tr>
<td>2.12 Distribution of worker time utilisation for a task</td>
<td>129</td>
</tr>
<tr>
<td>3.1 Schematic diagram of data collection methodology</td>
<td>137</td>
</tr>
<tr>
<td>3.2 The advantages and disadvantages between time study on-site</td>
<td>138</td>
</tr>
<tr>
<td>observation and survey questionnaire</td>
<td></td>
</tr>
<tr>
<td>3.3 Prerequisites condition for observational study</td>
<td>144</td>
</tr>
<tr>
<td>3.4 Structural element of a house</td>
<td>151</td>
</tr>
<tr>
<td>3.5 Project A – conventional building system</td>
<td>153</td>
</tr>
<tr>
<td>3.6 Project B – conventional building system</td>
<td>153</td>
</tr>
</tbody>
</table>
3.7 Project C – cast in-situ table form system
3.8 Project D – cast in-situ table form system
3.9 Project E – cast in-situ tunnel form system
3.10 Project F – cast in-situ tunnel form system
3.11 Project G – precast concrete wall and precast half slab system
3.12 Proposed research methodology flow chart
3.13 Multiple regression analysis flow diagrams
4.1 Ideal labour productivity for seven residential projects
4.2 Ideal labour productivity comparison between projects
4.3 Ideal labour productivity comparison between structural building systems
4.4 Crew size comparison between projects
4.5 Crew size comparison between structural building systems
4.6 Distribution of crew size according to trades
4.7 Cycle time (days) comparison between projects
4.8 Cycle time (days) comparison between structural building system
4.9 Hypotheses testing for overall regression model
4.10 Hypotheses testing for individual variables
4.11 Residuals plotted against predicted labour productivity
4.12 Ideal labour productivity plotted against predicted labour productivity
4.13 Respondents’ working experiences in construction industry
4.14 Respondents’ academic qualification
4.15 Respondents’ company nature of business
4.16 Respondents’ race
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.17</td>
<td>Distribution of projects according to structural building systems</td>
<td>216</td>
</tr>
<tr>
<td>4.18</td>
<td>Distribution of projects total construction costs</td>
<td>218</td>
</tr>
<tr>
<td>4.19</td>
<td>Classification of projects according to types of housing projects</td>
<td>219</td>
</tr>
<tr>
<td>4.20</td>
<td>Actual labour productivity comparison between structural building systems</td>
<td>222</td>
</tr>
<tr>
<td>4.21</td>
<td>Structural cost comparison between structural building systems</td>
<td>225</td>
</tr>
<tr>
<td>4.22</td>
<td>Crew size comparison between structural building systems</td>
<td>228</td>
</tr>
<tr>
<td>4.23</td>
<td>Cycle time (days) comparison between structural building systems</td>
<td>231</td>
</tr>
<tr>
<td>4.24</td>
<td>Typical structural layout plan</td>
<td>236</td>
</tr>
<tr>
<td>4.25</td>
<td>Labour productivity comparison between ideal, actual and pre-planned labour productivity</td>
<td>240</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

P_i labour productivity for the structural enclosure of one unit house (manhours/m^2);

β_i the slope of the regression line;

α indicate the mean value of labour productivity when all $X_i = 0$;

X_i independent variables;

e_i error (residual);

R^2 coefficient of determination;

SSR sum of square regression;

TSS total sum of squares;

SSE sum of squares error;

Y_i the value of the dependent variable;

Y_a predicted value for the average of Y for each given X value;

Y_b average value of the dependent value;

S_e standard error of estimate;

n sample;

k number of independent variable; and

R_A adjusted coefficient of determination

IBS Industrialised building system
CHAPTER ONE

INTRODUCTION

1.1 Introduction

Labour usage is paramount in the Malaysian construction industry because the industry relies heavily on both legal and illegal foreign workers especially in the structural construction trades such as carpenter, barbender, concretor, precast concrete panel installer and system formwork installer. The number of foreign workers had increased to 1.36 million peoples in July 2004 compared to the 1.1 million in 2000 and 136,000 during the early 1980s. Out of the latest figure, 66.5% were from Indonesia followed by Nepal (9.2%), Bangladesh (8%), India (4.5%) and Myanmar (4.2%). The manufacturing sector employed 30.5% of foreign workers followed by service sector (25%), agriculture (24.7%) and construction sector (19.8%) (Anon, 2004).

Albeit, foreign workers had contributed to economy by alleviating labour shortages in the construction sector, it had also resulted in illegal occupation of land and housing. They were competing with the poor local peoples for low cost accommodations in squatter settlements and in the Malay reservation areas. The congested living conditions were detrimental to social and environmental problems. Total medical fees obtained from foreign workers had risen by 7.5% annually since 1994 (RM13.8 million) to RM23.2 million in 2003. Remittances by foreign workers has also increased to RM11.23 billion in 2003 from RM6.96 billion in 1997 (Anon, 2004).