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The demands for applicable tissue-engineered scaffolds that can be used to repair load-

bearing segmental bone defects (SBDs) are vital and increasing. Significant bone 

problems named trauma, deformity and tumors leave the patients under the pressure of 

surgical complications, high cost, risk of infection, donor shortage and slow healing 

process. The main objective of this study is to develop porous nanocomposite scaffold 

from cockle shell nanopowder for SBD repair. In this study, 9 different combinations of 

nanocomposite porous scaffolds were fabricated using various proportion of cockle 

shell-derived CaCO3 aragonite nanoparticles, gelatin, dextran and dextrin. The scaffold 

then used for repairing critical-size bone defect (2 cm) that made on the shaft of radial 

bone of 16 adult, male New Zealand White rabbits which divided into four groups (n=4): 

Group A (control), Group B (scaffold 5211), Group C (5211GTA+Alginate) and Group D 

(5211PLA). The defect site implanted with scaffold was assessed for 8 weeks by means 

of radiography, hematology, biochemistry, grossly and histology. The micron sized 

cockle shell-derived CaCO3 powder obtained (75 µm) was transformed into 

nanoparticles using mechano-chemical and ball mill (top-down) methods of nanoparticle 

synthesis with the presence of surfactant BS-12 (dodecyl dimethyl bataine). The phase 

purity and crystallographic structures, the chemical functionality and the thermal 

characterization of the scaffolds’ powder were analyzed using Fourier Transform 

InfraRed (FTIR) spectrophotometer, Powder X-Ray Diffractometer (PXRD) and 

Differential Scanning Calorimetry (DSC), respectively. Characterizations of the 

scaffolds were assessed by Scanning Electron Microscopy (SEM), porosity test, swelling 

test, water absorption test, degradation manner and mechanical test. The 

cytocompatibility of the scaffolds was assessed in terms of cell attachment, alkaline 

phosphatase (ALP) concentration, cell proliferation and capability to form mineralized 

bone nodules. The tests were conducted throughout In vitro cell culture using human 

Fetal OsteoBlast cells line (hFOB). Top-down methods produced cockle shell-derived 

CaCO3 aragonite nanoparticles having size range of 15.94-55.21±6 nm which were 

determined using Field Emission Scanning Electron Microscopy (FESEM) and 
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Transmission Electron Microscopy (TEM). The aragonite form of calcium carbonate 

was identified in both PXRD and FTIR for all scaffolds, while the melting (Tm) and 

transition temperatures (Tg) were identified using DSC with the range of Tm 62.41-

75.51°C and Tg 229.38-232.58°C. Engineering analyses showed that scaffolds possessed 

a 3D interconnected homogenous porous structure with pore sizes 8-526 µm, porosity 

6-97%, mechanical strength 4-65 MPa, Young’s Modulus104-296 MPa and enzymatic 

degradation rate 16-67% within 2, 4 and 10 weeks.  The biological evaluation also 

showed that all scaffolds did enhance the osteoblast proliferation rate and improved the 

osteoblast function as demonstrated by the significant increase in ALP concentration. 

Radiographic examination showed new trabecular bone formation that signifies the bone 

healing/regeneration. This occurred in the defects edge as well as in the middle within 

one month which involved osteogenesis that moved within the central region and margin 

of the scaffold implant. This was attained with negligible tissue responses to a foreign 

body which was seen through hematology, biochemistry and histopathological analyses 

results. Grossly and histologically, after 8 weeks post-implantation the quantity of 

mature bone increased forming whole bone. The new bone tissue that was produced was 

successively matured within time as anticipated with increased mature cortical bone 

development and regeneration. Animal experiment revealed that the material used was 

able to resist load-bearing situations in extended usage without material breaking or 

generating stress protective effects to the bone of the host. This work signifies a key 

development in the healing of artificial bone grafts and suggests that the biomaterial of 

the grafted scaffold could possess great potential in prospective clinical uses where 

regeneration of bone is necessary. 

Key words: 3D-porous scaffolds, bionanocomposite, tissue engineering, non-seeded, 

rabbits. 
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Permintaan bagi perancah tisu yang direka untuk membaiki kecacatan tulang segmental 

yang menampung beban (SBDs) adalah penting dan semakin bertambah. Masalah tulang 

yang signifikan terutama trauma, kecacatan dan tumor meninggalkan pesakit di bawah 

tekanan komplikasi pembedahan, kos yang tinggi, risiko jangkitan, kekurangan 

penderma dan proses penyembuhan yang perlahan. Objektif utama kajian ini adalah 

untuk mencipta perancah nanokomposit berpori dari serbuk nano yang didapati daripada 

cengkerang kerang untuk membaiki SBD. Dalam kajian ini, 9 kombinasi perancah 

berpori nanokomposit dibuat dengan menggunakan pelbagai komposisi nanopartikel 

aragonit CaCO3 yang diperolehi daripada cengkerang kerang, gelatin, dektsran dan 

dekstrin. Perancah kemudian digunakan untuk membaiki kecacatan tulang ukuran 

kritikal (2 cm) yang dibuat pada batang tulang radial 16 ekor arnab putih New Zealand 

jantan yang dibahagikan kepada empat kumpulan (n = 4): Kumpulan A (kawalan), 

Kumpulan B (perancah 5211), Kumpulan C (5211GTA+Alginat) dan Kumpulan D (5211PLA). 

Tempat kecacatan yang ditanam dengan perancah dinilai selama 8 minggu dengan cara 

radiografi, hematologi, biokimia, pandangan kasar dan histologi. Serbuk CaCO3 (75µm) 

bersaiz mikron yang diperolehi dari cengkerang kerang diubah menjadi nanopartikel 

menggunakan kaedah mekano-kimia dan pengisar bebola (atas bawah) sintesis 

nanopartikel dengan menggunakan surfaktan BS-12 (dodecyl dimethyl bataine). 

Struktur kristal dan fasa purifikasi, fungsi kimia dan ciri-ciri termal serbuk perancah 

dianalisis menggunakan spektrofotometer jelmaan Fourier inframerah (FTIR), 

Difensometer Sinar-X Serbuk (PXRD) dan Kalorimetri Pengimbasan Perbezaan (DSC). 

Ciri-ciri perancah dinilai oleh Pengimbasan Mikroskop Elektron (SEM), ujian-ujian 

keliangan, penggelembungan, penyerapan air, cara penurunan dan ujian mekanikal. 

Ketaksempurnaan sitokompatibiliti ditaksir dari segi penampanan sel, kepekatan 

fosfatase alkali (ALP), proliferasi sel dan keupayaan untuk membentuk nodul tulang 

mineral. Ujian telah dijalankan ke atas kultur sel In vitro dengan menggunakan garis sel-

sel OsteoBlast janin manusia (hFOB). Nanopartikel aragonit CaCO3 yang diperolehi dari 

cengkerang kerang menggunakan kaedah atas-bawah menmpunyai julat saiz 15.94-
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55.21±6 nm yang ditentukan menggunakan Mikroskop Elektron Pengimbasan Pelepasan 

Medan (FESEM) dan Mikroskop Elektron Transmisi (TEM). Bentuk kalsium karbonat 

aragonit telah dikenal pasti oleh kedua-dua PXRD dan FTIR dalam semua perancah, 

manakala suhu lebur (Tm) dan suhu peralihan (Tg) telah dikenalpasti menggunakan DSC 

dengan julat Tm 62.41-75.51°C dan Tg 229.38-232.58°C. Analisis kejuruteraan 

menunjukkan bahawa perancah mempunyai struktur poros dalaman homogen 3D 

dengan saiz liang 8-526 μm, porositi 6-97%, kekuatan mekanikal 4-65 MPa, Young 

Modulus 104-296 MPa dan kadar degradasi enzimatik 16-67% dalam tempoh 2, 4 dan 

10 minggu. Penilaian biologi juga menunjukkan bahawa semua perancah telah 

meningkatkan kadar percambahan osteoblast dan meningkatkan fungsi osteoblas seperti 

yang ditunjukkan oleh peningkatan ketara dalam kepekatan ALP. Pemeriksaan 

radiografi menunjukkan pembentukan tulang trabekular baru yang menandakan 

penyembuhan tulang / regenerasi. Ini berlaku di bahagian tepi kecacatan dan juga di 

bahagian pertengahan dalam masa satu bulan yang melibatkan osteogenesis yang 

bergerak di dalam kawasan tengah dan margin implan perancah. Ini dicapai dengan 

tindak balas tisu kepada badan asing yang boleh diabaikan seperti yang dilihat melalui 

hasil analisis hematologi, biokimia dan histopatologi. Secara kasar dan histologi, selepas 

8 minggu pos-implantasi jumlah tulang matang telah meningkat dan membentuk seluruh 

tulang. Tisu tulang baru yang dihasilkan telah berturut-turut matang dalam masa seperti 

yang dijangkakan dengan perkembangan tulang kortikal dan regenerasi yang meningkat. 

Ujikaji ke atas haiwan mendedahkan bahawa bahan yang digunakan mampu menahan 

beban dalam penggunaan lanjutan tanpa memecahkan atau menghasilkan kesan 

perlindungan stres ke tulang perumah. Kerja-kerja ini menandakan perkembangan 

penting dalam penyembuhan graf tulang tiruan dan menunjukkan bahawa biobahan yang 

digunakan berpotensi besar dalam penggunaan klinikal yang memerlukan pertumbuhan 

semula tulang. 

Kata kunci: perancah 3D-berliang, bionanokomposit, kejuruteraan tisu, tidak bertunas, 

arnab. 
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1 

CHAPTER 1 

1 GENERAL INTRODUCTION 

The thoughts of restoring a damaged body have been in existence since the start of 
humankind with early history manifesting them as myths and magic. New understanding 
of the natural world, disease, trauma and the introduction of scientific methods enabled 
the production of an artificial prosthetic materials to restore the lost functions of organs 
and tissues. With the unfolding of the 20th century, the concept of substituting one tissue 
with another was developed. This has laid the foundation for the emergence of the field 
of tissue engineering which formally begun in 1987 (vacanti and vacanti, 2007). The 
science of designing and fabricating new tissues or materials for impairment repairs has 
since been widely studied and is constantly expanding. The bone possessing the highest 
regeneration potentials provides a classic example of a clear principle of a tissue 
engineering model (fisher and reddi, 2003).  

Currently, novel nanotechnology approaches are being engaged in the tissue 
engineering. The human bone represents one of the most important organs of the human 
body. These rigid organs play an essential role in providing the needed support, 
protection and movement. These unique features of the bones are well manipulated in 
the field of tissue engineering in a constant search for an ideal bone replacement material. 
A major problem for bone surgery frequently presents secondary bone tumour, trauma 
or deformity (Buckwalter, 2004; Nihorbd, 2004; Brydone et al., 2010). 

Bone injury, mainly is as a result of aged, deteriorating diseases or accidents. Many 
repair techniques have been suggested over the past decades. However almost all of them 
failed to produce long-lasting tissue repair (Salgado et al., 2002; van Gaalen et al., 2008). 
Bone replacement or transplantation involves the grafting of a new bone or a suitable 
replacement material between the spaces of a fractured bone or a defected bone in order 
to aid the healing process. Transplantation of bone is a fast growing field, which has a 
considerable influence on patients that suffer from bone tissue injury and infection 
(Sagar et al., 2013). Over a century, the process of bone grafting has been utilized by 
orthopedic surgeons due to the constant need for bone replacement. In medical 
procedures, grafting is commonly used to substitute damaged tissue. Presently the 
alternatives to treat these injuries are inadequate as they depend on allografts, autografts, 
and biomimetic or variety of synthetic materials and strategies (Da Silva, 2009). 
Autografts are osteoconductive, osteoinductive, with osteogenic characteristics (Cypher 
and Grossman, 1996; Ilan and Ladd, 2002). Even though, autografts are consider to be 
the standard for bone transplant, they likewise possess some restrictions because of 
probable donor morbidity, establishment of other medical complications and low tissue 
accessibility (Moore et al., 2001; Ilan and Ladd, 2002; Jakoi et al., 2015). The 
expectation of a graft substitute is highly dependent on the nature of the fracture or defect 
of the bone. This determines the use of the graft whether as simple void filler or as larger 
gap filler that acts like a scaffolding material to facilitate formation of new bone. In both 
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cases, the graft material acts as a structural support and strength provider (Ilan and Ladd, 
2002).  

To date, the choice of graft substitute marketed fulfills these criteria and one or more of 
the key principals of bone healing (osteoconduction, osteoinduction and osteogenesis) 
but not all. At the very least a grafting material designed should be osteoconductive in 
nature to be used as simple void fillers facilitating the formation of new bone cells. With 
the incorporation of growth factors such as Bone Morphogenic Proteins’ (BMPs) that 
promotes cell growth, an osteoinductive nature could be conferred to a grafting material 
to promote an even faster rate of healing. The constant emergence of newly innovated 
or improved grafting materials keeps the field of bone tissue engineering an exciting 
avenue for future studies in order to fulfill these empty voids in producing a grafting 
material that fulfills the principals of a successful bone substitute material. Prosthetics 
from metals and bone cement fillers, polymers and ceramics are additional treatment 
options in addition to bone defect renovation or changing broken bone tissue. The entire 
predictable approaches to renovate and replace bone may be painful, taking longer time 
and may be discarded by the body (Nandi et al., 2010; Bose et al., 2012; Santos Jr. and 
de Carvalho Zavaglia, 2016). It is in this context that in the last decades tissue 
engineering arose as a substitute method to restore and redevelop injured tissues to 
avoide the prerequisite for everlasting implant (Mistry and Mikos, 2005; Nesic et al., 
2006; Chung and Burdick, 2008).  

Tissue engineering may be divided into diverse approaches, the best approach for the 
creation of strong tissue (such as, bone and cartilage) substitutes is by the combination 
of living cells, biologically dynamic molecules and temporary three-D (3-D) permeable 
scaffolds (Hutmacher et al., 2007). Substitute strategies have been intensely explored 
and scrutinized based on a tissue engineering approach, attempting to rise above the 
innate restrictions of the presently obtainable solutions to bone defects. Using this 
strategy, forming of bone by tissue engineering is through seeding cells which can 
develop into osteoblasts on greatly permeable biomaterials (Brydone et al., 2010; Bose 
et al., 2012). Base on Williams (1987), tissue engineering is definite as an 
multidisciplinary field that uses the values of engineering and the life sciences in the 
direction of the improvement of biological alternatives that maintain, reestablish or 
progress function of tissue. These replacements are commonly branded as “scaffolds”.  

In the last few decades, tissue engineering has arose as a hopeful substitute to treat or 
substitute loss function of tissues and organs that result from infection or distress 
(Scheller et al., 2009; Torroni, 2009). The most studied approach includes the usage of 
artificial extracellular matrix (the scaffold) normally planned to be provisional and 
therefore made from bioresorbable or biodegradable polymers. Tissue engineering in 
recent time has boost up the awareness in producing permeable configurations for 
scaffolding in regeneration of tissue. The fundamental standard in tissue engineering is 
culturing of cells isolates from a patient, expanded, and even prompted to segregate In 
vitro in culturing of cell. Within In vitro, the cells seeded onto a scaffold further 
developed In vitro, ultimately in vibrant culture settings, after which is implanted into 
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the receipient deficiency which will act as an inductor for tissue redevelopment (Langer 
and Vacanti, 1993). Tissue engineering gives a prospective method to form tissues, 
organs and artificial graft products under laboratory circumstances in defeating the 
troubles of implantation refusal, diseases related with xenografts transmission and 
allografts, with deficiency in donation of organ (Blom et al., 2005; Lee et al., 2008; 
Navarro et al., 2008). 

Bone tissue engineering is a multidisciplinary research area in which new approaches 
are developed to treat human patients suffering from bone loss or disease. The same as 
in tissue engineering, synthetic bone is formed by seeding cells that can grow to be 
osteoblasts on three dimensional porous scaffolds for incubation either In vitro or in vivo 
to motivate bone matrix production (Navarro et al., 2008; Brydone et al., 2010; Bose et 
al., 2012). The biological artificial bone is predictable to substitute the autogenous bone 
graft by providing parallel essential apparatus. Bone tissue engineering can be addressed 
to resolve a lot of troubles such as possibility of bacterial infection, donor shortage, high 
cost and slow vascularization (Navarro et al., 2004, 2008; Sagar et al., 2013). Bone 
repair is the normal objective for bone tissue engineering, it may be useful in healing or 
fixing broad variety of bone defects (Blom et al., 2005; Navarro et al., 2008; Brydone et 
al., 2010). As explained above, tissue engineering of bone needs three significant 
fundamentals: these are cellular components, extracellular matrix (ECM) and growth 
factors (Søballe , 1993; Nandi et al., 2010). There are a lot of different approaches which 
could be used in building bone tissue engineering. Among the approach is a seeding 
autologous osteogenic cell In vitro beside a biodegradable scaffold forming a scaffold–
cell hybrid which can be called a tissue-engineered constructs. Chondrocytes and 
Mesenchymal stem cells osteoblasts, from rigid and soft tissues of the patient could be 
extended in culture and seeded onto a scaffold that would in a few manner die permitting 
fully normal bone tissue substitution (Czekanska et al., 2012; Biomed Central, 2015; 
Chen et al., 2015). A current report on the world marketplace of orthopedic implants and 
products industry indicated that the total drug orthopedic implant and device market to 
grow at a CAGR of approximatly 8.8% over the next decade to reach around $91.42 
billion by 2025 (Glover, 2016). 

Orthopedic implants develop with a growth rate of 7% to 10% over the last decade and 
this trend is predictable to carry on in the years to come (FDA, 2015). The global dental 
implants and prosthetics market is predictable to grow at a CAGR of 7.2% during the 
forecast period, to influence USD 12.32 Billion by 2021 (Sunita, 2010). 

The major part of this market was thoracolumbar fixation, followed by inter body 
devices and cervical fixation, which together compose the whole market for spinal fusion 
(Mis and Vcf, 2009). The global foot and ankle devices market is composed to grow at 
a CAGR of about 7.9% over the next decade to reach about $7.82 billion by 2025 (ZMR, 
2017).  
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The achievement of tissue engineering scaffold will appear into play to find out if it will 
sustain attachment of cell, growth and finally cell distinction into the proper tissue. 
Because of these, the bioresorbable scaffold should be biocompatible and having 
permeable related linkage to make easy vascularization and quick growing of a new 
produced tissue (Lee et al., 2008; Navarro et al., 2004, 2008). Consequently, numerous 
requirements were recognized as essential for the manufacturing of scaffolds in tissue 
engineering: the scaffold should have (1) connecting pores of a scale suitable to support 
incorporation and vascularization of tissues through allowing cell migration, conveying 
of gases, metabolites, nutrients and signal molecules both inside the scaffold and 
amongst the scaffold and the local environment, (2) substances that restricted the 
biodegradability or bioresorbability in order for the host tissue to finally substitute the 
scaffold through allowing to be break down by biological procedures at a rate compatible 
to the rate of tissue growth while supporting mechanical reliability at a giving time which 
vary from weeks to many months, (3) suitable surface chemistry to support cell 
connection, distinction and growing, (4) satisfactory mechanical properties, (5) not 
stimulate an adverse reaction, and (6) simple range of forms and dimensions (Li and Li, 
2005; Lee et al., 2008; Navarro et al., 2004, 2008). Having these necessities in mind, 
numerous substances have been accepted or produced and made-up into scaffolds 
(Harrison, 2007). 

A number of polymers are normally used in bone scaffolds, including collagen, 
hydroxyapatite, polylactic acid (PLA), polyglycolic acid (PGA) and polycaprolactone 
(PCL). Once artificial, scaffolding may sustain other surface modifications to improve 
their interactions with cells (Duan and Wang, 2010; Chang and Wang, 2011; Saber-
Samandari et al., 2016a).  

The fundamental principle of the present study was to use tissue engineering approach 
for restoration of critical size bone defect. The novel porous bioceramic scaffold has 
been developed using combination of cockle shell-drived CaCO3 aragonite nanoparticles 
powder, gelatin, dextran, dextrin and deionized water. The cockle shell-drived CaCO3 
aragonite nanopowder (CCAN) was used for this study. The cockle (Anadara granosa) 
is certainly, the majority plentiful species that is cultured in Malaysia. A probable benefit 
of using cockle shells as a biomineral is that they could work as equivalents of calcium 
carbonate existing in vivo. CCAN is an inorganic nanocrystal synthesized using the top 
down approach of nanoparticle preparation. Cockles are dominant faunal bivalves 
present, sometimes comprising the entire bivalve fauna in deep shells beds on sandy mud 
flats in the upper parts of estuaries and harbors. They live in super abundance in the low 
tidal and shallow subtidal zones of most of the present-day estuaries and enclosed bays 
and harbours (Hayward, 1990). In Malaysia, the cockles (Anadara granosa) are 
cultivated in a large scale in the area of intertidal coastal bordering mudfield regions and 
in many part of South East Asian countries, mainly Thailand and Indonesia. They are by 
far, the most vital species cultured in Malaysia (Ibrahim, 1995). The cockle shells contain 
more than 98% CaCO3 and thus, has the potential for the development of biomaterials 
for orthopedic applications (Awang-Hazmi et al., 2007).   
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Aragonite CaCO3 polymorph is a thermodynamically less stable and less available form 
of crystalline CaCO3 synthesized in laboratory. The size and shape of aragonite is 
strongly dependent on the preparation methods and conditions (Wang et al., 1999). Due 
to the huge striking properties of aragonite nanoparticles as a material of biomedical 
importance, researchers have paid huge attention on invention of methods for its 
controlled and facile synthesis at appropriate sizes and shapes using bottom up methods 
(Wang et al., 2006 a,b; Guo et al., 2007). Yet, none of these methods can promise 
production of pure aragonite nanoparticles of suitable sizes and shapes. Aragonites 
resulting from this production are often mixed with calcite (Guo et al., 2007) or calcite 
and vaterite (Chen and Xiang, 2009). Therefore, these methods may not be appropriate 
for specific biomedical applications. Though carbonation methods are found to be useful 
in industries and environmentally friendly, they are associated with the need for strict 
control of temperature, purified raw materials, and strenuous gas (CO2 or combination 
of CO2 and N2) bubbling phases which are complicated, expensive and time consuming 
(Wang et al., 2007a). Other impurities such as BS-12 are also added to the final products 
(Wang et al., 2007a). Therefore, the top down approach of CCAN synthesis from its 
natural sources, for example cockle shells or sea shells is greatly promising (Islam et al., 
2011). 

The present study is undertaken to fabricate, characterize and biologically quantify these 
natural origin materials for potential tissue engineering applications in the form of a bone 
scaffold. The abundant availability of these materials and mainly their biocompatibility 
nature with significant similarities to the organic and mineral phases of the bone 
structure makes them an interesting candidate for the study. The use of cockle shells that 
are mainly considered as a waster product which are easily obtained with no cost and 
gelatin powder that are relatively cheap, coupled with simple laboratory techniques 
makes the production of the scaffold material to be extremely cost effective in regards 
to future commercialization if intended. Although drawbacks such as batch variations 
and limited mechanical stability may cause an issue, the advantages of using these 
materials for biomedical engineering clearly outweighs its limitations as justified 
through the findings of these study. 

The constant demands for bone grafting materials, the drawbacks of the current grafting 
materials and techniques as well as the ever expending field of tissue engineering lays 
the foundation to embark on the current study in order to contribute to the development 
of the next generation of biomaterial based bone grafts. 

Significant bone problems named trauma, deformity and tumors leave the patients under 
the pressure of surgical complications, high cost, risk of infection, donor shortage and 
slow healing process. 

The hypothesis of the current study is that the fabricated porous nanocomposite bone 
scaffold is able to display the desired characteristics of an ideal bone grafting material 
and produce sufficient osteoconductive response in order to promote better bone healing.  
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Objectives of the study 

The main objective of the study was to develop porous nanocomposite scaffold for 
critical size defect bone repair. 

The specific objectives of this study were: 

i. To synthesize and characterize calcium carbonate CaCO3 nanoparticles in 
the aragonite phase from cockle shells. 

ii. To develop porous nanocomposite scaffolds and determine their physical, 
chemical and biomechanical properties. 

iii. To evaluate the porous nanocomposite scaffolds In vitro using cell line. 
iv. To evaluate the porous nanocomposite scaffolds in vivo in a rabbitmodel. 
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