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DEVELOPMENT AND EVALUATION OF NOVEL                     
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POROUS 3D SCAFFOLD FOR BONE REPAIR 

By

B. HEMABARATHY BHARATHAM 

November 2013 

Chairman : Professor  Md Zuki Abu Bakar @ Zakaria, PhD 

Faculty : Veterinary Medicine 

Shells are comparable to bones of vertebrates due to the similarities in mechanical 

properties and strength. The cockle shell material may act as an anolog of calcium 

carbonate in an in vivo condition that makes it a potential bone grafting material. The 

present study involves the development and evaluation of a novel three-dimensional 

alginate/nano cockle shell powder biocomposite bone scaffold prepared through 

lyophilization and divalent cation cross-linking methods. Element analysis revealed 

that the shell material consisted of 96% of calcium carbonate with no traces of toxic 

elements while physiochemical analysis revealed a predominantly aragonite form of 

calcium carbonate polymorph. The cockle shell powder was converted to nano 

particles using a biomineralization catalyst through a simple chemical method and 

was used as a representative of the inorganic phase while sodium alginic acid 

(alginate) was used as the organic phase in the development of the nano-

biocomposite scaffold. The scaffold mixture was prepared in varying composition 

ratios, characterized and evaluated through various characterization studies.

Scanning electron microscopy (SEM) analysis revealed the micro architecture of the 
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scaffolds with pore size ranging from 10 – 336 µm diameters. The porosity of the 

scaffolds was found to be above 60%. Mechanical properties of the tested scaffolds 

showed the composition ratio of 40% alginate and 60% nano cockle powder 

(Alg:nCP=40:60) possesed favorable mechanical properties ranging between the 

spongy bone structures compressive strength. Swelling ratio of the scaffolds showed 

an average of 30% medium uptake ability with 20 – 30% changes in diameter.

Enzymatic degradation test revealed an increase in structural stability proportional to 

the amount of nano cockle shell powder within the composition while pH changes 

observed during degradation studies revealed a neutralizing effect of nano cockle 

shell powder towards the potential acidification of the solution during alginate 

degradation. The physiochemical properties of the materials and the subsequent 

chemical interactions evaluated revealed the phase purity of the materials as well as 

the scaffolds ionic interaction characteristics contributing to an increase in thermal 

stability. In-vitro studies conducted on MG63 human osteoblast-like cells revealed 

good biocompatibility and absences of cytotoxic effect of the scaffolds with higher 

cell viability noted in scaffolds of 40:60 ratio and was used for further in-vitro

evaluation. Cell growth and adherence towards the scaffold materials were evaluated 

for a period of 48 hours, 7 and 14 days using SEM, Element Detection System (EDS) 

and histological evaluation. The results showed good attachment and spreading 

properties of the cells within 48 hours and were found to have grown into large cell 

clusters by Day 7 with distinctive presence of calcium nodules that was verified 

using EDS analysis on the nano-biocomposite scaffolds. At Day 14, a completely 

mineralized scaffold structure was observed in the nano-biocomposite scaffolds 

supported by findings from EDS analysis that showed the presence of phosphate and 

calcium as well as histological observations showing presence of osteoid like tissues. 
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In-vivo analysis of the scaffold implanted in a 5 mm osseous defect at the proximal 

part of the left tibia bone of New Zealand White rabbits revealed evidence of better 

healing quality of the nano-biocomposite scaffolds compared to control scaffolds as 

well as empty unfilled defects that were created simultaneously on the right proximal 

tibia bone of the animals. The quality of healing assessed after seven weeks post 

implantation through histomorphometric evaluations at three different depths of the 

defects revealed a significantly better healing in the nano-biocomposite defect site at

all three sections compared to the empty defect site as well as with the lower section 

of the control scaffold defect site. Comparatively, the regeneration of bone tissues 

were found to occur in a systematic coordinated way with larger areas of matured 

bone tissues observed in the presences of the nano-biocomposite scaffolds. The 

remaining void spaces within the defect sites with implants were found to be 

significantly lesser compared to those of the empty defects while the amount of 

remaining nano-bicomposite scaffold material was found to be significantly higher 

compared to the control scaffolds at all three regions evaluated. Statistical analysis 

for all data’s were done using One-way Analysis of Variance (ANOVA) followed by 

the post-hoc Tukey’s test, unless otherwise stated, where p<0.05 was accepted as 

significant. As a conclusion, the developed nano-biocomposite scaffold using 

alginate and nano cockle shell powder was found to show promising results to be 

used in the field of bone tissue engineering. The scaffolds showed good porous 

architectures that enhance its osteoconductive properties by facilitating better and 

faster bone regeneration in addition to being completely biocompatible as well as a 

cost effective alternative for bone grafting in the near future 

--------------------------------------------------------------------------------------------------

Key words: Alginate, nano cockle shell powder, porous scaffold, bone tissue 

engineering, osteoconductive, MG63 osteoblast cells 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 

sebagai memenuhi keperluan ijazah Doktor Falsafah 

FABRIKASI DAN EVALUASI PERANCAH TULANG 3D BERONGGA 
ALGINATE/SERBUK CENGKERANG NANO BIOKOMPOSIT  

Oleh 

B. HEMABARATHY BHARATHAM 

November 2013 

Pengerusi  : Professor  Md Zuki Abu Bakar @ Zakaria, PhD 

Fakulti  : Perubatan Veterinar 

Kajian ini merangkumi fabrikasi dan evaluasi perancah tulang nano biokomposit tiga 

dimensi yang disediakan mengunakan komposisi novel serbuk cengkerang kerang 

fasa nano dan alginat menerusi kaedah ‘lyophilization’ dan kaedah silang kation 

divalen. Sifat mekanikal dan kekuatan cengkerang yang didapati setanding tulang 

speies vertebra di samping bersifat analog kepada kalsium karbonat dalam keadaan 

in-vivo memberikan kelebihan kepada pengunaannya sebagai bahan asas penganti 

tulang. Analsis unsur mendedahkan bahawa komposisi serbuk cengkerang kerang 

mengandungi 96% kalsium karbonat tanpa kehadiran unsur-unsur toksik yang lain. 

Analisis fisiokimia menunjukkan polimorf kalsium karbonat yang hadir adalah 

berbentuk aragonit. Pembentukan fasa nano serbuk cengkerang dimangkinkan 

dengan pengunaan ‘biomineralization’ dan kaedah kimia yang mudah dan digunakan 

sebagai komponen inorganik dan alginat sebagai komponen organik dalam 

pembangunan perancah tulang ini. Perancah tulang nano biokomposit telah 

disediakan dalam komposisi yang berbeza dan dinilai melalui pelbagai kajian 

pencirian. Struktur mikroskopi perancah yang didedahkan oleh mengimbas analisis 
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mikroskopi electron (SEM) menunjukkan diameter saiz rongga dalam lingkungan                 

10-336 μm diameter dengan peratusan keliangan melebihi 60%. Kajian kekuatan 

mekanikal menunjukkan perancah dengan komposis 40% alginate dan 60% serbuk 

nano cengkerang (Alg:nCP=40:60) memiliki sifat mekanikal yang baik didalam 

lingkungan kekuatan mampatan tulang lembut. Kadar keresapan cecair kedalam 

perancah didapati berpurata 30% manakala kadar perubahan diameternya didapati 

dalam lingkungan 20-30% saiz asal. Ujian degradasi enzim menunjukkan 

peningkatan kestabilan struktur perancah dengan penambahan serbuk cengkerang 

kedalam komposisi. Perubahan pH yang diperhatikan selaras dengan ujian degradasi 

menunjukkan kesan peneutralan serbuk cengkerang ke arah peningkatan pengasidan 

akibat degradasi alginat. Sifat fisiokimia perancah yang dianalisis menunjukkan 

ketulenan fasa dan ciri-ciri interaksi ionik bahan komposisi yang menyumbangkan 

kepada peningkatan kestabilan terma. Kajian in-vitro mengunakan sel osteoblast 

manusia MG63 menunjukkan ciri keserasian dan ketidakhadiran kesan toksisiti 

bahan komposisi perancah terhadap sel serta kelebihan komposisi perancah 40:60

dalam menggalakkan kadar petumbuhan sel justeru dipilih sebagai komposisi 

perancah nano biokomposit dalam kajian-kajian seterusnya. Kajian pertumbuhan sel 

terhadap perancah dalam tempoh 48 jam, 7 dan 14 hari mengunakan penilaian SEM, 

EDS dan histologi menunjukkan pelekatan dan pertumbuhan sel yang baik dalam 

masa 48 jam dan kehadiran kelompok bebola sel besar dalam masa 7 hari serta 

pembentukkan nodul-nodul kalsium seperti yang disahkan menggunakan analisis

EDS pada perancah nano biokomposit. Kadar ‘mineralization’ yang sepenuhnya 

dapat diperhatikan pada hari ke-14 pada perancah nano biokomposit yang 

menunjukkan kehadiran fosfat dan kalsium serta tisu osteoid. Kajian in-vivo

perancah dilakukan menggunakan model arnab (New Zealand White) dengan 
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kecederaan tulang berbentuk lubang berdiameter 5 mm di wujudkan pada bahagian 

proksimal kedua-dua tulang tibia arnab di mana tulang kiri diimplan dengan 

perancah tulang (nano biokomposit atau kawalan) manakala bahagian tulang tibia 

kanan di biarkan tanpa implan. Kualiti penyembuhan tulang yang dikaji selepas tujuh 

minggu mengunakan kaedah histologi dan histomorphometric menunjukkan 

penyembuhan lubang perancah nano biokomposit lebih signifikan berbanding 

penyembuhan lubang yang tidak dipenuhi pada kesemua tiga bahagian kedalaman

yang dikaji serta pada bahagian paling dalam perancah kawalan. Penjanaan semula 

tisu tulang didapati berlaku secara sistematik dengan kadar kematangan tisu tulang 

yang lebih tinggi selaras dengan kehadiran perancah nano biokomposit. Ruang yang 

tidak dipenuhi tisu juga didapati kurang secara signifikan pada lubang yang diimplan 

perancah berbanding lubang yang tidak dipenuhi manakala jumlah bahan perancah 

yang masih tertingal didapati tinggi secara signifikan dengan pengunaan perancah 

nano biokomposit berbanding perancah kawalan. Kesemua analisis statistik telah 

dilakukan mengunakan Analisis Variance (ANOVA) dan ujian post-hoc Tukey, 

kecuali dinyatakan sebaliknya dan nilai p<0.05 diterima sebagai perbezaan ketara. 

Kajian ini menunjukkan perancah tulang nano biokomposit yang telah dibangunkan 

mempunyai ciri-ciri mikroskopik dan liang rongga yang bersesuian untuk 

memudahkan pertumbuhan tulang serta menunjukkan ciri-ciri keserasian 

‘biocompatibility’ dan ‘osteoconductivity’ yang mendorong pertumbuhan tulang 

pada kadar yang lebih cepat. Perancah ini dapati sesuai untuk digunakan dalam 

bidang kejuruteraan tisu tulang dan menunjukkan potensi yang tinggi dalam menjadi 

bahan penganti tulang alternatif yang berkos rendah pada masa yang akan datang 

------------------------------------------------------------------------------------------------------ 

Kata kunci: Alginat, serbuk cengkerang, perancah berongga, kejuruteraan tisu 

tulang, osteokonduktif, sel osteoblast MG63,  
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CHAPTER 1 

GENERAL INTRODUCTION 

The dreams of restoring a damaged body have been in existence since the start of 

humankind with early history manifesting them as myths and magic. New 

understanding of the natural world, disease, trauma and the introduction of scientific 

methods enabled production of artificial prosthetic materials to restore the lost 

functions of organs and tissues. With the unfolding of the 16
th

 century, the concept of 

replacing one tissue with another was developed. This has laid the foundation for the 

emergence of the field of tissue engineering which formally begun in 1987 (Vacanti 

and Vacanti, 2007). The science of designing and fabricating new tissues or materials 

for impairment repairs has since been widely studied and is constantly expanding. 

The bone possessing the highest regeneration potentials provides a classic example 

of a clear principle of a tissue engineering model (Fisher and Reddi, 2003). 

The human bone represents one of the most important organs of the human body. 

These rigid organs play an essential role in providing the needed support, protection 

and movement. Bones are one of the very few human organs that possess the 

potentials of regenerating and the only organ capable of remodeling. The normal 

physiological condition of the bone involves a constant formation and resorption 

phase that allows 5-15% of remodeling of the total bone mass in a year (Perez-

Sanchez et al., 2010).  These unique features of the bones are well manipulated in the 

field of tissue engineering in a constant search for an ideal bone replacement 

material.  
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Bone replacement or transplantation involves the grafting of a new bone or a suitable 

replacement material between the spaces of a fractured bone or a defected bone in 

order to aid the healing process. The process is often undertaken in situations in 

which the fractures are extremely complex with large areas of segmental defect or 

bones that have failed to heal properly. In such cases, bone grafts are used to help the 

fusion of the damaged bones, correct deformities as well as to provide the needed 

structural support.  

Bone grafting 

Over a century, the process of bone grafting has been utilized by orthopedic surgeons 

due to the constant need for bone replacement. Bone replacement becomes an 

inevitable part of orthopedic applications due to injuries caused by traumatic 

processes or physiological degenerative processes that leads to bone loss that 

compromises the quality of an individual’s life. In the United States alone, it is 

estimated over 500 000 bone-grafting procedures are performed annually (Boden, 

2003). This scenario further adds to the improvement of the existing methods of bone 

grafting. The longing for new and improved bone grafts has increased the 

innovativeness using tissue engineering paradigm to develop effective products 

during the last decade (Ilan and Ladd, 2002) 

In the field of bone grafting, the golden standard procedure of transplantation is 

autologus bone grafting. Though this has been practiced over decades, the 

requirement of a second surgical site with limited quantity of donor tissue as well as 

possible risk of donor site morbidity and an increased operative time and cost poses 
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the possible constraints in conducting this procedure. Optional to these, includes 

procedures such as allograft which involves the transplantation of tissues from 

donors as well as xenograft that involves transplantation of animal originated tissues. 

With each of these procedures, potential risk of pathogen transmission, 

immunological responses and infections constantly is an inherent problem                 

(Lee and Shin, 2007). 

Bone grafting requirements 

The success of a bone grafting procedure involves the principals of osteoconduction, 

osteoinduction and osteogenesis in addition to providing the needed mechanical 

stability, support and strength. The guided reparative growth of the natural bone 

(osteoconduction) and increased activation of mesenchymal cells to form active 

osteoblast cells (osteoinduction) are characteristics of many grafting materials with 

osteoconduction properties being predominant. To date only autografts fulfill all 

principal requirements of a successful bone graft as well as being the only true 

osteogenic material capable of inducing direct bone formation (Ilan and Ladd, 2002).

Autografts offer no immunological rejection while providing considerable 

ostoconductive, osteoinductive and osteogenic properties (Samartzis et al., 2005). 

However, given the considerable amount of limitations in using autografts as bone 

replacement materials, graft substitutes represent a more interesting and appealing 

option for bone grafting procedures (Ilan and Ladd, 2002). Substitutes for 

autografting include allografts, mineral composites, injectable cements, bioactive 

glass, polymers, proteins and growth factors. A large number of graft substitutes 

currently exist from the various classes mentioned above with their use and 
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availability expending exponentially each year. Despite the existence of these 

products and a market filled with unlimited options, the ideal implant material that 

could mimic an actual bone regenerative capacity is yet to be invented. 

The expectation of a graft substitute is highly dependent on the nature of the fracture 

or defect of the bone. This determines the use of the graft whether as a simple void 

filler or as a larger gap filler that acts as a scaffolding material to facilitate new bone 

formation. In both cases, the graft material acts as a structural support and strength 

provider (Ilan and Ladd, 2002). To date, the choice of graft substitute marketed 

fulfills these criteria and one or more of the key principals of bone healing 

(osteoconduction, osteoinduction and osteogenesis) but not all. At the very least a 

grafting material designed should be osteoconductive in nature to be used as simple 

void fillers facilitating the formation of new bone cells. With the incorporation of 

growth factors such as Bone Morphogenic Proteins’ (BMPs) that promotes cell 

growth, an osteoinductive nature could be conferred to a grafting material to promote 

an even faster rate of healing. This desired stimulation for bone growth though has 

been claimed to be present in human allografts, are still lacking in scientific evident 

as it has not been specifically identified despite its marketing claims shown through 

many successful animal based studies (Ilan and Ladd, 2002). The lack of 

comparative human studies that could clearly demonstrate the benefit of one grafting 

materials with another has created a void in the choice of bone graft substitutes that 

is considered as an ideal material. The constant emergence of newly innovated or 

improved grafting materials keeps the field of bone tissue engineering an exciting 

avenue for future studies in order to fulfill these empty voids in producing a grafting 

material that fulfills the principals of a successful bone substitute material. 
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Biomaterials and Bone Tissue Engineering 

In line with the trend, the use of biomaterials in graft substitute materials has recently 

emerged as an inspiring development in this field, with the third generation 

biomaterials being developed lately. This materials could be designed to provide 

cells for osteogenesis with osteoconduction properties as well as to contain 

osteoinduction signals in which these factors can be used separately or in 

combination (Scheller et al., 2009; Torroni, 2009). The biomaterials used in the field 

of bone tissue engineering are often produced in the form of a scaffolds that acts as a 

highly specialized bone grafting material that will be able to provide a three 

dimensional model mimicking the extracellular matrix for the adhesion, cell 

proliferation and differentiation in addition to conferring the needed structural 

support for the protection of early stages of tissue healing (Freed et al., 1994). The 

biomaterial based graft substitutes are also being designed to achieve the needed 

bioactivity with capabilities of provoking a specific cellular response at molecular 

level in addition to be able to reabsorb with time (Hench and Polak, 2002). These 

materials should not illicit an adverse reaction when placed into the biological 

environment. 

These current concepts in bone tissue engineering forms the basis for the current 

research work in order to develop a new bone scaffold using naturally occurring 

biomaterials. In this study,  shell powder were used as a source of calcium carbonate 

aragonite polymorph in combination with alginic acid (alginate), a naturally 

occurring polymer, in order to produce a three dimensional scaffold for  possible 

bone grafting applications.  
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Hypothesis of the Study 

The nano-biocomposite bone scaffold fabricated is able to mimic the natural 

structure of bones and is able to produce sufficient osteoconductive response in order 

to promote better bone healing as well as to display the desired characteristics of an 

ideal bone grafting material. 

Objectives of the Study  

The objectives of the study were to: 

i. analyze the composition and chemical properties of cockle shell and other 

selected molluscan shell powder as a potential biomaterial for bone tissue 

engineering. 

ii. develop and characterize alginate/cockle shell powder novel nano-

biocomposite porous three dimensional (3D) scaffold.

iii. conduct an in-vitro evaluation of the nano-biocomposite scaffold for 

biocompatibility and bone tissue regeneration potentials. 

iv. investigate the osteogenic ability and tissue compatibility of the prepared 

scaffold through in-vivo evaluation using an appropriate animal model. 
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