ANTINOCICEPTIVE EFFECTS AND MECHANISMS OF ACTION OF Clinacanthus nutans LINDAU LEAF METHANOLIC AND PETROLEUM ETHER EXTRACTS IN MICE

MOHAMMAD HAFIZ BIN ABDUL RAHIM

FPSK(P) 2017 28
ANTINOCICEPTIVE EFFECTS AND MECHANISMS OF ACTION OF Clinacanthus nutans LINDAU LEAF METHANOLIC AND PETROLEUM ETHER EXTRACTS IN MICE

By

MOHAMMAD HAFIZ BIN ABDUL RAHIM

Thesis submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

July 2017
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
DEDICATION

This thesis is dedicated to my parents, who believe in the richness of learning, their love and support has enabled me to achieve my goals and finish what I have started.
Abstract of thesis presented to the senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

ANTINOCICEPTIVE EFFECTS AND MECHANISMS OF ACTION OF Clinacanthus nutans LINDAU LEAF METHANOLIC AND PETROLEUM ETHER EXTRACTS IN MICE

By

MOHAMMAD HAFIZ BIN ABDUL RAHIM

July 2017

Clinacanthus nutans (C. nutans) Lindau is a shrub widely cultivated in the South East Asian region including Malaysia. It has traditionally been used for the treatment of various ailments including pain–mediated diseases. Although various pharmacological activities of this plant have been reported, its pain–relieving activity has been neglected. Therefore, the objective of the present study is to determine the chemical constituents, acute and subchronic toxicity, and antinociceptive effects of the C. nutans leaf extracts. Phytochemical screening and chromatography methods analysis, i.e., High Performance Liquid Chromatography (HPLC), Ultra High Performance Liquid Chromatography–Electrospray Ionisation (UHPLC–ESI) and Gas Chromatography–Mass Spectrometry (GC–MS), standard procedures were carried out to determine the presence of bioactive compounds. Acute (14 days) and subchronic (28 days) oral toxicity tests were performed according to the Organisation for Economic Co–operation and Development (OECD) guidelines. The antinociceptive effect of C. nutans leaf methanol extract (MECN) was investigated using acetic acid–induced abdominal constriction, hot plate, and formalin–induced paw licking tests. The antinociceptive effects of its partitions, i.e., petroleum ether (PECN), ethyl acetate (EACN), and aqueous (AQCN) partitions, were evaluated using acid–induced abdominal constriction test. The PECN, which was the most effective in acetic acid–induced abdominal constriction test, was further subjected to hot plate and formalin–induced paw licking tests. Furthermore, the MECN and PECN also were subjected to the rota–rod test in order to determine non–specific sedative effects. The roles of capsaicin, glutamate, phorbol 12–myristate 13–acetate (PMA), bradykinin, various non–opioid and opioid receptors, L–arginine–nitric oxide (NO)–cyclic Guanosine Monophosphate (cGMP) and potassium (K+) channels pathway in MECN and PECN–induced antinociception were also evaluated. Phytochemical Screening of MECN and PECN revealed the presence of flavonoids, saponins, steroids and triterpenes. Further analysis, i.e., HPLC, UHPLC–ESI, and GC–MS, of the extracts
have revealed the presence of polyphenolic compounds such as phenolic acid and flavonoid–based compounds as major components. In the acute toxicity test, the median lethal dose (LD$_{50}$) estimated for C. nutans leaf was more than 5000 mg/kg body weight, whereas in subchronic toxicity test, the no–observed–adverse–effect levels (NOAELs) estimated was more than 2500 mg/kg body weight/day. Oral administration of 100, 250, and 500 mg/kg body weight MECN and PECN produced significant ($p < 0.05$) inhibition in acetic acid–, formalin–, capsaicin–, glutamate–, PMA–, bradykinin–induced nociception, while in hot plate test, only the highest dose showed significant ($p < 0.05$) pain inhibition. In the rota–rod test, 500 mg/kg body weight extracts did not show any significant ($p > 0.05$) effect on motor coordination. The antinociceptive activity of 500 mg/kg body weight extracts were significantly ($p < 0.05$) reversed by pre–treatment with L–arginine, while PECN but not MECN significantly ($p < 0.05$) reversed by pre–treatment with 1H–[1,2,4]oxadiazole[4,3– a]quinoxaline–1–one (ODQ). The present study also showed that 500 mg/kg body weight MECN and PECN produced significant ($p < 0.05$) antagonised following pre–treatment with non–opioid and opioid receptor antagonists, i.e., yohimbine, pindolol, caffeine, haloperidol, atropine, β–funaltrexamine, naltrindole, and nor–binaltorphimine, and various K$^+$ channels blockers, i.e., glibenclamide, apamin, charybdotoxin and tetraethylammonium chloride. In conclusion, MECN and PECN exert antinociceptive activity at both central and peripheral pain pathways through the modulation of the vanilloidergic, glutamatergic, bradykininergic, noradrenergic, serotonergic, adenosinergic, dopaminergic, cholinergic, and opioidergic receptors, protein kinase C, NO–cGMP–independent or dependent, and K$^+$ channels pathways systems. The synergistic actions of the bioactive compounds contribute to the antinociceptive activity of MECN and PECN.
Abstrak tesis yang dikemukakan kepada senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

KESAN ANTINOSISEPTIF DAN MEKANISME TINDAKAN EKSTRAK METANOL DAN ETER PETROLEUM DAUN *Clinacanthus nutans* LINDAU PADA MENCIT

Oleh

MOHAMMAD HAFIZ BIN ABDUL RAHIM

Julai 2017

Pengerusi : Profesor Madya Zainul Amiruddin Zakaria, PhD
Fakulti : Perubatan dan Sains Kesihatan

Clinacanthus nutans (*C. nutans*) Lindau adalah pokok renek ditanam secara meluas di rantau Asia Tenggara termasuk Malaysia. Ia secara traditional telah digunakan untuk rawatan pelbagai termasuk sakit–perantara penyakit. Walaupun pelbagai aktiviti farmakologi dari tumbuhan ini telah dilaporkan, aktiviti sakit–melegakan telah diabaikan. Oleh itu, objektif kajian ini adalah untuk menentukan juzuk kimia, ketoksikan akut dan subkronik, dan kesan antinosiseptif dari ekstrak daun *C. nutans*.

berasaskan sebatian sebagai kompenen utama. Dalam ujian ketoksikan akut, dos maut median (LD₅₀) dianggarkan untuk daun *C. nutans* adalah lebih daripada 5000 mg/kg berat badan, sedangkan dalam ujian ketoksikan subkronik, tiada–tahap–kesan–buruk–yang diperhatikan (NOAELs) dianggarkan lebih daripada 2500 mg/kg berat badan/hari. Pemberian oral 100, 250, dan 500 mg/kg berat badan MECN dan PECN menghasilkan signifikan (p <0.05) perencatan dalam asid asetik, formalin, kapsaisin, glutamat, PMA, bradikinin–teraruh nosiseptif, manakala dalam ujian piring panas, hanya dos tertinggi menunjukkan signifikan (p < 0.05) perencatan kesakitan. Dalam ujian ‘rota–rod’, 500 mg/kg berat badan ekstrak tidak menunjukkan sebarang signifikan (p > 0.05) ke atas koordinasi motor. Aktiviti antinosiseptif 500 mg/kg berat badan ekstrak secara signifikan (p <0.05) dibalikkan oleh pra–rawatan dengan L–arginina, manakala PECN tetapi tidak MECN secara signifikan (p < 0.05) dibalikkan oleh pra–rawatan dengan dengan 1H–[1,2,4]oxadiazole[4,3–a]quinoxaline–1–one (ODQ). Kajian ini juga menunjukkan bahawa 500 mg/kg berat badan MECN dan PECN menghasilkan signifikan (p <0.05) antagonis berikutan pra–rawatan dengan dengan antagonis reseptor bukan–opioid dan opioid, iaitu, yohimbina, pindolol, kafeina, haloperidol, atropine, β–funaltrexamine, naltrindole, and nor–binaltorphimine, dan pelbagai penyekat saluran K⁺, iaitu, glibenclamide, apamin, charybdotoxin and tetraethylammonium klorida. Kesimpulannya, MECN dan PECN menjalankan aktiviti antinosiseptif di kedua–dua laluan kesakitan pusat dan periferal menerusi modulasi sistem reseptor vanilloidergik, glutamatergik, bradikininergik, noradrenergik, serotonergik, adenosinergik, dopaminergik, cholinergik, dan opioidergik, kinase protein C, NO–cGMP–tidak bergantung atau bergantung, dan laluan saluran K⁺. Tindakan synergistik dari sebatian bioaktif menyumbang kepada aktiviti antinosiseptif MECN dan PECN.
ACKNOWLEDGEMENTS

First and foremost, I would like to express my thanks and syukur Alhamdulillah to Allah S.W.T for all His blessings and help in making sure the completion of this research study.

Without my supervisor, this research study can never be completed in the way it is intended. As such, I would like to express my gratitude and appreciation to my supervisor, Associate Professor Dr. Zainul Amiruddin Zakaria for his ideas, patience, priceless advice and support in guiding me throughout the whole process in completion of this research study. The special thanks goes to my helpful co–supervisors, Dr. Manraj Singh Cheema and Dr. Siti Farah Md Tohid for their guidance, invaluable advice and support. It is only Allah that can repay all your kindness.

Special thanks also go to my colleague, Dr. Mohd Hijaz Mohd Sani, for his continuous assistance throughout the study. I would like to thank all my fellow pharmacology lab mates, Kucai, Farhana, Fauzi, Salahuddin, Dr. Tavamani, Raihana, Farah, Erin, Didi, Wahida, Dr. Liana, Rush, Wana, Abg Erman and Syariah for their companion, cooperation and care towards me. Not to forget to mention, special thanks to Dr. Norhafizah Mohtarrudin, who giving me an advice and guidance in Histological study. Further, my sincere thanks also go to all helpful staffs of Pharmacology Laboratory, staffs of Histology Laboratory, staffs of Animal House, Pn Yati, Bon, Poji, En Ramli, Pn Juita, Pn Zamzarina, En Salleh, and En Khairul Faizi, for their kindness, cooperation, understanding and support in completing this project successfully.

I also owe my thanks to my loving wife, Hidayah Shaikh Abu Bakar for her constant love and support all these years and for her standing beside me during the completion of this research and my sweet children, Yusuf Fansuri, Sofea Raihana, and Yasmin Medina for always making me smile and for encouragement. Special thanks also go to my father DR Abdul Rahim Hj. Ismail who shared with me his knowledge and experience to finish this research study. He has been my inspiration and motivation for continuing to improve my knowledge. Thank you to my loving and supporting family especially my mother Norhayatti Abdul Razak who took care and understands me, by making sure that I do my best in completing this research study.

My sincere appreciation to Universiti Putra Malaysia and Kementerian Pendidikan Tinggi Malaysia for giving me an opportunity and providing me scholarship to pursue my Doctoral degree and last but not least, to all those people who were either involved directly or indirectly in making this experiment possible and a success for me. Thank you very much and May Allah bless you all.
I certify that a Thesis Examination Committee has met on 20 July 2017 to conduct the final examination of Mohammad Hafiz bin Abdul Rahim on his thesis entitled "Antinociceptive Effects and Mechanisms of Action of Clinacanthus nutans Lindau Leaf Methanolic and Petroleum Ether Extracts in Mice" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U. (A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Mohd Nasir bin Mohd Desa, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Muhammad Nazrul Hakim bin Abdullah, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Rasedee @ Mat bin Abdullah, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Internal Examiner)

Vanessa Steenkamp, PhD
Professor
University of Pretoria
South Africa
(External Examiner)

\[Signature\]

NOR AINI AB. SHUKOR, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 28 September 2017
This thesis was submitted to the senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the supervisory committee were as follows:

Zainul Amiruddin Zakaria, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Siti Farah Md Tohid, PhD
Senior Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Manraj Singh Cheema, PhD
Senior Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

ROBIAH BINTI YUNUS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:
• This thesis is my original work;
• Quotations, illustrations and citations have been duly referenced;
• This thesis has not been submitted previously or concurrently for any other degree at any other institutions;
• Intellectual property from the thesis and copyright of thesis are fully–owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
• Written permission must be obtained from supervisor and the office of Deputy Vice–Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules, or any other materials as stated in the Universiti Putra Malaysia (Research) 2012;
• There is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012–2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ___________________________ Date: _____________________

Name and Matric No.:__
Declaration of the members of Supervisory Committee

This is to confirm that:

- The research conducted and the writing of this thesis was under our supervision;
- Supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (revision 2012–2013) are adhered to.

Signature: _______________________
Name of Chairman of Supervisory Committee: _______________________

Signature: _______________________
Name of Member of Supervisory Committee: _______________________

Signature: _______________________
Name of Member of Supervisory Committee: _______________________
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xix</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 General Introduction | 1 |
1.2 Problem Statement | 2 |
1.3 Justification of the Study | 3 |
1.4 Hypothesis | 3 |
1.5 Objective of the Study | 3 |

2 LITERATURE REVIEW

2.1 Natural Products | 4 |
2.1.1 Plant–Based Natural Products | 4 |
2.1.2 Natural Products with Antinociceptive Activity | 5 |
2.1.3 Bioactive Compounds with Therapeutic Potential | 6 |
2.2 *Clinacanthus nutans* (Burm. f.) Lindau | 6 |
2.2.1 Synonyms and Common Names | 7 |
2.2.2 Plant Description | 8 |
2.2.3 Ethnomedicinal Uses | 9 |
2.2.4 Phytochemical Constituents | 9 |
2.2.5 Pharmacological Activities | 11 |
2.3 Pain | 13 |
2.3.1 Types of Pain | 13 |
2.3.2 Pain Pathways | 14 |
2.3.3 Pain Receptors | 16 |
2.4 Involvement of Various Receptors in Pain | 17 |
2.4.1 Capsaicin Receptor | 17 |
2.4.2 Glutamate Receptor | 18 |
2.4.3 Bradykinin Receptor | 19 |
2.4.4 Opioid Receptor | 19 |
2.4.5 Adrenergic Receptor | 20 |
2.4.6 Serotonergic Receptor | 20 |
2.4.7 Adenosinergic Receptor | 21 |
2.4.8 Dopaminergic Receptor | 21 |
2.4.9 Cholinergic Receptor | 22 |
2.5 Involvement of Various Systems in Pain | 22 |
2.5.1 Involvement of Protein Kinase C (PKC) | 22 |
2.5.2 Involvement of L-arginine–Nitric Oxide–cyclic Guanosine Monophosphate Pathways 23
2.5.3 Involvement of Potassium Channels 23
2.6 Analgesic Drugs 24
2.6.1 Opioid Analgesic Drugs 24
2.6.2 Non–Opioid Analgesic Drugs 25
2.6.3 Non–steroidal anti–inflammatory drugs (NSAIDs) 25
2.6.4 Acetaminophen 26
2.7 *In vivo* Toxicity Studies 26
2.7.1 Acute Toxicity Test 27
2.7.2 Subchronic Toxicity Test 28
2.8 *In vivo* Antinociceptive Models 28
2.8.1 Acetic Acid–Induced Abdominal Constriction Test 28
2.8.2 Hot Plate Test 29
2.8.3 Formalin Test 29
3 IDENTIFICATION AND CHARACTERISATION OF THE CHEMICAL CONSTITUENTS OF *CLINACANTHUS NUTANS* LEAF EXTRACTS 31
3.1 Introduction 31
3.2 Materials and Methods 31
3.2.1 Plant Material 31
3.2.2 Preparation of Methanolic Extract 32
3.2.3 Preparation of Petroleum Ether, Ethyl Acetate, and Aqueous Partitions 32
3.2.4 Phytochemical Screening *Clinacanthus nutans* Leaf Extracts 33
3.2.5 High Performance Liquid Chromatography Analysis of *Clinacanthus nutans* Leaf Methanolic and Petroleum Ether Extracts 34
3.2.6 Ultra High Performance Liquid Chromatography–Electrospray Ionisation Profiling of *Clinacanthus nutans* Leaf Methanolic Extract 35
3.2.7 Gas Chromatography–Mass Spectrometry Analysis of *Clinacanthus nutans* Leaf Methanolic and Petroleum Ether Extracts 35
3.3 Results 36
3.3.1 Phytochemical Screening *Clinacanthus nutans* Leaf Extracts 36
3.3.2 High Performance Liquid Chromatography Analysis of *Clinacanthus nutans* Leaf Methanolic and Petroleum Ether Extracts 36
3.3.3 Ultra High Performance Liquid Chromatography–Electrospray Ionisation Profiling of *Clinacanthus nutans* Leaf Methanolic Extract 43
3.3.4 Gas Chromatography–Mass Spectrometry Analysis of *Clinacanthus nutans* Leaf Methanolic and Petroleum Ether Extracts 44
3.4 Discussion 53
4 ACUTE AND SUBCHRONIC TOXICITY OF CLINACANTHUS NUTANS LEAF METHANOLIC EXTRACT IN MICE
4.1 Introduction 56
4.2 Materials and Methods 56
 4.2.1 Preparation of Methanolic Extract 56
 4.2.2 Experimental Animals 56
 4.2.3 Acute Oral Toxicity Study 57
 4.2.4 Subchronic Oral Toxicity Study 57
 4.2.5 Haematological and Biochemical Analysis 58
 4.2.6 Histopathological Study 58
 4.2.7 Data Analysis 59
4.3 Results 59
 4.3.1 Acute Oral Toxicity Study 59
 4.3.2 Subchronic Oral Toxicity Study 59
 4.3.3 Haematological and Biochemical Analysis 63
 4.3.4 Histopathological Study 66
4.4 Discussion 70
4.5 Conclusions 72

5 ANTINOCICEPTIVE ACTIVITIES OF CLINACANTHUS NUTANS LEAF METHANOLIC AND PETROLEUM ETHER EXTRACTS IN MICE
5.1 Introduction 73
5.2 Materials and Methods 74
 5.2.1 Preparation of Methanolic Extract 74
 5.2.2 Preparation of Petroleum Ether, Ethyl Acetate, and Aqueous Partitions 74
 5.2.3 Drugs and Chemicals 74
 5.2.4 Experimental Animals 74
 5.2.5 Acetic Acid–Induced Abdominal Constriction Test 74
 5.2.6 Hot Plate Test 75
 5.2.7 Formalin–Induced Nociception 75
 5.2.8 Rota–rod Test 76
 5.2.9 Data Analysis 76
5.3 Results 76
 5.3.1 Effects of Clinacanthus nutans Leaf Methanolic Extract on Acetic Acid–Induced Abdominal Constriction Test 76
 5.3.2 Effects of Clinacanthus nutans Leaf Methanolic Extract on Hot Plate Test 77
 5.3.3 Effects of Clinacanthus nutans Leaf Methanolic Extract on Formalin–Induced Nociception 79
 5.3.4 Effects of Partitions of Clinacanthus nutans Leaf Methanolic Extract on Acetic Acid–Induced Abdominal Constriction Test 79
 5.3.5 Effects of Clinacanthus nutans Leaf Petroleum Ether Extract on Hot Plate Test 82
5.3.6 Effects of Clinacanthus nutans Leaf Petroleum Ether Extract on Formalin–Induced Nociception

5.3.7 Effects of Clinacanthus nutans Leaf Methanolic and Petroleum Ether Extracts on Rota–rod Test

5.4 Discussion

5.5 Conclusions

6 ANTINOCICEPTIVE MECHANISMS OF ACTION OF CLINACANTHUS NUTANS LEAF METHANOLIC AND PETROLEUM ETHER EXTRACTS IN MICE

6.1 Introduction

6.2 Materials and Methods

6.2.1 Preparation of Methanolic Extract

6.2.2 Preparation of Petroleum Ether Partition

6.2.3 Drugs and Chemicals

6.2.4 Experimental Animals

6.2.5 l–arginine–Nitric Oxide–cyclic Guanosine Monophosphate Pathways

6.2.6 Capsaicin–, Glutamate–, Phorbol 12–myristate 13–acetate–, Bradykinin–Induced Nociception

6.2.7 Non–Opioid and Opioid Receptors

6.2.8 Potassium Channels

6.2.9 Data Analysis

6.3 Results

6.3.1 Involvement of l–arginine–Nitric Oxide–cyclic Guanosine Monophosphate Pathways in the Antinociceptive Effect caused by Clinacanthus nutans Leaf Methanolic Extract

6.3.2 Effects of Clinacanthus nutans Leaf Methanolic Extract on Capsaicin–, Glutamate–, Phorbol 12–myristate 13–acetate–, Bradykinin–Induced Nociception

6.3.3 Involvement of Non–Opioid and Opioid Receptors in the Antinociceptive Effect Caused by Clinacanthus nutans Leaf Methanolic Extract

6.3.4 Involvement of Potassium Channels in the Antinociceptive Effect Caused by Clinacanthus nutans Leaf Methanolic Extract

6.3.5 Involvement of l–arginine–Nitric Oxide–cyclic Guanosine Monophosphate Pathways in the Antinociceptive Effect caused by Clinacanthus nutans Leaf Petroleum Ether Extract

6.3.6 Effects of Clinacanthus nutans Leaf Petroleum Ether Extract on Capsaicin–, Glutamate–, Phorbol 12–myristate 13–acetate–, Bradykinin–Induced Nociception

6.3.7 Involvement of Non–Opioid and Opioid Receptors in the Antinociceptive Effect caused by Clinacanthus nutans Leaf Petroleum Ether Extract
6.3.8 Involvement of Potassium Channels in the Antinociceptive Effect Caused by Clinacanthus nutans Leaf Petroleum Ether Extract

6.4 Discussion
6.5 Conclusions

7 SUMMARY, GENERAL CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH

REFERENCES
APPENDICES
BIODATA OF STUDENT
LIST OF PUBLICATIONS
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Phytochemical constituents of Clinacanthus nutans leaf extracts</td>
<td>36</td>
</tr>
<tr>
<td>2</td>
<td>Chemical profile identified in Clinacanthus nutans leaf methanolic extract by ultra high performance liquid chromatography–electrospray ionisation</td>
<td>43</td>
</tr>
<tr>
<td>3</td>
<td>Chemical profile identified by gas chromatography–mass spectrometry analysis of Clinacanthus nutans leaf methanolic extract</td>
<td>45</td>
</tr>
<tr>
<td>4</td>
<td>Chemical profile identified by gas chromatography–mass spectrometry analysis of Clinacanthus nutans leaf petroleum ether extract</td>
<td>46</td>
</tr>
<tr>
<td>5</td>
<td>Effects of Clinacanthus nutans leaf methanolic extract for 28–days treatment on body weight of male and female ICR mice</td>
<td>61</td>
</tr>
<tr>
<td>6</td>
<td>Effects of Clinacanthus nutans leaf methanolic extract for 28–days treatment on relative organ weight of male and female ICR mice</td>
<td>62</td>
</tr>
<tr>
<td>7</td>
<td>Effects of Clinacanthus nutans leaf methanolic extract for 28–days treatment on haematological parameters of male and female ICR mice</td>
<td>64</td>
</tr>
<tr>
<td>8</td>
<td>Effects of Clinacanthus nutans leaf methanolic extract for 28–days treatment on biochemical parameters of male and female ICR mice</td>
<td>65</td>
</tr>
<tr>
<td>9</td>
<td>Effects of Clinacanthus nutans leaf methanolic extract on the hot plate test in mice</td>
<td>78</td>
</tr>
<tr>
<td>10</td>
<td>Effects of Clinacanthus nutans leaf petroleum ether extract on the hot plate test in mice</td>
<td>83</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Plants of Clinacanthus nutans Lindau</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>Leaves of Clinacanthus nutans Lindau</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>The high performance liquid chromatography profile of Clinacanthus nutans leaf methanolic extract at the wavelengths of 210, 254, 280, 300, 330 and 366 nm</td>
<td>38</td>
</tr>
<tr>
<td>4</td>
<td>The high performance liquid chromatography profile of Clinacanthus nutans leaf petroleum ether extract at the wavelengths of 210, 254, 280, 300, 330 and 366 nm</td>
<td>39</td>
</tr>
<tr>
<td>5</td>
<td>The ultraviolet spectra analysis of Clinacanthus nutans leaf methanolic extract</td>
<td>40</td>
</tr>
<tr>
<td>6</td>
<td>The ultraviolet spectra analysis of Clinacanthus nutans leaf petroleum ether extract</td>
<td>41</td>
</tr>
<tr>
<td>7</td>
<td>Chromatogram of standard compounds</td>
<td>42</td>
</tr>
<tr>
<td>8</td>
<td>Effects of Clinacanthus nutans leaf methanolic extract on body weight of male (A) and female (B) ICR mice in acute oral toxicity study</td>
<td>60</td>
</tr>
<tr>
<td>9</td>
<td>Histological photomicrographs of liver sections after acute oral toxicity of female ICR mice</td>
<td>66</td>
</tr>
<tr>
<td>10</td>
<td>Histological photomicrographs of kidney sections after acute oral toxicity of female ICR mice</td>
<td>67</td>
</tr>
<tr>
<td>11</td>
<td>Histological photomicrographs of liver sections after subchronic oral toxicity of female ICR mice</td>
<td>68</td>
</tr>
<tr>
<td>12</td>
<td>Histological photomicrographs of kidney sections after subchronic oral toxicity of female ICR mice</td>
<td>69</td>
</tr>
<tr>
<td>13</td>
<td>Effects of Clinacanthus nutans leaf methanolic extract on acetic acid–induced abdominal constriction in mice</td>
<td>77</td>
</tr>
<tr>
<td>14</td>
<td>Effects of Clinacanthus nutans leaf methanolic extract on formalin–induced paw licking in mice (A) Early phase; (B) late phase</td>
<td>80</td>
</tr>
<tr>
<td>15</td>
<td>Effects of partitions of Clinacanthus nutans leaf methanolic extract on acetic acid–induced abdominal constriction in mice</td>
<td>81</td>
</tr>
<tr>
<td>16</td>
<td>Effects of Clinacanthus nutans leaf petroleum ether extract on formalin–induced paw licking in mice (A) Early phase; (B) late phase</td>
<td>84</td>
</tr>
<tr>
<td>17</td>
<td>Effects of Clinacanthus nutans leaf methanolic and petroleum ether extracts on rota–rod test in mice</td>
<td>85</td>
</tr>
</tbody>
</table>
(A) Effects of L-arginine or Nω-nitro-L-arginine methyl ester hydrochloride and (B) Effects of 1H-[1,2,4]oxadiazole[4,3-a]quinoxaline-1-one on Clinacanthus nutans leaf methanolic extract against acetic acid–induced abdominal constriction test in mice

19 Effects of Clinacanthus nutans leaf methanolic extract on capsaicin–induced nociception in mice

20 Effects of Clinacanthus nutans leaf methanolic extract on glutamate–induced nociception in mice

21 Effects of Clinacanthus nutans leaf methanolic extract on Phorbol 12–myristate 13–acetate–induced nociception in mice

22 Effects of Clinacanthus nutans leaf methanolic extract on bradykinin–induced nociception in mice

23 The involvement of non-opioid receptor antagonists on Clinacanthus nutans leaf methanolic extract–induced antinociception in the acetic acid–induced abdominal constriction test in mice

24 Effects of opioid receptor antagonists on Clinacanthus nutans leaf methanolic extract–induced antinociception in the acetic acid–induced abdominal constriction test in mice

25 Effects of glibenclamide, apamin, charybdotoxin, and tetraethylammonium chloride on Clinacanthus nutans leaf methanolic extract–induced antinociception in the acetic acid–induced abdominal constriction test in mice

26 (A) Effects of L-arginine or Nω-nitro-L-arginine methyl ester hydrochloride and (B) Effects of 1H-[1,2,4]oxadiazole[4,3-a]quinoxaline-1-one on Clinacanthus nutans leaf petroleum ether extract against acetic acid–induced abdominal constriction test in mice

27 Effects of Clinacanthus nutans leaf petroleum ether extract on capsaicin–induced nociception in mice

28 Effects of Clinacanthus nutans leaf petroleum ether extract on glutamate–induced nociception in mice

29 Effects of Clinacanthus nutans leaf petroleum ether extract on Phorbol 12–myristate 13–acetate–induced nociception in mice

30 Effects of Clinacanthus nutans leaf petroleum ether extract on bradykinin–induced nociception in mice

31 The involvement of various non-opioid receptor antagonists on Clinacanthus nutans leaf petroleum ether extract–induced antinociception in the acetic acid–induced abdominal constriction test in mice
Effects of opioid receptor antagonists on *Clinacanthus nutans* leaf petroleum ether extract–induced antinociception in the acetic acid–induced abdominal constriction test in mice

Effects of glibenclamide, apamin, charybdotoxin and tetraethylammonium chloride on *Clinacanthus nutans* leaf petroleum ether extract–induced antinociception in the acetic acid–induced abdominal constriction test in mice

Schematic diagram of the proposed possible mechanisms of action underlying the antinociceptive effect of *Clinacanthus nutans* leaf methanolic and petroleum ether extracts at peripheral and central levels through modulation of various receptors and neurotransmitter systems

The partitioning scheme of the *Clinacanthus nutans* leaf extracts
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>12–HPETE</td>
<td>12–hydroperoxyeicosatetraenoic</td>
</tr>
<tr>
<td>5–HT</td>
<td>Serotonin</td>
</tr>
<tr>
<td>AC</td>
<td>Adenylyl cyclase</td>
</tr>
<tr>
<td>ACh</td>
<td>Acetylcholine</td>
</tr>
<tr>
<td>Ado</td>
<td>Adenosine</td>
</tr>
<tr>
<td>ANOVA</td>
<td>One–way analysis of variance</td>
</tr>
<tr>
<td>AQCN</td>
<td>Clinacanthus nutans aqueous extract</td>
</tr>
<tr>
<td>ARs</td>
<td>Adrenergic receptors</td>
</tr>
<tr>
<td>ASA</td>
<td>Acetylsalicylic acid</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine–5’–triphosphate</td>
</tr>
<tr>
<td>BK</td>
<td>Bradykinin</td>
</tr>
<tr>
<td>BW</td>
<td>Body weight</td>
</tr>
<tr>
<td>cAMP</td>
<td>cyclic adenosine monophosphate</td>
</tr>
<tr>
<td>CAPZ</td>
<td>Capsazepine</td>
</tr>
<tr>
<td>CB1</td>
<td>Cannabinoid type 1</td>
</tr>
<tr>
<td>cGMP</td>
<td>cyclic Guanosine Monophosphate</td>
</tr>
<tr>
<td>CGRP</td>
<td>Calcitonin gene–related peptide</td>
</tr>
<tr>
<td>CNS</td>
<td>Central nervous system</td>
</tr>
<tr>
<td>COX</td>
<td>Cyclooxygenase</td>
</tr>
<tr>
<td>DA</td>
<td>Dopamine</td>
</tr>
<tr>
<td>DAG</td>
<td>Diacylglycerol</td>
</tr>
<tr>
<td>dH2O</td>
<td>Distilled water</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>DOPA</td>
<td>Dihydroxyphenylalanine</td>
</tr>
<tr>
<td>DPPH</td>
<td>1,1–diphenyl–2–picrylhydrazyl</td>
</tr>
<tr>
<td>DZP</td>
<td>Diazepam</td>
</tr>
<tr>
<td>EACN</td>
<td>Clinacanthus nutans ethyl acetate extract</td>
</tr>
<tr>
<td>FMHS</td>
<td>Faculty of Medicine and Health Sciences</td>
</tr>
<tr>
<td>FRAP</td>
<td>Ferric reducing antioxidant power</td>
</tr>
<tr>
<td>FRIM</td>
<td>Forest Research Institute of Malaysia</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>FVM</td>
<td>Faculty of Veterinary Medicine</td>
</tr>
<tr>
<td>GABA</td>
<td>Gamma–aminobutyric acid</td>
</tr>
<tr>
<td>GC–MS</td>
<td>Gas Chromatography–Mass Spectrometry</td>
</tr>
<tr>
<td>GHS</td>
<td>Globally Harmonised System of Classification and Labelling of Chemicals</td>
</tr>
<tr>
<td>Glu</td>
<td>Glutamate</td>
</tr>
<tr>
<td>GPCRs</td>
<td>G–protein–coupled receptors</td>
</tr>
<tr>
<td>HPLC</td>
<td>High Performance Liquid Chromatography</td>
</tr>
<tr>
<td>HSV</td>
<td>Herpes simplex virus</td>
</tr>
<tr>
<td>i.p.</td>
<td>Intraperitoneal</td>
</tr>
<tr>
<td>i.pl.</td>
<td>Intraplantar</td>
</tr>
<tr>
<td>IACUC</td>
<td>Institutional Animal Care and Use Committee</td>
</tr>
<tr>
<td>IASP</td>
<td>International Association for the Study of Pain</td>
</tr>
<tr>
<td>IBS</td>
<td>Institute of Bioscience</td>
</tr>
<tr>
<td>ID₅₀</td>
<td>Median infective dose</td>
</tr>
<tr>
<td>iGluRs</td>
<td>Ionotropic glutamate receptors</td>
</tr>
<tr>
<td>IP3</td>
<td>Inositol 1,4,5–trisphosphate</td>
</tr>
<tr>
<td>IUPHAR</td>
<td>International Union of Basic and Clinical Pharmacology</td>
</tr>
<tr>
<td>LD₅₀</td>
<td>Median lethal dose</td>
</tr>
<tr>
<td>l–Glu</td>
<td>L–glutamic acid</td>
</tr>
<tr>
<td>l–NAME</td>
<td>N₀–nitro–L–arginine methyl ester hydrochloride</td>
</tr>
<tr>
<td>LOX</td>
<td>Lipoxygenase</td>
</tr>
<tr>
<td>mAChRs</td>
<td>Metabotropic muscarinic receptors</td>
</tr>
<tr>
<td>MARDI</td>
<td>Malaysian Agricultural Research and Development Institute</td>
</tr>
<tr>
<td>MECN</td>
<td>Clinacanthus nutans leaf methanolic extract</td>
</tr>
<tr>
<td>mGluRs</td>
<td>Metabotropic glutamate receptors</td>
</tr>
<tr>
<td>NADA</td>
<td>N–arachidonoyl dopamine</td>
</tr>
<tr>
<td>NE</td>
<td>Norepinephrine</td>
</tr>
<tr>
<td>NIST</td>
<td>National Institute Standard and Technology</td>
</tr>
<tr>
<td>NMDA</td>
<td>N–methyl–D–aspartate</td>
</tr>
<tr>
<td>NO</td>
<td>Nitric Oxide</td>
</tr>
<tr>
<td>NOAELs</td>
<td>No–observed–adverse–effect levels</td>
</tr>
<tr>
<td>NOS</td>
<td>Nitric oxide synthase</td>
</tr>
<tr>
<td>NSAIDs</td>
<td>Non–steroidal anti–inflammatory drugs</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>ODQ</td>
<td>1H–[1,2,4]oxadiazole[4,3–a]quinoxaline–1–one</td>
</tr>
<tr>
<td>OECD</td>
<td>Organisation for Economic Cooperation and Development</td>
</tr>
<tr>
<td>ORs</td>
<td>Opioid receptors</td>
</tr>
<tr>
<td>p.o.</td>
<td>Per os</td>
</tr>
<tr>
<td>PAFs</td>
<td>Primary afferent fibres</td>
</tr>
<tr>
<td>PAG</td>
<td>Periaqueductal grey matter</td>
</tr>
<tr>
<td>PECN</td>
<td>Clinacanthus nutans petroleum ether extract</td>
</tr>
<tr>
<td>PGs</td>
<td>Prostaglandins</td>
</tr>
<tr>
<td>PIP2</td>
<td>Phosphatidylinositol–4,5–bisphosphate</td>
</tr>
<tr>
<td>PKC</td>
<td>Protein kinase C</td>
</tr>
<tr>
<td>PKG</td>
<td>Protein kinase G</td>
</tr>
<tr>
<td>PLC</td>
<td>Phospholipase C</td>
</tr>
<tr>
<td>PNS</td>
<td>Peripheral nervous system</td>
</tr>
<tr>
<td>RAS</td>
<td>Recurrent aphthous stomatitis</td>
</tr>
<tr>
<td>ROW</td>
<td>Relative organ weight</td>
</tr>
<tr>
<td>RTX</td>
<td>Resiniferatoxin</td>
</tr>
<tr>
<td>sGC</td>
<td>soluble guanylyl cyclase</td>
</tr>
<tr>
<td>SNO</td>
<td>S–nitrosothiol</td>
</tr>
<tr>
<td>SP</td>
<td>Substance P</td>
</tr>
<tr>
<td>TRP</td>
<td>Transient receptor potential</td>
</tr>
<tr>
<td>TRPV1</td>
<td>Transient receptor potential vanilloid type 1</td>
</tr>
<tr>
<td>UHPLC–ESI</td>
<td>Ultra High Performance Liquid Chromatography–Electrospray Ionisation</td>
</tr>
<tr>
<td>UPM</td>
<td>Universiti Putra Malaysia</td>
</tr>
<tr>
<td>VC</td>
<td>Vehicle control</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organisation</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 General Introduction

Pain is an essential sensation that plays a vital role as a body natural defence system by alerting us to possible tissue injury. The International Association for the Study of Pain (IASP) defines pain as, “an unpleasant sensory or emotional experience associated with actual or potential tissue damage, or described in terms of such damage”, while nociception is described as “the neural processes of encoding and processing noxio

us stimuli” that usually leads to pain (Zakaria et al., 2014; Loeser and Treede, 2008).

The process mentioned above is initiated by specialised peripheral sensory neurons (nociceptors) that are activated by noxious stimuli, i.e., mechanical, thermal, and chemical stimuli, due to tissue injury and damage (Pathak et al., 2014), and these nociceptors are usually found in cutaneous tissues, bone, muscle, connective tissues, vessels and viscera (Bomba et al., 2015). These stimuli are transduced into electrical impulses (action potentials) that are transmitted predominantly through Aδ– and C– fibre nociceptors (primary afferent neurons) into the dorsal horn of the spinal cord (Origoni et al., 2014). A variety of excitatory neurotransmitters are released by the primary afferent neurons, such as excitatory amino acids, protons, peptides, lipids and cytokines, and others, which act on their specific receptors and ion channels, to activate the second order neurons of the spinal dorsal horn (Ossipov, 2012; Pavin et al., 2011).

Once activated, the action potentials are then ascended to the thalamus and cerebral cortex through spinothalamic or other tracts that lead to perception of pain (George and Prithishkumar, 2011). In this regard, any substances that are able to block these signalling pathways, both at central and peripheral levels will play an important role in the relief of pain (Meotti et al., 2007).

Opioids (central analgesic), such as morphine, and nonsteroidal anti–inflammatory drugs (NSAIDs; peripheral analgesic), such as acetylsalicylic acid, are universally used for the treatment of pain. Although these treatments for pain have seen rapid progression the field of analgesic drug development, their clinical efficacy and tolerability are often surpassed by adverse effects (Sofidiya et al., 2014). Therefore, there is a need to look for an alternative approach to treat pain that has fewer or, possibly no side effects. Natural product–based medications, particularly plant–derived, are believed to be a valuable source of chemical substances that promise to have a good potential therapeutic applicability (Anser and Najam, 2015).
One of the medicinal plants that has recently received attention from the researchers is Clinacanthus nutans (C. nutans) Lindau. The herb or a small shrub known as “belalai gajah” in Malaysia, is a member of the Acanthaceae family that can be found in tropical Southeast Asian countries. The plant is traditionally used by the local communities in Indonesia, Malaysia, and Thailand for the treatment of burns, diabetes, diarrhea, dysentery, fever, herpes skin infections, insect and snake bites, mental stress, rheumatoid arthritis, scalds, skin rashes (Shim et al., 2013) and to relieve pain (Tan et al., 2016).

The extracts of C. nutans have been shown to exert antibacterial (Yang et al., 2013), anticholinesterase (Lau et al., 2014), anti–dengue (Tu et al., 2014), antidiabetes (Nurulita et al., 2008), antiherpes (Kunborn et al., 2013), anti–inflammatory (Mai et al., 2016), antimutagenic (Rathnasamy et al., 2013), antioxidant (Che Sulaiman et al., 2015), antiproliferative (Yong et al., 2013), antitumor (Huang et al., 2015), anti–varicella–zoster (Charuwichitratna et al., 1996), and cytotoxic (Liew et al., 2012) activities.

Various chemical compounds have been isolated and identified from C. nutans, i.e., stigmasterol, lupeol, β–sitosterol, betulin, vitexin, isovitexin, schaftoside, isomollupentin–7–O–β–glucopyranoside, orientin, isoorientin, sulphur–containing glycosides, glycoglycerolipids, and monoacylgalactosylglycerol (Shim et al., 2013). In addition, a variety of phytochemical constituents have been detected in the C. nutans, such as flavonoids, phenolic acid compounds (Ghasemzadeh et al., 2014; Peng et al., 2014), diterpenes, phytosterols, saponins (Yang et al., 2013), steroids, i.e., β–sitosterol and stigmasterol, chlorophyll and its various derivatives (Sarega et al., 2016; Sakdarat et al., 2009; 2008).

There are various reports on pharmacological activity of this plant, however, to the best of our knowledge, there has been no study on antinociceptive activity of C. nutans. The antinociceptive study is suggested to be attributed to anti–inflammatory properties (Wanikiat et al., 2008) and phytoconstituents contents of the plant associated with the antinociceptive activity (Yang et al., 2013).

1.2 Problem Statement

Pain is associated with morbidity and mortality as well as affecting the quality of life. There are various therapeutic drugs available in the markets that are used to relieve pain, however, these drugs may lead to several adverse effects. For example, NSAIDs are widely known to cause adverse effects, such as gastrointestinal irritation and/or bleeding, decreased platelet aggregation, kidney damage, edema, bone marrow suppression, rashes, as well as anorexia (Cameron et al., 2013). Opioid analgesics, lead to adverse effects, such as constipation, dizziness, nausea, respiratory depression, sedation and vomiting (Matava, 2016).
1.3 Justification of the Study

The discovery of natural product–based medications, particularly plant–derived, with good potential therapeutic efficacy is important to replace conventional NSAIDs or opioid drugs for pain management (Anser and Najam, 2015). Although *C. nutans* has been used for the treatment of various diseases including pain relief, there is no scientific evidence to validate the usage of the plant for these purposes. The current study was thus designed to determine the antinociceptive activity and mechanism of action of *C. nutans* methanolic leaf extract and its partitions.

1.4 Hypothesis

We hypothesise that the *C. nutans* leaf methanolic extract (MECN) and its partitions are expected to exhibit significant antinociceptive activity in the mice nociception model.

1.5 Objective of the Study

The general objectives of the study are to investigate the antinociceptive effect of crude and the most effective partition of MECN and to determine its mechanisms of action. The specific objectives are as follows:

1. To identify the bioactive chemical components of *C. nutans* leaf methanol (MECN) and petroleum ether (PECN) extracts.
2. To determine the safety of MECN in the acute and subchronic toxicity study in mice.
3. To determine the antinociceptive effects of MECN and PECN in the chemical– and heat–induced nociception mice model.
4. To determine the mechanism of antinociception afforded by MECN and PECN in mice model.
REFERENCES

122

124

Chen, Y., Palm, F., Lesch, K.-P., Gerlach, M., Moessner, R. and Sommer, C., 2011. 5-hydroxyindolacetic acid (5-HIAA), a main metabolite of serotonin, is responsible for complete Freund’s adjuvant-induced thermal hyperalgesia in mice. Molecular Pain, 7: 21.

from Chlorophyll, as a Drug against Neglected Tropical Disease Schistosomiasis Mansoni. PLoS Neglected Tropical Diseases, 8(1): e2617.

Nur Syukriah, A.R., Liza, M.S., Harisun, Y. and Fadzillah, A.A.M. 2014. Effect of solvent extraction on antioxidant and antibacterial activities from

Ramaswamy, R.S., Prathuyusha, N., Saranya, R., Sumathy, H., Mohanavalli, K.T., Priya, R.J., Venk hatesh, J.R., Babu, C.S., Manickavasakam, K. and

