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Abstract

The weighted least squares (WLS) method together with heteroscedas-
ticity consistent covariance matrix (HCCM) estimator is often used to
estimate the parameters of a heteroscedastic regression model when the
form of errors structure is unknown. However, WLS based on weight
determined by hat matrix suffers much set back in the presence of high
leverage points (HLPs) in a data set. Moreover, the use of WLS re-
quires an efficient weighting method that will successfully down weight
HLPs. In this paper, we proposed new weighting method based on HL.Ps
detection measure in which the good leverage points are allowed to con-
tribute in the estimation of parameters and the bad leverage points are
down weighted as they are responsible for the deviation of the model fit.
In the proposed method we employed modified generalized studentized
residuals (MGt) with diagnostic robust generalized potentials based on
index set equality (DRGPISE) termed FMGt on HCCM estimator. The
performance of the proposed weighting method is assessed by generated
artificial data set.
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1. Introduction

The commonly used method for the analysis of a regression model is the
ordinary least squares (OLS). Under the violation of the assumption of equal
variances of the errors (homoscedasticity), the covariance matrix becomes in-
consistent. [White| (1980) suggested replacing inconsistent OLS covariance ma-
trix with heteroscedasticity consistent covariance matrix (HCCM) estimator
denoted by HCO. This estimator is consistent under both homoscedasticity
and heteroscedasticity and does not require the structural form of model het-
eroscedasticity (White| (1980). Different adjustments of HCO were made to
increase its efficiency (Cribari-Netoj, 2004} |Cribari-Neto et al., 2007, |Cribari-
Neto and Zarkos| [2009, [Davidson and MacKinnon| [1993| |[Long and Ervin| 2000,
MacKinnon and White, [1985]).

The construction of HCCM estimator is based on OLS residuals vector.
In the presence of anomalous observation called outliers the coefficient esti-
mates and residuals of OLS estimate are biased. As a consequence, the infer-
ence becomes misleading. Furno[6] proposed using residuals of weighted least
squares (WLS) regression in construction of robust HCCM (RHCCM) estima-
tor, whereby the weight used by Furno is determined by the leverage measures
(hat matrix) of the different observations. [Lima et al.| (2016)) considered least
median of squares (LMS) and least trimmed squares (LTS) residuals. How-
ever, both Furno’s and Lima’s methods were inefficient as they suffer much
from the effect of swamping and masking. As the consequence, the variances
tend to be large resulting to unreliable parameter estimates. The main reason
for this weakness is the use of hat matrix (that is unable to discriminate be-
tween good and bad leverage points) which down weight both good and bad
leverage points in RHCCM. Pena and Yohail (1995)) had shown swamping and
masking resulted from the presence of HLPs in linear regression. [Habshah et al.
(2009) also proven that hat matrix is not very successful in detecting HLPs.
Consequently, less efficient estimates can be obtained by employing unreliable
method of detecting HLPs. This shortcoming motivated us to use weight func-
tion based on more reliable diagnostic measure for the identification of HLPs.

In this paper, we proposed new robust weighting methods based modified
generalized studentized residuals (MGt) with diagnostic robust generalized po-
tentials based on index set equality (DRGP;gg) which is also known as fast
modified generalized studentized residuals (FMGt) on HCCM estimator. The
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FMGt method identifies the regular observations, vertical outliers, good and
bad leverage points. But, only bad leverage points and vertical outliers will be
down weighted. The weight determined by FMGt is expected to successfully
down weight all bad influential observations.

The article is arranged as follows: Section 2 describes the classical het-
eroscedasticity consistent covariance matrix (HCCM) estimators. The robust
HCCM estimator based on Furno’s and RMD weighting method is described
in section 3 and 4 respectively. Section 5 presents the new proposed estimator.
Section 6 presents examples using real data set. The last section provided the
conclusion of the study.

2. The Classical HCCM Estimators

The linear regression model is given by:
y= Xp+e (1)

where, y is an n x 1 vector of response variables, X is an n X p matrix of
explanatory variables, 8 is a vector of regression parameters, and ¢ is the n-
vector of random errors. For a model with heteroscedastic errors the E (g;) = 0,
var (g;) = o2 for i = 1, ...,n and, E (g;e5) = 0 for all i # s. The covariance
matrix of € is given as ¢ = diag {03}. The ordinary least squares (OLS)

~ ’ -1 ’
estimator of 8 is 8 = (X X) X y which is unbiased, with the covariance
matrix given by

R P ro—1

cov (5) —(X'X) X ox(X'Xx), 2)
under homoscedasticity 02 = o2 such that ¢ = o¢2I,,, where I,, is an n x n
identity matrix. The covariance matrix cov (B) = 2(X'X )_1 is estimated

~ ' 1 . L . . . .
by 53(X X) = (which is inconsistent and biased under heteroscedasticity)
and 62 = (€8)/(n—p), € = (I, — H)y , where H is an idempotent and
symmetric matrix known as hat matrix. The hat matrix (H) is defined as

H=X(X X )71X /, and it plays great role in determining the HLPs in regres-

’ 71 ’
sion model. The diagonal elements h; = z;(z «) =z, for i = 1, ..., n of the
hat matrix are the values for leverage of the " observations.

White| (1980) proposed the most popular HCCM estimator known as HCO
where he replaced the o2 with 7 in covariance matrix of 3 as:

-1

HCO= (X' X)X goX(X'X) (3)
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where, $o= diag {2}. HC0, HC1, HC2, and HC3 are generally biased for small
sample size (see [6, 8, 12|). This research will focus only on HC4 and HC5.
The HC4 proposed by [3] was build under HC3, which is defined as follows:

HCi=(X'X) ' X' X (X' X)" (4)

~ . &2 . . . hs .
where, py= diag {W} fori =1, ..., n with ;= min {4, f}7 which con-
trol the discount factor of the i*" squared residuals, given by the ratio between
h; and the average values of h;’s (h). Note that, d;i= min {4, %} Since

0<1—h; <1andd; > 0it follows that 0 < (1 —h;)* < 1. The larger hj is
relative to h, the more the HC4 discount factor inflates the i** squared residual.
The truncation at 4 amounts to twice what is used in the definition of HC3;
that is, §; = 4 when h; > 4h = 4p/n. The result obtained by |Cribari-Neto
(2004) suggested HC4 inference in finite sample size relative to HC3.

Similarly, another modification of the exponent (1—h;) of HC4 was proposed
by [Cribari-Neto et al.| (2007)) to control the level of maximal leverage. The
estimator was called HC5 and defined as

HC5 = (X'X) X gsx(X'Xx) (5)

where, p5= diag {\/QE?T)Q } fori=1, ...,n with

o= min{ %, max {4, k}“%}}, which determine how much the i*" squared
residual should be inflated, given by the ratio between h,;,q, (maximal leverage)
and h (mean leverage value of h;’s). when % <4 it follows that a;; = % Also,
since 0 < 1 —h; < 1 and «; > 0, it similarly follows that 0 < (1 —h;)* < 1
and k is a constant ranges between 0 < k < 1 and was suggested to be chosen
as 0.7 by |Cribari-Neto et al.| (2007) following his simulation result that leads
to efficient quasi-t inference.

3. Robust HCCM Estimators based on Furno’s
Weighting Method

The problem of heteroscedasticity and high leverage points was addressed
by [Furno| (1996) in order to reduce the bias caused by the effect of leverage
points in the presence of heteroscedasticity. He suggested using weighted least
squares (WLS) regression residuals instead of OLS residuals used by [White
(1980) in HCCM estimator. The weight is based on the hat matrix (h;) and
the robust (weighted) version of HCO is defined as:

HCOw = (X WX) X WaeuWX(X WX)™ (6)
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where, W is an n x n diagonal matrix with,
w; =min (1, ¢/hy), (7)

and c¢ is the cutoff point, ¢ = 1.5p/n , p being the number of parameters in a
model including the intercept and n is the sample size, P, = diag {7} with &;
being the " residuals from weighted least squares. Note that, non-leveraged
observations are weighted by 1 and leveraged observations are weighted by
(¢/h;) to reduce their intensity and w; is considered as the weight in this

weighted least squares (WLS) regression, so that the WLS estimator of 3 is:

F=(XWX) X' wy. ®)

The robust HCCM estimator for the HC4 and HC5 based on Furno’s weight-
ing method considered by |Lima et al.| (2016) are HC4y and HC59 defined
as:

’ -1 _ , —1
HC4w = (X WX) X W WX(X WX) 9)

~2 *
where, 94, = diag {(1:*)5‘*} fori =1, ...,n with ;= min {4, E—;}, and

h{ is the " diagonal of the weighted hat matrix H,, = v/ WX(X’WX)_lX,\/W.
And,

HCSw = (X WX) X' WasaWX(X WX) ™' (10)

where, @5w= diag {(E?)a } fori=1, ...,n with
1—h*)%

af= min{ %, max {4, khhw}} In this paper the Furno’s weighted least
square for RHCCM estimation method is denoted by WLSE.

*

4. Robust HCCM Estimator based on Robust
Mahalanobis Distance with Minimum Volume
Ellipsoid (RMD(MVE)) Weighting Method

The diagnostic measure of the deviation of a data point from its center
named Mahalanobis Distance (MD) was introduce by Mahalanobis| (2000), in
which the independent variables of the i*" observations are presented as z; =
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(1, Tily L2y .y mik) = (1, Rl) so that Rl = ((L’il, TLi2y ey :vl-k) will bgk—
dimensional row vector, where the mean and covariance matrix vector are R =

’

L3 (Riand 9 = 153" | (R; — R) (R; — R) respectively. The MD for the
it" points is given as:

RMD; = \/<Ri ~R) 9-1(R, —E)i =1, 2,....n (11)

Leroy and Rousseeuw| (1987) recommended ,/x3 5 as the cutoff point of

M D; whereby, any observation that exceeds this cutoff point is considered as
HLP. Tmon| (2002) suggested another cutoff point (¢p) for RM D; given by:

¢p = median (RM D;) + 3SMAD(RM D;) (12)

where, MAD stands for median absolute deviation. Since, the average vector
R and covariance matrix 9 are not robust, Rousseeuw]| (1984) recommended
using minimum volume ellipsoid (MVE) estimator of R and the corresponding
¥ produced by the ellipsoid. This technique of MVE is to produce the smallest
volume ellipsoid among all the ellipsoids of at least half of the data. The MVE
estimator of the average vector is T' (X) = centre of the MVE covering at least
h points of X, for the value of h > %’”1 and, k is the number of explanatory
variables Rousseeuw and Driessen| (1999). The corresponding ¥ is provided by
ellipsoid and multiplied by a suitable factor in order to obtain consistency. The
weight obtained by this RMD(MVE) method is given by:

wi = min (1, ep/RMD;) (13)

so that, HLPs are weighted by (¢cp/RMD;) and non leverage by 1. To ob-
tain the RHCCM estimator based on RMD(MVE) weighting method denoted
by WLSgyp, we replace equation @ by and adopt Furno’s RHCCM
estimation method as discussed in Section 3.

5. New proposed Robust HCCM Estimators

In this study, we employed the idea of Furno’s RHCCM estimation on new
weighting method based on modified generalized studentized residuals (MGt)
and diagnostic robust generalized potential based on index set equality (DRGP
(ISE)) in order to identify good and bad HLPs. We anticipate that our method
will be more efficient than the existing method as only bad leverage observations
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(BLOs) will be down weighted and good leverage observations (GLOs) will be
allowed to contribute to the estimation. The DRGP(ISE) consist of two steps,
whereby in the first step, the suspected HLPs are determined using RMD based
on ISE. The suspected HLPs will be placed in the ‘D’ set and the remaining
in the ‘R’ set. The generalized potential (p;) is employed in the second step
to check all the suspected HLPs, those possess a low leverage point will be put
back to the ‘R’ group. This technique continued until all points of the ‘D’
group has been checked to confirm whether they can be referred as HLPs. The
generalized potential is defined as follows:

hgiD) for ¢ €D

5. — (=D) 14
pi 7:2(4,) for i €R (14)

The cut-off point for DRGP is given by,
Cprep=median (p;) +3 Qn (p;) (15)

@, is employed to improve the accuracy of the identification of HLPs.
Qn=c{|zi—zj |; < j}(k) is a pair wise order statistic for all distance proposed
by Rousseeuw and Driessen[19] where k = 'C, ~ 'C, /4 and h = [n/2] + 1.
They used ¢ = 2.2219 as this value will provide a consistent estimator @,
for gaussian data. If some values of p; did not exceed Cprgp then, the case
with the least p; will be returned to the estimation subset for re-computation
of p;. The values of generalized potential based on final ‘D’ set is DRGP(ISE)
represented by p; and the ‘D’ points will be declared as HLLPs. The modified
generalized studentized residuals (MGt) proposed by Mohammed et al.| (2015)
is given by,

_Bw  for e R
MGt ={ T e (16)
’ —SEN | forid¢ R*
Vo K

o
R* _ / 1+}L;‘(*R* )

where €;(r+), O(r+) are the OLS residuals and residuals standard error for re-
maining set R, respectively. The observations are called influential observation
when their values of MGti greater than its cut-off point (Cygei). The Crrais
is calculated as follows:

Cuei = median (M Gti) + e MAD(M Gti) (17)

To classify HLPs, we plot MGt versus DRGP(ISE) and follows the proce-
dure given by [Mohammed et al.| (2015|) of classification of HLPs.
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1. Regular observation (RO): An observation is declared as RO if ;

|MGti| < Cyperi and |DRGPi| < Cprapi

2. Vertical outlying observation (VO): An observation is declared as VO if ;
|MGti| > Cprgei and |DRGPi| < Cprepi

3. Good leverage observation (GLO): An observation is declared GLO if ;
|MGti| < Cperi and |[DRGPi| > Cprepi

4. Bad leverage observation (BLO): An observation is declared BLO if ;

‘MGtZ| > Cyrae and |DRGPZ| > Cprapi

This proposed method (MGt-DRGP;sg) down weight only BLOs and em-
ployed RHCCM estimation methods discussed in section 3 to obtain the RHCCM
estimator based on MGt-DRGP ;s weighting method denoted by WLS pasq:-

6. Monte Carlo Simulation Study

In this section, we use monte carlo simulation to assess the performance
of our new proposed methods under a heteroscedasticity of unknown form in
linear regression model. Following Lima et al.| (2016]) simulation procedure, we
consider a linear relation Yi = 50 + leil + ﬂgxig + ﬂg.fcig + &4, 1= 17 2, oy n.
Three explanatory variables (x1,x2,x3) are generated from standard normal
distribution, in which the true parameters were set at Sy = 81 = B2 = 83 = 1,
and ¢; ~ N (07012). The strength of heteroscedasticity is measured by A =
max (0?) /min(0?). Three sample sizes n = 25, 50 and 100 were replicated
twice to form sample sizes of 50, 100 and 200, respectively. The skedastic
function is defined as 0? = exp{ciz;1} (Lima et al) 2016)) where the value of
c1 = 0.25 was chosen such that A = 27 and will be constant among the sample
sizes. The value of X indicates the degree of the heteroscedasticity in the data,
whereby for homoscedasticity the value of A = 1. The regular observations are
generated according to standard normal (z; ~ N (0, 1)), a certain percentage
of regular observations were replaced by N(10,1) observations in X and y at
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different percentages level ¢ 100a%” (« = 0, 0.05, 0.10) of contamination for
all the sample sizes considered at the average of 2,000 replications.

Table 1-4 exhibits the results of the proposed method together with other
methods. A good method is one that has the lowest value of the standard error
of estimates, bias, and variance of HC4 and HC5. It can be seen from Table
1 that for clean simulated heteroscedastic data (without contamination) the
performance of all methods is reasonably closed to each other. However, for
heteroscedastic data with HLPs (Tables 2-4).

The proposed WLS pr6¢ method based on HC4 and HC5 outperformed the
existing methods as evident by having the smallest standard error of estimates.
The WLSgpsge also provides a smallest bias which result to the coefficient of
estimates that is closest to the true coefficient. The results which are based
on HC4 are fairly closed to the results which are based on HC5. The stan-
dard error of the estimates will only be good and efficient when the form of
heteroscedasticity is known. In this case when the structure of heteroscedas-
ticity is unknown the estimation will lie on the HCCM estimator based on
the employed HC4 and HC5 methods in which their results are very close to
each other. Nonetheless, the OLS is much affected by HLPs followed by the
WLSRMDand WLSF

The results clearly indicate the robustness of WLS gp;giover the rest of the
methods. It can be concluded that the WLSgsaiis better and more efficient
then WLSgyp, WLSpand OLS in the estimation of heteroscedastic model in
the presence of HLPs in a data set.
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Table 1: Regression estimates of the simulated data forn = 100.

Con. Estimator Coeff. of | Standard Wanance
Lavel Estimates | Emorof Bias
Estimates HC4 HCS
QLs bg 1.0523 06394 00523 04564 0.7009
by 1.0447 0.6645 00447 0.6402 05238
b2 1.0227 0.6006 00227 0.7884 06246

bs 1.0438 06128 -0.0458 | 03138 0.8730

WLSr by 1.0628 0.3565 -0.0628 0.5408 0.5408

b 1.0132 0.3891 -0.0132 0.2264 02264
0% b2 1.0482 0.3565 -0.0482 0.7324 0.7324
HLPs bz 09729 0.5597 0.0271 0.5418 05418

[ WLSppo by| 10514 03394 [ -0.0514 | 04945 04945
by 1.0237 0.5646 | -0.0237 | 0.6845 0.6843
by 1.0198 05176 | -0.0197 | 09525 09525
bz 1.0260 0.5221 -0.0290 | 04974 04974

WLSpue: bg| 10135 04137 | -0.0135 | 05106 | 05106
by | 1.0069 04270 | -0.0069 | 04315 | 04315
bz | 1.0142 04334 [ -0.0142 | 0.0690 | 0.0690
bs 0.9948 04312 0.0052 0.0376 0.0376

80
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Table 2: Regression estumates of the simulated data for n = 50.

Con. Estimator Coeff. of | Standard Variancs
Levd Estimates | Error of Bias
Estimates HC4 HCS
OLS ba| 03973 1.5366 L LI rk] 1.73835 23910
b, | 1.1147 08288 | -0.1147 | 06337 1.8383
b, | 0.5483 1.750% 04317 3.5641 5.5308
by | 0.7315 1.7746 02683 32291 48673
Wl Ba| UB163 T.5359% Ulasd Q0 13042
b, 1.0836 0.9950 L0.0836 | 0.9526 09526
5% by | 02240 1.5407 0.7760 2.9485 29485
HLE: by | 0.9080 1.5432 00920 | 2.71%0 2.7T1%0
WLSgun by | 0.6996 1.7350 0.3004 19700 13700
b, 1.1239 1.1207 | -0.1239 | 1.1936 1.1956
b, | 02649 1.6899 0.7351 | 4.3665 4.3665
by | 0.8456 1.703% 0.1544 39115 39115
WlSrua bo| 05997 0.5569 0oo03 | 03970 04430
b 08330 0.2521 0.0010 | 05472 0.9522
b. | 0.9957 0.5934 00043 | 0.6297 0.7111
by | 1.0044 0.5934 | -0.0044 | 06310 07046
ULs By | L0330 Lolol [ -00330 ] 14716 15305
- 1.019%8 04874 | 00198 | 03973 0.5950
by | 0.6523 1.5128 | 03477 | 2.7754 3.7858
by | L1080 1.5245 0.1080 | 26763 3.5727
WLE, By | L0247 13353 | 00247 | 15475 | 1543
b, 1.0238 04943 | -0.0238 | 04115 04115
by | 0.8151 1.3957 | 01849 | 26340 | 2.6340
b, | 1.1127 1.4031 | -0.1127 | 2.5523 25323
10% | WLSsun by | LUZ44 I.53659 | 00239 | [.76d8 1.7646
HLPs b 1.0345 0.6885 | -0.0345 | 0.5900 0.5900
b, | 06341 1.4907 0.3659 36167 36167
by| 1.1317 1.5075 | -0.1317 | 34076 34076
WLSri: bBe| 0.9890 03533 UOTI0 | 03859 03599
b 0.9973 0.1754 00027 | 0.1955 0.1937
by | 0.9%40 0.6048 0.0060 | 0.8330 06334
by | 1.0242 0.6044 [ -00242 | 06332 0.6333
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Tzble 3: Regression estimates of the smaulated data for n= 100,

Con. Estimator Coeff. of | Standard Variance
Leval Estimates | Error of Bias
Estimates HC4 HC3
OLS b, | L1.0Z1I9 1.6561 0.031% 143735 1.66353
b 0.9993 0.6880 0.0003 0.5862 0.8796
b:| 2.2098 1.5964 | -1.2098 | 3.5353 4.3942
b, | 1.7271 1.6427 | -0.7271 | 3.3039 41138
WLE; b, | U.559% 13413 0.0002 T.0357 T.0357
5% b 1.0464 0.7609 | -0.0464 | 0.5909 0.5909
HLE:s b | 1.5927 1.3166 | -0.5927 | 2.4610 2.4610
b.| 1.3311 1.3492 | -0.3311 | 2.3307 2.3307
WLSm B[ 09990 | 16000 | 00010 | 15367 | I.3361
b, | 10974 09489 | -0.0974 | 0.9077 0.9077
b, | 2.0654 1.5469 | -1.0654 | 3.9607 39607
b, | 1.6527 1.5865 | -0.6527 | 3.6748 3.6748
LS e Bo| L.0UST UA90e | 00039 | 0.2479 [ ¥l
b, | 0.9957 0.1594 00043 0.1667 0.1772
b.| 0.9983 04118 0.0017 0.3908 0.3935
b.| 10017 0.4139 | -0.0017 | 0.3915 0.3943
OLE b, | 1.1356 13798 | 02386 | T.4I61 1.6702
b | 1.0037 04741 | -0.0037 | 0.3739 04715
b.| 1.0316 1.4924 | -0.0316 | 3.0567 3.7482
b, | 09478 1.5028 0.0522 3.2812 4.0674
WLE, b, | 1.IFI4 125960 | -0.1314 | T.06IT 1.06T7
b 1.0092 0.4425 | 00092 | 0.2957 0.2957
b:| 1.0396 1.2638 | -0.0396 | 2.2962 2.2962
by | 0.9412 1.2718 00588 | 24088 24088
10% | WLSupy Ba| 120427 TI9TT | 0 I0 T 13376 13576
HLPE: b 1.0132 0.6584 | -0.0132 | 04970 0.4970
b.| 1.1029 1.4489 | -0.1029 | 3.5068 3.5068
by | 0.5949 1.4601 0.1051 3.7089 3.7089
WS Ba| LUIOL 0.a050 | -00L00 | 0.1343 01343
b, | 0.9865 0.1224 0.0135 0.1124 0.1124
b;| 1.0088 0.4215 | -0.0088 | 0.4044 0.4045
b, | 1.0092 0.4226 | -0.0092 | 0.4031 0.4032

82
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Table 4: Pegression estimates of the simulated data forn=200.

In this section, we consider artificial data sets to assess the performance of
the proposed weighting method (MGt-DRGP;gg) in robust heteroscedasticity

consistent covariance matrix (RHCCM) estimator

Cen. Estimator Coaff. of | Standard Varianes
Levd Estimates | Error of Bias
Estimates HC4 HCS
OLS By | T.3452 T.7366 | -0.3487 | 1.7390 13701
b 0.9033 0.5053 0.0967 | 03740 | 04477
bs| 1.1001 1.2204 | -0.1001 | 22709 | 25126
by| 1.5135 1.1950 | -0.5135 | 3.182 31,5853
WL b, 11377 U.9441 00377 | 0.7613 07613
it b, | 0.9833 0.5407 | 0.0165 | 03203 | 03203
HLE b, 1.0510 0.9604 0.0510 1.4912 1.4912
by | 1.1242 09473 | -0.1242 | 1.8943 1.8965
WLE. b 1.2504 TIEST | 02904 1 T1.2652 1.2632
b 0.9395 0.6992 0.0605 | 0.5133 0.5133
by| 1.1172 11864 | 01172 | 2.3594 | 2.3594
- 1.4092 1.1658 04092 | 3.3192 3.3192
WLlopne bs 09552 U 20685 0.ul4s [RLLE 01695
b | 1.0004 01102 | -0.0004 | 0.0976 | 0.1013
b, | 05730 0.28643 0.0270 | 02662 | 0.2670
by | 0.9803 0.2857 | 0.01%5 | 0.2670 | 0.2678
OLS b, | 0.5707 03112 01753 | O.EDEY | 0.B358
b, | 0.9689 02728 | 0.0311 | 0.231%9 | 0.2610
b.| 0.3923 0.8742 0.6077 | 1.8714 | 2.0404
by| 1.1639 0.8619 | -0.1659 | 1.7460 1.8900
WL, By | OFLLE V.39 [T velel welel
b 0.9911 0.2592 0.0089 | 0.1725 0.1725
b, | 0.6651 0.7490 | 03349 | 1.3629 1.3629
by| 1.1726 0.7382 | -0.1726 | 1.3141 1.3141
10% | WLSgupn bs[ 0.8692 U.8652 0. 1308 0.3457 058457
HLE b, | 0.9738 0.3820 | 0.0262 | 0.2843 0.2843
b.| 0.4271 0.8556 | 0.5729 | 1.9366 1.9366
by| 1.2272 0.8429 | -0.2272 | 1.8614 1.8616
WLEs Do 05943 0. 2664 OO03s | 0.I737 | 0.I737
b 0.9905 00795 00095 0.0704 0.0704
by | 08743 0.2741 0.0257 | 0.2673 0.2674
by| 0.59724 02734 | 0.0276 | 0.2695 0.2696
7. Numerical Example
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7.1 Artificial Data Set

An artificial heteroscedastic data of 100 observations was generated. Follow-
ing Lima et al. (2016) simulation procedure, three explanatory variables were
generated with n=50 from uniform distribution ~ U(5,30) in order have average
values of 20 and replicated twice to form the sample 100 each for z1, x5 and xs.
The response variable is given by; y; = 1+x;1 +x;0+x;3+¢; withe; ~ N (0, J?).
The strength of heteroscedasticity is measured by A = max (0?) /min(c?). The
skedastic function is defined as a% = exp{c1zi1} |Lima et a1.| (|2016[) where the
value of ¢; = 0.15 was chosen such that A =~ 141.68. The value of A\ indicates
the degree of the heteroscedasticity in the data, whereby for homoscedasticity
the value of A will be equal to 1. Figure 1 indicates that there is heteroscedas-
ticity in the data set due to a systematic funnel shaped pattern observed in the

first plot and the second plot shows that there is no HLPs in this data set.

The proposed and existing methods were evaluated based on the stan-
dard error of HC4 and HC5. Table 5 shows the result of uncontaminated
heteroscedastic artificial data which indicates that all the methods performed
fairly the same. However, the results of HC4 are fairly closed to the results
which are based on HC5. The standard error of the estimates will only be
good and efficient when the form of heteroscedasticity is known. In this case
the structure of heteroscedasticity is unknown. So, the estimation will lie on
the HCCM estimator based on the employed methods HC4 and HC5, which
their results are very close to each other. Nonetheless, the OLS is much affected
by HLPs followed by the WLS g pand WLSE.

Residuals vs Fitted
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Figure 1: OLS residual vs fitted value and MGt vs DRGP for artificial data set
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Table 5: Regression estimates for the atificial data set

Estmator Cosff of Standard Standard Error
Estmates Error of

Estimates HC4 HC3

ULs b, J.064% 136176 128335 115943
b 54117 0.4649 04960 | 0.4979

b, 0.7480 0.5294 04858 04893

b, 0.5722 0.45309 04345 04379

WLE, b, P08 116174 11,598 11598
b 54139 0.4652 04982 | 04932

b, 0.7459 0.5296 04898 04898

b, 0.5704 04511 04383 04383

WLhSpun b J.064% 136176 12594 12.5943
b 54117 04649 049739 5:49-.9

b, D_'_'-_I.!‘I’E U_S;"ﬂ# {I.-"IE_B“S ﬂ'_ﬂg“

b, 0.5722 04509 04379 04379

WLhapue by FEILTE] 136176 LIe9as | T1.5943
b 54117 04649 04979 0.4979

b, 0_7480 05294 04593 04893

b, 0.5722 0.4509 04379 | 04379

7.2 Modified Artificial Data Set

The artificial data was modified by introducing two HLPs, the first and
last observations were incremented by 10 for x; and x, respectively. The first
plot in Figures 2 shows the presence of heteroscedasticity in the data due the
funnel shape produced in the plot and and second indicated the presence of
one GLO (observation number 100) and one BLO (observation number 1) in
the data set. Table 6 shows the performance of the proposed (WLSpps¢+) and
existing (WLSgap, WLSpand OLS) methods in the modified artificial data.
The result shows that WLS ps¢+ has the least values of standard errors of HC4,
HC5 and coefficient of estimate. This indicates that, the proposed method is
more efficient and robust against the effect of bad leverage observations. The
results clearly indicate the robustness of WLS g ps g+ over the rest of the methods.
It can be concluded that the WLSgp atis the most efficient method followed
byWLSr, WLSgyp and OLS in the estimation of heteroscedastic model in
the presence of HLPs in a data set.
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Residuals vs Figed
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Figure 2: OLS residual vs fitted value and MGt vs DRGP for modified artificial data set

Table 6: F.egression estmates for the modified artificial data set

otandard Standsard Error
Estimator Coaff. of Errorof
Estimates Estimates HCH HCY
OLS by 314707 14.3632 23.1955 | 175308
b, 6.8120 0.4952 0.6385 0.7156
b, 0.1742 0.5652 0.6584 0.7456
b, 0.3571 0.4939 0.5251 0.5853
WLS, b 225112 142502 17.857e | 178576
b 4.9999 0.4807 0.5606 0.5606
b, 0.3752 0.5467 0.5650 0.5650
b, 0.5030 04769 0.4672 0.4672
WLS;un by 2190537 141565 2335808 | 245806
b 4.8623 0.4908 0.6598 0.6598
b, 0.2284 0.5601 0.6828 0.6328
by 0.3970 0.4391 0.5427 0.5427
WhSpun B 9.3441 138763 128817 | 128817
b, 51226 0.4667 0.5005 0.5005
b, 0.5093 0.5319 0.4996 0.4996
b, 0.6034 04630 04238 04238
8. Conclusion

This paper provides a robust method for estimating model parameters in
linear regression when heteroscedasticity and high leverage points exist in a
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data set. The proposed method WLSpgy;q; down weight only bad leverage
observations (BLOs) and allowed good leverage observations (GLOs) to con-
tribute to the parameter estimation, as GLOs may contribute to the precision
of the estimates.

The OLS method provides unbiased estimates in the presence of heteroscedas-
ticity, but it is not efficient. The Furno’s weighted least squares based on
leverage weight function and RMD(MVE) are not efficient enough to remedy
the problem of heteroscedastic errors with unknown structure and high leverage
point. In this research, the weighting method which is based on MGt-DRGPsg
is proposed to be incorporated in the weighted least squares and robust HCCM
(HC4 and HC5) estimators. The WLS g6t was found to be the more efficient
method as it provides the lowest bias, lowest standard errors of estimates, and
lowest variance of HC4 and HC5 estimators.
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