UNIVERSITI PUTRA MALAYSIA

ANTIPLASMODIUM AND CHLOROQUIN RESISTANCE REVERSING EFFECTS OF SELECTED PURE PHYTOCHEMICALS

ZAID OSAMAH IBRAHEEM

FPSK(P) 2017 14
ANTIPLASMODIUM AND CHLOROQUIN RESISTANCE REVERSING EFFECTS OF SELECTED PURE PHYTOCHEMICALS

By

ZAID OSAMAH IBRAHEEM

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia in Fulfillment of the Requirement for the Degree of Doctor of Philosophy

April 2017
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
DEDICATION

In The name of the Almighty God, the most Beneficent and the most Merciful

This thesis is dedicated to my parents and siblings for their immense support, encouragement and patience during the whole years of the study.
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in Fulfilment of the requirement for the degree of Doctor of Philosophy

ANTIPLASMODIUM AND CHLOROQUINE RESISTANCE REVERSING EFFECTS OF SELECTED PURE PHYTOCHEMICALS

By

ZAID OSAMAH IBRAHEEM

April 2017

Chairman : Associate Professor Rusliza Binti Basir, PhD
Faculty : Medicine and Health Sciences

Malaria is a devastating parasitic multi-organ disease afflicting millions and killing thousands of people annually. Emergence of drug resistant strains of the parasite has worsened the catastrophe of its dissemination. This urged the scientists to search for safe alternatives or drugs resistance reversing agents. This study was comprised of two sections which studied the antiplasmodium and chloroquine resistance reversing effects of eleven selected phytochemicals, namely; andrographolide, embelin, mangostin, mangoferin, harmalol, harmol, harmaline, 3-aminocoumarin, scopoletin, esculetin and umbelliferone, both in vivo and in vitro. In the in vitro study, Plasmodium falciparum K1 and 3D7; the chloroquine resistant and sensitive strains, were used. The compounds safety was screened through comparing their potency against the mentioned parasite with that against Vero cells (mammalian cells) or intact RBCs. SYBRE-Green -1 based drug sensitivity, MTT and RBCS stability assays were used for this purpose. Isobologram technique was used to find their effect against chloroquine resistance in Plasmodium falciparum K1. Their impact on hemozoin formation was assessed through running β-haematin formation and haem fractionation assay to elucidate their molecular mechanism. Meanwhile, RBCs osmotic fragility and merozoites invasion assays were performed to assess their impact on RBCs membrane. Finally, the in vivo anti-plasmodium and chloroquine resistance reversing effects of those; which succeeded to give a safe and productive effect, in vitro was screened using chloroquine resistant and sensitive Plasmodium berghei infected ICR mice model. The in vitro study showed that all the test compounds had weak to moderate anti-plasmodium effect which turned them illegible to be implemented as conventional anti-malaria drugs. Hemozoin formation was affected only by embelin, mangostin, mangoferin and 3-aminocoumarin. Unlike the others; embelin has affected the RBCs stability profoundly so it was considered to be unsuitable for this purpose while mangostin exerted milder effect. On the other hands, simple coumarins (umbeliferon,
scopoletine and esculetine) produced weak antiplasmodium effect and failed to reverse chloroquine resistance.

Only andrographolide, mangostin and harmaline were chosen for the in vivo study as they were the only drugs that showed optimistic outcomes in the in vitro study. Their effect was tested against a chloroquine resistant clone of Plasmodium berghei that was experimentally prepared through continuous exposure of the sensitive parasite to chloroquine. The study showed that mangostin and harmaline were lethal to the plasmodium infected mice in spite of their safety against the uninfected ones and in the in vitro mammalian cells culture. Meanwhile andrographolide was more potent in vivo and could have reduced the extent of the disease induced damage.

In conclusion, caution should be exercised while administration of herbal products in malaria patients without complete reliance on reports generated by the in vivo studies and suggests co-administration of andrographolide with chloroquine to get an additive effect.
KESAN ANTIPLASMODIUM DAN KERINTANGAN CHLOROQUINE OLEH SEBATIAN FITOKIMIA TERPILIH

Oleh

ZAID O IBRAHEEM

April 2017

Pengerusi : Profesor Madya Rusliza Binti Basir, PhD
Fakulti : Perubatan dan Sains Kesihatan

seperti yang lain, embelin sangat memberi kesan kepada kestabilan RBCs jadi ianya dianggap tidak sesuai untuk tujuan ini manakala embelin menghasilkan kesan yang sederhana. Hanya andrographolide, mangostin dan harmaline dipilih untuk kajian in vivo kerana ianya menunjukkan hasil yang optimistik berdasarkan kajian isobologram. Kajian ini menunjukkan mangostin dan harmaline adalah amat merbahaya kepada individu yang dijangkiti Plasmodium falciparum walaupun selamat dalam individu tidak dijangkiti dan juga kultur mamalia sel in vitro. Sementara itu andrographolide lebih poten in vivo dan boleh mengurang julat kerosakan yang dirangsang oleh jangkitan.

Secara kesimpulannya, kajian ini mencadangkan supaya lebih berhati-hati dalam pemberian produk herba kepada pesakit malaria tanpa merujuk laporan kajian secara in vivo dan ianya juga mencadangkan adminnistrasi bersama andrographolide dengan CQ bagi mendapatkan kesan tambahan.
ACKNOWLEDGEMENT

First I would like to show my sincere thanks to the Almighty Allah; the most gracious and the most merciful for bestowing me with patience, stamina, inspiration and time to accomplish this research.

It is my pleasure to give my sincerest gratitude and appreciation to my supervisory committee; Dr Rusliza Basir, Dr Roslaini Bin Abd Majid and Dr Sabariah Mohd. Noor for their supervision, advice, guidance, suggestions support, hospitality and invaluable assistance.

I would like also to express my sincere thanks to my lab mates Mohammad Faruq, Ramatu Bello, Yam Mun Fei for being available for help and assistance at any time during the course of the study. Furthermore, I would like to express my gratitude to my friend Dr Omar Emad Al Sultan who is a pathology lecturer in faculty of medicine / UiTM who made a great deal of dedicated efforts in read the histology slides and scoring the histology changes. I would like to thank the lab staff and to Puan Siti who made the animals available at any time required.

Cordially, I would like to convey my special gratitude to my parents and siblings who supported me mentally, emotionally and financially to complete my study in Malaysia.

Finally, I request the Almighty Allah to make my efforts fruitful and open the road for me to benefit other people with whatever I learnt during my study.
I certify that a Thesis Examination Committee has met on (10th April 2017) to conduct the final examination of (Zaid Osamah Ibrahim) on his thesis entitled "Antiplasmodium and chloroquine resistance reversing effects of selected pure phytochemicals" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Dr. Mohammad Arif Mohd. Moklas, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Dr. Abidah MD. Akim, PhD
Professor Madya
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Dr. Ngah Zainun Uyiah, PhD
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Dr. Jagdish Sharma, PhD
Professor
Faculty of Pharmacy/ Kuwait University
Kuwait
(External Examiner)

Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia
Date: 2 June 2017
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Rusliza Binti Basir, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Roslaini bin Abd Majid, PhD
Senior Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Sabariah Binti MD. Noor, PhD
Senior Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

ROBIAH BINTI YUNUS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- There is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software

Signature: ________________________ Date: ________________________

Name and Matric No: Zaid Osamah Ibraheem, GS35628
Declaration by Members of Supervisory Committee

This is to confirm that:
- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) were adhered to.

Signature: __
Name of Chairman of Supervisory Committee: ________________________________

Signature: __
Name of Member of Supervisory Committee: ________________________________

Signature: __
Name of Member of Supervisory Committee: ________________________________
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxi</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 Problem statements 1
1.2 Research hypotheses 2
1.3 General objectives 3
1.4 Specific objectives 3

2 LITERATURE REVIEW

2.1 Malaria epidemiology 5
2.2 Malaria parasite 5
2.3 Plasmodium life cycle 5
2.3.1 Merozoite 6
2.3.2 Trophozoites 7
2.3.3 Schizonts 7
2.4 Malaria pathogenesis and infection 8
2.5 Chloroquine use in malaria 9
2.5.1 Pharmacokinetic characteristics of chloroquine 10
2.5.2 Mechanism of action of chloroquine 11
2.5.3 Chloroquine resistance in *Plasmodium falciparum* 12
2.6 Implementation of natural product in malaria research 12
2.6.1 Andrographolide 13
2.6.2 β-carbolines 13
2.6.3 Xanthanoides 14
2.6.4 Embelin 14
2.7 Free radicals generation in malaria 15

3 GENERAL METHODOLOGY

3.1 List of Materials 17
3.1.1 List of Chemicals 17
3.1.2 List of Drugs 18
3.2 Cell lines 18
3.2.1 Human O+ RBCs
3.2.2 *Plasmodium falciparum* infected RBCs
3.2.3 Vero cells
3.2.4 *Plasmodium berghei* ANKA

3.3 Animals

3.4 Reagents preparation
3.4.1 CPD (Citrate phosphate dextrose)
3.4.2 HEPES (4-(2-hydroxyethyl)-1-piperazine-ethan-sulphonic acid buffer)
3.4.3 Gentamicin stock solution
3.4.4 Washing medium
3.4.5 Albumax II stock solution
3.4.6 Hypoxanthine solution
3.4.7 cMCM (Albumax complete malaria culture medium)
3.4.8 Giemsa stock solution
3.4.9 1X PBS (Phosphate buffer saline) (pH 7.4)
3.4.10 Phosphate buffer (6.7 M and pH 7.1)
3.4.11 Sorbitol lysis synchronization solution
3.4.12 Cryopreservation reagent (glycerol – sorbitol freezing solution)
3.4.13 Sodium chloride thawing solutions (3.5% NaCl)
3.4.14 SYBRE-green-1 lysis buffer
3.4.15 MTT solution
3.4.16 Saponin lysis buffer
3.4.17 Sorbitol buffer for sorbitol induced plasmodium infected RBCs hemolysis
3.4.18 Alservers anticoagulant buffer
3.4.19 Leishman stain
3.4.20 Hemin chloride
3.4.21 Hemeochromine pyridine reagent
3.4.22 Acetate buffer (8 M pH=5)
3.4.23 Drugs stock solutions

3.5 Physiochemical properties calculation and bioactivity prediction

3.6 Assessment of phytochemicals antioxidant activity
3.6.1 Hydrogen peroxide (H$_2$O$_2$) scavenging assay
3.6.2 Reducing power assay

3.7 Blood collection, washing and RBCs suspension preparation

3.8 *In vitro* growth of *Plasmodium falciparum*
3.8.1 *Plasmodium falciparum* cultivation
3.8.2 Plasmodium falciparum culture incubation
3.8.3 Growth monitoring of *Plasmodium falciparum* in blood culture
3.8.4 *Plasmodium falciparum* culture maintenance
3.9 Parasite synchronization
3.10 Parasite thawing and cryopreservation
 3.10.1 Cryo-preservation
 3.10.2 Cryo-preserved vials thawing
3.11 Drug sensitivity assay against *Plasmodium falciparum* growth

3.12 Isobologram analysis
 3.12.1 Drug working solution
 3.12.2 Isobologram plate
 3.12.3 Plate’s incubation and treatment
 3.12.4 Isobologram calculations
 3.12.5 Results interpretation

3.13 Phytochemicals effect on uninfected RBCs stability
3.14 Effect on merozoites invasion
3.15 Cytotoxic effect against Vero cells stability
 3.15.1 Thawing a cryopreserved Vero cells
 3.15.2 Cell propagation
 3.15.3 Trypan blue exclusion technique
 3.15.4 Vero cells cryopreservation
 3.15.5 Drug sensitivity assay against Vero cells

3.16 Screening of drugs effects on hemozoin formation
 3.16.1 β-hematin formation assay
 3.16.2 Heme fractionation assay

3.17 Screening of the *in vivo* antiplasmodium and chloroquine resistance reversing effects of the selected phytochemicals
 3.17.1 Drugs working solutions
 3.17.2 Drugs injection
 3.17.3 Animals infection
 3.17.4 Experiment processes
 3.17.5 Parasite cryopreservation
 3.17.6 Parasite passaging
 3.17.7 WBCs count
 3.17.8 Histopathological evaluation

3.18 OECD protocol for the *in vivo* toxicity testing
3.19 Statistical analysis
3.20 Flow chart of the study

4 ASSESSMENT OF THE ANTIPLASMODIAL EFFECT AND SELECTIVITY OF SELECTED PHYTOCHEMICALS ON ESTABLISHED *PLASMODIUM FALCIPARUM IN VITRO* CELL CULTURE MODEL

4.1 Background
4.2 Methodology
 4.2.1 Determination of the physiochemical properties and predicted biological activities of the test
compounds

4.2.2 *Plasmodium falciparum* infected blood model establishment and screening of the drugs anti-plasmodium effect and selectivity as compared to mammalian cells.

4.3 Results

4.3.1 *In silico* physiochemical properties and antioxidant activities of the test compounds

4.3.2 *Plasmodium falciparum* blood culture model establishment

4.3.3 Cytotoxicity against RBCs

4.3.4 Phytochemicals effect against RBCs fragility

4.3.5 Cytotoxic effect against Vero cells

4.3.6 Anti-plasmodium effect of the selected phytochemicals against *Plasmodium falciparum* K1 and 3 D7 and selectivity index assessment

4.4 Discussion

4.5 Conclusion

5 CHLOROQUINE RESISTANCE REVERSING EFFECT OF THE SELECTED PHYTOCHEMICALS AGAINST *PLASMODIUM FALCIPARUM* K1

5.1 Background

5.2 Methodology

5.3 Results

5.3.1 Isobologram analysis of andrographolide with CQ

5.3.2 Isobologram analysis of mangostin with chloroquine

5.3.3 Isobologram analysis of mangoferin with CQ

5.3.4 Isobologram of β-carbolines with CQ

5.3.5 Isobologram of simple coumarins with CQ

5.4 Discussion

5.5 Conclusion

6 ESTABLISHMENT OF *PLASMODIUM BERGHEI ANKA* INFECTED ICR MICE MODEL

6.1 *Plasmodium berghei* induced rodent malaria

6.2 Methodology

6.2.1 Sample size calculation

6.3 Results

6.3.1 Parasitemia progression in ICR mice infected with *Plasmodium berghei* ANKA.

6.3.2 Body weight change in ICR mice infected with *Plasmodium berghei* ANKA

6.3.3 Behavioral changes and signs of illness in
6.3.4 Blood cells count in ICR mice infected with *Plasmodium berghei* ANKA
6.3.5 Effect of *Plasmodium berghei* ANKA infection on the survival of ICR mice
6.3.6 Organs necroscopic changes
6.3.7 Histology changes

6.4 Discussion
6.5 Special issues

IN VIVO EFFECT OF CQ ON *PLASMODIUM BERGHEI* INFECTED ICR MODEL AND CQ RESISTANT CLONES PREPARATION

7.1 Background
7.2 Methodology
7.2.1 CQ effect on *Plasmodium berghei* infected ICR mice model
7.2.2 CQ resistant clones of *Plasmodium berghei* (*Plasmodium berghei* 8)

7.3 Results
7.3.1 Effect of CQ treatment on survival of *Plasmodium berghei* infected ICR mice
7.3.2 The anti-plasmodium effect of CQ against *Plasmodium berghei* 8 ANKA infected ICR mice model
7.3.3 Effect of CQ treatment on body weight and the behavior of *Plasmodium berghei* ANKA infected mice
7.3.4 Effect of CQ treatment on the infection induced hematological changes
7.3.5 Effect of CQ on the histology and necroscopic changes of different organs
7.3.6 Establishment of CQ resistant strain of *Plasmodium berghei* ANKA

7.4 Discussion

PHYTOCHEMICALS EFFECT ON *PLASMODIUM BERGHEI* INFECTED ICR MICE MODEL

8.1 Background
8.2 Methodology
8.2.1 The experimental protocol
8.2.2 In-vivo fixed ratios technique
8.3 Results
8.3.1 Effect of andrographolide, mangostine and harmaline toxicity on normal uninfected mice
8.3.2 Impact of andrographolide on plasmodium growth and pathogenicity of *Plasmodium*
8.3.3 Progression of parasitemia and pathogenic changes in mangostin treated *Plasmodium berghei* ANKA infected mice.

8.3.4 Effect of harmaline on parasitemia progression and development of pathogenic changes in *Plasmodium berghei* infected ICR mice

8.3.5 Impact of CQ /andrographolide mixtures on plasmodium growth and pathogenicity of *Plasmodium berghei* ANKA induced malaria in ICR mice

8.3.6 Effect of andrographolide co-administration on organs of ICR mice infected with *Plasmodium berghei* ANKA

8.3.7 Effect of andrographolide on development of malaria induced hepatic changes

8.4 Discussion

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>Background</td>
<td>131</td>
</tr>
<tr>
<td>9.2</td>
<td>Methodology</td>
<td>131</td>
</tr>
<tr>
<td>9.3</td>
<td>Results</td>
<td>131</td>
</tr>
<tr>
<td>9.3.1</td>
<td>Effect on hemozoin formation</td>
<td>131</td>
</tr>
<tr>
<td>9.3.2</td>
<td>Drugs effect against merozoite invasion</td>
<td>132</td>
</tr>
<tr>
<td>9.4</td>
<td>Discussion</td>
<td>135</td>
</tr>
</tbody>
</table>

10 GENERAL DISCUSSION

11 CONCLUSION AND FUTURE RECOMMENDATIONS

REFERENCES | 142 |
APPENDICES | 168 |
BIODATA OF STUDENT | 205 |
LIST OF PUBLICATIONS | 206 |
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Intraerythrocytic cycle of plasmodium species.</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Chemical structure of chloroquine.</td>
<td>10</td>
</tr>
<tr>
<td>2.3</td>
<td>Chemical structure of andrographolide using Molinspiration simulation software.</td>
<td>13</td>
</tr>
<tr>
<td>2.4</td>
<td>Chemical structures of the β-carbolines.</td>
<td>14</td>
</tr>
<tr>
<td>2.5</td>
<td>Chemical structure of the xanthanoides using Molinspiration simulation software.</td>
<td>14</td>
</tr>
<tr>
<td>2.6</td>
<td>Chemical structure of embelin using Molinspiration simulation software.</td>
<td>15</td>
</tr>
<tr>
<td>4.1</td>
<td>Effect of andrographolide, mangostin and embelin on the RBCs osmotic fragility curve.</td>
<td>47</td>
</tr>
<tr>
<td>5.1</td>
<td>FIC({50}) and FIC({90}) based isobolograms of CQ/drug combinations with β carbolines.</td>
<td>66</td>
</tr>
<tr>
<td>5.2</td>
<td>FIC({50}) and FIC({90}) based isobolograms of chloroquine combinations with β carbolines.</td>
<td>68</td>
</tr>
<tr>
<td>5.3</td>
<td>FIC({50}) and FIC({90}) based isobolograms of chloroquine combinations with coumarins.</td>
<td>69</td>
</tr>
<tr>
<td>6.1</td>
<td>Progression of Plasmodium berghei ANKA infection in ICR mice.</td>
<td>78</td>
</tr>
<tr>
<td>6.2</td>
<td>Survival of Plasmodium berghei infected ICR mice.</td>
<td>79</td>
</tr>
<tr>
<td>7.1</td>
<td>Survival of CQ treated and untreated Plasmodium berghei infected mice.</td>
<td>90</td>
</tr>
<tr>
<td>7.2</td>
<td>Parasitemia progression in CQ treated and untreated Plasmodium berghei infected mice.</td>
<td>92</td>
</tr>
<tr>
<td>7.3</td>
<td>Dose response curves of the in vivo anti-plasmodium effect of CQ against growth of Plasmodium berghei ANKA in ICR mice.</td>
<td>93</td>
</tr>
<tr>
<td>7.4</td>
<td>Change of the body weight and the hematology parameters of the CQ treated Plasmodium berghei ANKA infected mice.</td>
<td>95</td>
</tr>
<tr>
<td>7.5</td>
<td>Effect of CQ on parasitemia progression in the CQ resistant strain of Plasmodium berghei ANKA infected ICR mice.</td>
<td>100</td>
</tr>
<tr>
<td>7.6</td>
<td>Dose response curves of the in vivo anti-plasmodium effect of CQ in Plasmodium berghei ANKA infected ICR mice model on the three consecutive days after CQ treatment.</td>
<td>101</td>
</tr>
<tr>
<td>7.7</td>
<td>Hematology parameters μl of CQ treated and untreated Plasmodium berghei R infected mice respectively.</td>
<td>104</td>
</tr>
</tbody>
</table>
8.1 Parasitemia progression of andrographolide treated and untreated *Plasmodium berghei* R infected mice.

8.2 Dose response curve of the *in vivo* anti-plasmodium effect of three different doses of andrographolide.

8.3 Effect of andrographolide on body weight and haemtology parameters.

8.4 Survival of andrographolide treated and untreated *Plasmodium berghei* R infected mice.

8.5 Anti-plasmodium effect of mangostin against *Plasmodium berghei* ANKAR in ICR mice.

8.6 Survival of mangostin treated and untreated *Plasmodium berghei* ANKA R infected mice.

8.7 Survival of harmaline treated and untreated *Plasmodium berghei* ANKAR infected mice.

8.8 Survival of CQ/andrographolide treated and untreated *Plasmodium berghei* infected mice.

8.9 Parasitemia progression of CQ/andrographolide mixtures treated and untreated *Plasmodium berghei* infected mice.

8.10 Results of the fixed ratio technique to study the effect of each combination.

9.1 Results of heme fractionation assay.

9.2 Effect of andrographolide, mangostin and embelin on merozoite invasion.
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Molecular weight, toxicity threshold and IC$_{50}$ against vero cells and RBCs.</td>
<td>46</td>
</tr>
<tr>
<td>4.2</td>
<td>Potency classification of compounds against Plasmodium falciparum</td>
<td>48</td>
</tr>
<tr>
<td>4.3</td>
<td>Antiplasmodium effect of andrographolide, embelin, mangostin and mangoferin.</td>
<td>50</td>
</tr>
<tr>
<td>6.1</td>
<td>Results of Lambert power model to calculate the minimum sample size.</td>
<td>75</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

Appendix

A.1	Arrangement of the 96 well plate for drug sensitivity assay.	166
A.2	Arrangement of the isobologram plate	167
B.1	Antioxidant activity physiochemical properties of the test phytochemicals.	168
C.1	Results of the FIC₅₀ and FIC₉₀ based isobolograms for CQ/andrographolide mixtures	169
C.2	Results of the FIC₅₀ and FIC₉₀ based isobolograms for CQ/mangostin mixtures	170
C.3	Results of the FIC₅₀ and FIC₉₀ based isobolograms for CQ/mangoferin mixtures	171
C.4	Results of the FIC₅₀ and FIC₉₀ based isobolograms for CQ/harmaline mixtures	171
C.5	Results of the FIC₅₀ and FIC₉₀ based isobolograms for CQ/harmalol mixtures	173
C.6	Results of the FIC₅₀ and FIC₉₀ based isobolograms for CQ/harmol mixtures	174
C.7	Results of the FIC₅₀ and FIC₉₀ based isobolograms for CQ/3-aminoocumarin/harmaline mixtures	175
C.8	Results of the FIC₅₀ and FIC₉₀ based isobolograms for CQ/escueltine mixtures	176
C.9	Results of the FIC₅₀ and FIC₉₀ based isobolograms for CQ/scopoletin mixtures	177
C.10	Results of the FIC₅₀ and FIC₉₀ based isobolograms for CQ/umbelliferone mixtures.	178
D.1	Brain index of CQ, andro and CQ/andro treated *Plasmodium berghei*^R ANKA infected mice.	179
D.2	Lung index of CQ, andro and CQ/andro treated *Plasmodium berghei*^R ANKA infected mice.	180
D.3	Liver index of CQ, andro and CQ/andro treated *Plasmodium berghei*^R ANKA infected mice.	181
D.4	Spleen index of CQ, andro and CQ/andro treated *Plasmodium berghei*^R ANKA infected mice.	182
D.5	Kidney index of CQ, andro and CQ/andro treated *Plasmodium berghei*^R ANKA infected mice.	183
E1	Median of scores of the pulmonary histological changes.	184
E2	Histology slides of lungs in CQ treated and untreated *Plasmodium berghei* ANKA infected mice at 10, 20 and 40 X.	185
E3	Median of scores of the kidneys histology changes	186
E4	Renal histology in CQ treated and untreated *Plasmodium berghei* ANKA infected mice at 40 X.	187
E5	Median of scores of the liver histology changes.	188
E6	liver histology change in CQ treated and untreated *Plasmodium berghei* ANKA infected and uninfected mice at 4X.	189
E7	Hepatic changes in CQ treated and untreated *Plasmodium berghei* ANKA infected and uninfected mice at 10X.	190
E8	Hepatic histology changes in CQ treated and untreated *Plasmodium berghei* ANKA infected and uninfected mice at 40X.	191
E9	Hepatic histology changes CQ treated and untreated *Plasmodium berghei* ANKA infected and uninfected mice at 40X.	192
E10 Median of scores of the spleen histology changes. 193
E11 Spleen histology in CQ treated and untreated *Plasmodium berghei* ANKA infected mice at 4 and 10X. 194
E12 Spleen histology changes in CQ treated and untreated *Plasmodium berghei* ANKA infected mice at 20 X. 195
E13 Median of scores of the brain histology changes. 196
E14 Brain histology in CQ treated and untreated *Plasmodium berghei* ANKA infected mice at 4 X. 197
E15 Brain histology in CQ treated and untreated *Plasmodium berghei* ANKA infected mice at 10 X. 198
E16 Brain histology in CQ treated *Plasmodium berghei* ANKA infected ICR mice model after parasite recrudescence at 40X 199
F1 Haem standard curve. 200
G1 WBCs and RBCs count in the Neubouer ruled slide for the *Plasmodium berghei* infected and uninfected animals 201
H1 A copy of the approval of the animal ethics committee approval to perform the in vivo study. 202
LIST OF ABBREVIATIONS

(I) inoculum value
[Fe-S] Iron sulphate complex
[K3Fe(CN)6] Potassium Ferricyanide
'OH Hydroxyl Radicals
ANOVA Analysis Of Variance
BHT Butylated HydroxyToluen
BSA Bovine Serum Albumin
BSC Biosafety Cabinet
cMCM Complete Malaria Culture Medium
CPD Citrate Phosphate Dextrose
CQ Chloroquine
CQ1 *Plasmodium berghei* infected ICR mice and treated with chloroquine at 1 mg/kg.
CQ5 *Plasmodium berghei* infected ICR mice and treated with chloroquine at 5 mg/kg.
CQ10 *Plasmodium berghei* infected ICR mice and treated with chloroquine at 10 mg/kg.
CQ20 *Plasmodium berghei* infected ICR mice and treated with chloroquine at 20 mg/kg.
CQED50 CQ dose required to inhibit the parasite growth by 50%
CQR Untreated *Plasmodium berghei* infected ICR mice
CQR5 *Plasmodium berghei* infected ICR mice and treated with chloroquine at 5mg/kg.
CQR10 *Plasmodium berghei* infected ICR mice and treated with chloroquine at 10 mg/kg.
CQR20 *Plasmodium berghei* infected ICR mice and treated with chloroquine at 20 mg/kg.
CQR30 *Plasmodium berghei* infected ICR mice and treated with chloroquine at 30 mg/kg.
DMSO Di-methylsulphoxide
et cetera (and the other things)
EDTA Ethelene Diamine Tetr Acetic acid
ELISA Enzyme linked Immune-Sorbant assays
FIC50 Fractional Inhibitory Concentration for IC50
FIC90 (Fractional inhibitory concentration for IC90
FP Ferri-proto-porphyrins
g.m.wt Gram Molecular Weight
H2O2 Hydrogen peroxide
Hb Hemeoglobin
HCL Hydrochloric acid
Hct Hemeatocrit
HEPES (4-(2-hydroxyethyl)-1-piperazine-ethan-sulphonic acid)
HRP-2 Histidine Rich Protein
i.e. That is
I.M Intra Muscular
I.P Intraperitoneal
I.V Intravenous
IC50 Inhibitory concentration to reduce the growth by 50%
IC50vero, Inhibitory concentration to reduce growth of Vero cells by 50%
ICAM Intracellular Adhesion Molecules
CHAPTER 1

INTRODUCTION

1.1 Problem statements

In spite of its good reputation in the field of malaria chemotherapy, chloroquine (CQ) implementation is replete with critical problems that compromised its importance as a potential chemotherapeutic drug, such as; loss of its potency due to emergence of CQ resistant strains of different plasmodium species, its pharmacokinetic behaviour and the difficulties to keep it at the desired level and the incidence of side effects that enhances patients’ compliance. This problem urged the scientists to search for other alternatives or chemo sensitizers as a part of the dedicated efforts that aim to secure patient’s recuperation.

Emergence of chloroquine resistance predestines taking one of the following actions; increasing its dose or protracting the treatment period. Both are not desired as they increase the incidence of its toxicity and induce a selection pressure that augments the dilemma of resistance and tolerance.

Previous studies revealed that CQ side effects, such as; prostration, hypotension, vomiting, tinnitus as well as dizziness, appear at plasma concentrations more than 500 nM. Meanwhile; higher doses put the patients at risk of the acute toxicity that is characterized by incidence of severe hypotension, cardiovascular collapse and neurological disorders (convulsion, prostration and collapse). Meanwhile, its long-term use is fraught with risks of the chronic toxicity that is characterized by hepatic, retinal and dermal damages. The previous clinical studies classified blood level of CQ into negative (< 31 nM, sub-therapeutic (31 nM- 1 μM), therapeutic (1-5 μM) and supra-therapeutic (> 5 μM).

Furthermore, its pharmacokinetic behaviour constitutes another constraint that limits its eligibility to treat the disease. There has been a great deal of evidence that most of the CQ dependent therapeutic protocols failed to keep its level within the therapeutic threshold level due the inter-individual discrepancy in its pharmacokinetic parameters especially among different age groups. The variation is seen widely in its volume of distribution that it is quiet low soon after CQ uptake and rises up by 100 folds after achieving the equilibrium concentration. This may be due to its model of distribution that makes the decline in its plasma level multi-exponential as it distributes first to the central compartment before distributing to the other organs. The volume of the central compartment is several orders of magnitude smaller than the apparent volume of distribution. This model of distribution creates a transient increase in its level after its uptake and increases the incidence of its toxicity.

It is crucial to note that CQ potency is highly correlated with the parasite synchronicity. During their intra-erythrocytic cycle, plasmodia undergo cyclical morphological changes pouncing from rings to trophozoites and schizonts. The upmost activity was seen during the trophozoite stage which takes part during the
middle third period of the cycle. Meanwhile, the very young rings and the mature schizonts are less affected. This predestines playing with CQ dosing schedule to attain a congruity between the time when CQ reaches its peak and that when most of the parasites are in their middle third stage of the cycle. Nevertheless, this aim is difficult to achieve with the fluctuations and high inter-individual variations in CQ plasma level.

Co-administration of chemo-sensitizers with CQ may help to overcome these issues. Most of them act in a mode different from that of CQ, thus their maximum effect may be achieved at time points within the intra-erythrocytic cycle different from that achieved by CQ. This may help in potentiating CQ action if its peaking failed to match the period wherein most of the parasites are predominated with the target trophozoites.

Natural compounds are multifaceted molecules with plenty of pharmacological actions. They do not merely affect the parasite responsiveness to CQ but they may change its action through changing its pharmacokinetic behaviour, the responsiveness of the immune system to the infection or development of the disease pathogenesis.

On the other hand, the immune system plays a role in limiting malaria. In spite of its failure to eradicate the parasite, it plays an important role in limiting progression the disease pathogenesis. Malaria is associated with pathogenic changes characterized by hepatomegaly, splenomegaly, renal failure and cerebral and pulmonary hemorrhage. They are either attributed to overstimulation of the immune response or intravascular sequestration of the parasites. Parasite sequestration results in diminution of the blood supply and infliction of tissue damage. It requires endothelial expression of cyto-adhesion molecules, such as; ICAM (Intracellular Adhesion Molecules) or VCAM (Vascular cells Adhesion Molecules). Implementation of the herbal therapy may modulate the immune reaction or induce expression of the cyto-adhesion molecules. This may give them another privilege along with their intrinsic effect on the parasite.

Implementation of phyto-medicine in malaria therapy has several outcomes as they might have the aptitude to suppress the parasite growth, chemo-sensitize or altering the pharmacokinetic behaviour of the conventional anti-malarial drugs or modulating the host immune response or the cyto-adhesion mechanism of the infected RBCs (Red Blood Cells).

1.2 Research hypotheses

Phytochemicals are multifaceted molecules with a tendency to affect cellular functions through different mechanisms. This character entitles them to be candidate drugs for different purposes. In the field of malaria, they may compromise the parasite growth, change the susceptibility of the parasite to the conventional anti-malarials or changing the way that the host reacts toward the parasite through changing the immune response or progression of the pathogenic events.

The chemotherapeutic action of different drugs relies on their ability to selectively compromise the parasite growth without affecting the host. Plasmodia are endowed
with unique organelles that are absent in mammals, such as; the digestive vacuoles wherein Hb is broken down or the apicolplasts that is involved in different biochemnical pathways.

Nawadays, drug resistance started to evolve in lots of plasmodia species. Resistance to chloroquine constitutes the most perilous event in the realm of malaria chemotherapy as it is still the most potent and cost effective drug amongst other antimalarials. It develops when the parasite get the ability to shuffle chloroquine outsid its target site of action. The resistant strains develop mutations in the gene of the transporters that pump chloroquine away from its site of action, such as: crt (chloroquine resistance transporter) or MDR (Multi drugs resistance protein).

Malaria is associated with plenty of pathogenic events that inflict most of the host body organs. Most of them occur due to overstimulation of the immune system or due to sequestration of the parasites in the microvasculature of the affected organs. The immune system stimulation is mediated by the interleukines that the immune system releases after recognition of the infected cells while the sequestration of the parasites is mediated by the interaction of the infected cells with ligand molecules expressed on the endothelium. Interference with these events may help in limiting progression of the malaria induced pathogenesis.

1.3 General objectives

The study aims at testing the eligibility of a set of eleven phytochemicals, namely;andrographolide, embelin, two xanthon derivatives (mangoferin and mangostin), three β-carbolines (harmaline, harmalol, harmal) and four simple coumarines (scopoletin, esculetin, umbeliferone and 3-aminocoumarin) as anti-plasmodial or chloroquine resistance reversing agents. This was attained through fulfilling the following objectives which have been attained both in vitro and in vivo.

1.4 Specific objectives

1. Screening of the physiochemical properties and the antioxidant activity of the selected phytochemicals as a preliminary screening step.

2. In vitro assessment of the anti-plasmodial, chloroquine resistance reversing effects and selectivity of the abovementioned test compounds against Plasmodium falciparum 3D7 and K1.

3. Assessment of the impact of each of the mentioned phytochemicals against some molecular targets, such as; hemozoin formation (in vitro β-haematin formation and haem fractionation assay as well as their effect on merozoites invasion).
After finishing the *in vitro* study, the *in vivo* study was run only for the phytochemicals that give optimistic outcomes in the preliminary *in vitro* study. Compounds; with poor anti-plasmodium and CQ resistance reversing effects or were revealed to be abnoxious, were excluded from this study. The objectives are listed hereafter below.

1. Assessment of the anti-plasmodium effect of chloroquine and each phytochemical in a model of Plasmodium berghei (ANKA) infected ICR mice.

2. Assessment of the effect of each phytochemical on progression of the disease induced pathogenesis.

3. Assessment of the plausible in vivo synergistic or antagonistic effect of each phytochemical with CQ.
REFERENCES

Centers-of-disease-control-and-prevention (2016). Malaria parasites Atlanata, USA Global Health - Division of Parasitic Diseases and Malaria-Centers of disease control and prevention

Quinton, LF, Ipmemida, SA and David, CW (2004). Modified fixed-ratio isobologram method for studying *In vitro* interactions between atovaquone and proguanil or

