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ABSTRACT

In recent time, Runge-Kutta methods that integrate special fourth or-
der ordinary differential equations (ODEs) directly are proposed to ad-
dress efficiency issues associated with classical Runge-Kutta methods.
Although, the methods require approximation of y′, y′′ and y′′′ of the
solution at every step. In this paper, a hybrid type method is proposed,
which can directly integrate special fourth order ODEs. The method
does not require the approximation of any derivatives of the solution.
Algebraic order conditions of the methods are derived via Taylor series
technique. Using the order conditions, eight algebraic order method is
presented. Absolute stability of the method is analyzed and the stabil-
ity region presented. Numerical experiment is conducted on some test
problems. Results from the experiment show that the new method is
more efficient and accurate than the existing Runge-Kutta and hybrid
methods with similar number of function evaluation.

Keywords: Hybrid methods, higher order ODEs, order conditions, nu-
merical methods, stability.
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1. Introduction

Higher order equations (ODEs) are used to model physical phenomena in
different areas of applied science, which includes elasticity, fluid mechanics,
physics, quantum mechanics and engineering. Only a few of the equations can
be solved analytically, as pointed out in Hussain et al. (2016), Ken et al. (2008)
and the references therein. Hence, the construction of numerical methods to
approximate their solutions become necessary. In view of this, researchers and
scholar in the field of numerical analysis contributed immensely in the con-
struction and derivation of several methods for the solution of this class of
equations (see Butcher (2008), Dormand (1996), Hairer et al. (1993), Lambert
(1991), Langkah et al. (2012), Majid et al. (2010), Mechee et al. (2013), Mechee
and Kadhim (2016a)), where the equations are first transformed into systems
of first order equations, because the methods are strictly for solving first or-
der equations. The methods, though accurate, have efficiency issues associated
with them due to the transformation of the fourth order equations they require.
As a result, several direct integrators are proposed. These include cubic spline
collocation tau method, see Taiwo and Ogunlaran (2008), logarithmic colloca-
tion method, Awoyemi (2005), cubic spline method for fourth order obstacle
problems Al-Said et al. (2006), fourth order initial and boundary value prob-
lems integrators, Jator (2008). Other such methods can be found in (Hussain
et al. (2016), Kayode (2008), Waeleh et al. (2011)) and the references therein.

The general form of the problem considered in this paper is

yiv(x) = f(x, y(x)), y(x0) = y0, y
′(x0) = y′0, y

′′(x0) = y′′0 , y
′′′(x0) = y′′′0 , (1)

where y ∈ Rr, f : R × Rr → Rr is a continuous vector value function. The
fact that f is independent of y′, y′′, y′′′ explicitly makes (1) special. Typical
example of (1) is the ill-posed problem of a beam on elastic foundation, which
finds an important engineering application. This problem has been studied in
Dong et al. (2014) and Hussain et al. (2016).

In recent time, Runge-Kutta type methods that integrate special third order
equations directly are proposed, see for instance Hussain et al. (2017), You
and Chen (2013) and the references therein. This motivated Runge-Kutta
type methods that integrate (1) directly, which can be found in Hussain et al.
(2016), Mechee and Kadhim (2016b) and the references therein. These methods
require approximation of three additional points of y′n, y′′n and y′′′n at each
step of the integration. This constitutes computational efficiency issue as the
approximation of yn depends on the derivatives. At this point, we are motivated
to derive an integrator that is multistage in nature like the direct Runge-Kutta
methods mentioned above, which does not require approximation of y′n, y′′n and
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y′′′n at all, like those proposed in Jikantoro et al. (2018b) for special third order
ODEs. Although the method is not self staring, it requires approximation of
back values to start the integration like most of the linear multistep methods.
The combined properties of multiple stage and multiple step give the method
the name hybrid method.

The remaining part of the paper is organized as follows: we present deriva-
tion of algebraic order conditions of the method via Taylor series in section 2.
The explicit eight algebraic order method is presented in section 3. Absolute
stability analysis of the method is presented in section 4. Numerical experiment
and discussion is presented in section 5. And conclusion is given in section 6.

2. Derivation of the Hybrid Method

2.1 The Proposed Method

Define s-stage Runge-Kutta method by

Yi = yn + h

s∑
j=1

ai,jf(xn + cjh, Yj), i = 1, ..., s,

yn+1 = yn + h

s∑
j=1

bif(xn + cih, Yi). (2)

Apply (2) to (1) Jikantoro et al. (2018a), we get

Yi = yn + h

s∑
j=1

ai,jUj , Ui = y′n + h

s∑
j=1

ai,jVj , Vi = y′′n + h

s∑
j=1

ai,jWj ,

Wi = y′′′n + h

s∑
j=1

ai,jf(xn + cjh, Yj), yn+1 = yn + h

s∑
i=1

biUi,

y′n+1 = y′n + h

s∑
i=1

biVi, y′′n+1 = y′′n + h

s∑
i=1

biWi, y′′′n+1 = y′′′n + h

s∑
i=1

bif(xn + cih, Yi).
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Eliminate Ui, Vi and Wi from the above equations , we get

Yi = yn + h

s∑
j=1

ai,jy
′
n + h2

s∑
j,k=1

ai,jaj,ky
′′
n + h3

s∑
j,k,l=1

ai,jaj,kak,ly
′′′
n +

h4
s∑

j,k,l,m=1

ai,jaj,kak,lal,mf(xn + cmh, Ym),

yn+1 = yn + h

s∑
i=1

biy
′
n + h2

s∑
i,j=1

biai,jy
′′
n + h3

s∑
i,j,k=1

biai,jaj,ky
′′′
n +

h4
s∑

i,j,k,l=1

biai,jaj,kak,lf(xn + clh, Yl),

y′n+1 = y′n + h

s∑
i=1

biy
′′
i + h2

s∑
i,j=1

biai,jy
′′′
n + h3

s∑
i,j,k=1

biai,jaj,kf(xn + ckh, Yk),

y′′n+1 = y′′n + h

s∑
i=1

biy
′′′
n + h2

s∑
i,j=1

biai,jf(xn + cjh, Yj),

y′′′n+1 = y′′′n + h

s∑
i=1

bif(xn + cih, Yi).

Assuming that
s∑
j=1

ai,j = ci,

s∑
j,k=1

ai,jaj,k =
c2i + ci

2
,

s∑
j,k,l=1

ai,jaj,kak,l =
c3i + c2i + 2ci

6
,

s∑
i=1

bi =

s∑
i,j=1

biai,j =

s∑
i,j,k=1

biai,jaj,k = 1, i = 1, ..., s,

s∑
k,l,m=1

ai,kak,lal,mam,j = âi,j ,

s∑
j,k,l=1

bjaj,kak,lal,i = b̂i.

Substitute finite difference formulae for the derivatives, we obtained the pro-
posed method as

yn+1 = 4yn − 6yn−1 + 4yn−2 − yn−3 + h4
(
bT ⊗ I

)
f(xn + ch,Y),

Y = Byn −Cyn−1 + Dyn−2 −Eyn−3 + h4 (A⊗ I) f(xn + ch,Y), (3)

where

B =
1

6
c3 + c2 +

11

6
c + e ,C =

1

6
c3 +

5

6
c2 + c ,D =

1

6
c3 +

2

3
c2 +

1

2
c,
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E =
1

6
c3 +

1

2
c2 +

1

3
c ,b = [b̂1, ..., b̂m]T , c = [c1, ..., cm]T , e = [1, ..., 1]T ,

A = [âi,j ] ,Y = [Y1, ..., Ym]T

and I is an m ×m dimension identity matrix. The Table 1 below shows the
general coefficients of the method.

Table 1: General coefficients of the method

-3 0 0 0 0 0 · · · 0
-2 0 0 0 0 0 · · · 0
-1 0 0 0 0 0 · · · 0
0 0 0 0 0 0 · · · 0
c5 â5,1 â5,2 â5,3 â5,4 â5,5 · · · â5,m
c6 â6,1 â6,2 â6,3 â6,4 â6,5 · · · â6,m
c7 â7,1 â7,2 â7,3 â7,4 â7,5 · · · â7,m
c8 â8,1 â8,2 â8,3 â8,4 â8,5 · · · â8,m
...

...
...

...
...

...
...

...
cm âm,1 âm,2 âm,3 âm,4 âm,5 · · · âm,m

b̂1 b̂2 b̂3 b̂4 b̂5 · · · b̂m

2.2 Derivation of the order conditions of the Hybrid Method

In this subsection, we derive order conditions of the method. Order con-
dition is a certain relationship between coefficients of a method that causes
successive terms in a Taylor series expansion of local truncation error to van-
ish, Coleman (2003).

To derive the order conditions of the HHM method, we shall consider au-
tonomous case of (1) for simplicity, sine both autonomous and non autonomous
forms have the same numerical solution, as shown in You and Chen (2013), and
re-write eqn. (3) as follows:

yn+1 = yn + φ(h; yn),

ki = f(Yi), (4)

where

φ(h; yn) = 3yn − 6yn−1 + 4yn−2 − yn−3 + h4
s∑
j=1

b̂iki,
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and ki is defined in terms of the components of Y in eqn. (3). Suppose that
the exact solution y(x) at point xn+1 is defined as

y(xn+1) = y(xn) + Ψ(h; y(xn)), (5)

then the local truncation error dn+1 of HHM method can be expressed as

dn+1 = y(xn+1)− yn+1 = Ψ(h; y(xn))− φ(h; yn), (6)

provided that the local assumption y(xn) = yn holds. The next task is to
obtain Taylor expansion for both Ψ and φ. The Taylor expansion of the two
quantities are given below in terms of elementary differential (F).

Ψ = hy′ +
h2

2
y′′ +

h3

6
y′′′ +

h4

24
F

(4)
1 +

h5

120
F

(5)
1 +O

(
h6
)
, φ = hy′ +

h2

2
y′′ +

h3

6
y′′′ +

h3

24

(
24

s∑
i=1

b̂i − 23

)
F

(4)
1 +

h5

120

(
120

s∑
i=1

b̂ici + 121

)
F

(5)
1 +O

(
h6
)
, (7)

where

F
(4)
1 = f, F

(5)
1 = fy (y′) , F

(6)
1 = fyy (y′, y′) + fy (y′′) , e.t.c.

Substituting eqns. (7) into (6) gives Taylor series expansion of the local trun-
cation error of HHM method as follows:

tn+1 =
[
h3

24

(
24
∑s
i=1 b̂i − 24

)
F

(4)
1 + h5

120

(
120

∑s
i=1 b̂ici + 120

)
F

(5)
1 +O(h6)

]
. (8)

Hence, the algebraic order conditions of the HHM method up to order eight
are summarized in Table 2.

3. Derivation of Explicit HHM8

In this section we derive an explicit HHM method with eight algebraic order
using the algebraic order conditions derived in section 2 above. To do that, the
equations of the order conditions up to order eight are solved.

Substituting the values of ci, i = 1, ...4 from Table 1 above leaves us with
eighteen equations to be solved in twenty five unknown parameters. The coef-
ficients of the method obtained (after solving the equations and choosing the
free parameters at random) are summarized in the table below and the method
is denoted by HHM8.

32 Malaysian Journal of Mathematical Sciences



Higher Order Hybrid Method for Higher Order ODEs

Table 2: Order Conditions of HHM

Order condition
1

∑
b̂i = 1

2
∑
b̂ici = −1

3
∑
b̂ic

2
i = 4

3

4
∑
b̂ic

3
i = −2

5
∑
b̂ic

4
i = 33

10 ,
∑
b̂iciâi,j = − 1

720

6
∑
b̂ic

5
i = − 35

6 ,
∑
b̂iâi,jcj = − 1

720∑
b̂iciâi,j = 1

720

7
∑
b̂ic

6
i = 229

21 ,
∑
b̂iâi,jc

2
j = − 1

840∑
b̂iciâi,jcj = 17

5040 ,
∑
b̂ic

2
i âi,j = 43

5040

8
∑
b̂ic

7
i = − 229

21 ,
∑
b̂ic

2
i âi,jcj = − 1

80∑
b̂ic

3
i âi,j = − 19

1680 ,
∑
b̂icâi,jc

3
j = 1

1260∑
b̂iciâi,jc

2
j = − 7

1080

Table 3: Coefficients of HHM8

-3 0 0 0 0 0 0 0

-2 0 0 0 0 0 0 0

-1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1
27 − 3951662

94143178827
150621823

62762119218
223863772

31381059609
77032153

188286357654 0 0 0

1
7

2131111081
680811468498 − 468078818

113468578083
28043526863
453874312332 − 90199966406

340405734249
1
4 0 0

− 6121
4179 − 732342756543089477586897905

122001845460259905760618576179
1493386649887374823957463756
40667281820086635253539525393 − 1492256617569457896820650683

40667281820086635253539525393
62469989485733548263762351404
122001845460259905760618576179 − 1

2
1
58 0

1173167
1041701760

111715
885852

6172283
13050240

4224601
1101780 − 126686499903

28530187840
180893741
212826240

50474033141187348817299
323684583132736804910720

4. Stability Analysis

Consider the fourth order scalar test equation

yiv = −λ4y, λ > 0. (9)

To analyze the absolute stability of the proposed method, (3) is applied to (9)
as follows: the second component of (3) gives

Y (I + zA) =
1

6
Byn −

1

2
Cyn−1 +

1

2
Dyn−2 −

1

6
Eyn−3,

Y =

(
1

6
Byn −

1

2
Cyn−1 +

1

2
Dyn−2 −

1

6
Eyn−3

)
(I + zA)

−1
,
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where z = (λh)
4. And for the first component, we get

yn+1 =

(
4e− z 1

6
bTB (I + zA)

)
yn −

(
6e− z 1

2
bTC (I + zA)

)
yn−1 +(

4e− z 1

2
bTD (I + zA)

)
yn−2 −

(
e− z 1

6
bTE (I + zA)

)
yn−3,

χ(ξ) = ξ4 −K1ξ
3 + K2ξ

2 −K3ξ + K4, (10)

where Ki, i = 1, 2, 3, 4 are variables that depend on the coefficients of the
method and z. Eqn. (10) is the stability polynomial of the proposed method.
An interval (−za, α) is said to be interval of absolute stability of HHM method
if, ∀ z ∈ (−za, α), |ξ1,2,3,4| < 1, where ξ1,2,3,4 are roots of eqn. (10). Absolute
stability region is a region enclosed by the set of points for which |ξ| = 1. The
region is easily obtained by putting ξ = eIθ in eqn. (10) for 0 ≤ θ ≤ 2π, solve
for z, then map out the boundary using MAPLE. The shaded portion in Figure
1 below is the stability region of the proposed method.

Figure 1: Stability region of HHM8

4.1 Zero Stability

The HHM8 method is said to be zero stable if the roots ϑj , j = 1, 2, 3, 4, of
the first characteristics polynomial χ(ϑ), defined by

χ(ϑ) =

4∑
i=0

γiϑ
i,
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satisfy |ϑj | ≤ 1, j = 1, 2, 3, 4 and for the roots with |ϑj | = 1, the multiplicity
does not exceed 4.

4.2 Consistency

The HHM8 method is said to be consistent if it has order greater than one.

The first characteristics polynomial of the method is

χ(ϑ) = ξ4 − 4ϑ3 + 6ϑ2 − 4ϑ+ 1 = 0,

which implies that ϑ = 1 four times. Therefore, the HHM8 method is zero
stable. We also note that, provided the order conditions are satisfied, the order
of the method is greater than one, which implies that it’s consistent. Hence,
we conclude that the HHM8 method is convergent.

5. Implementation

In this section, we present numerical results of the proposed method and
some existing methods as they are applied to some test problems that are listed
below. Efficiency as well as accuracy of the methods are measured by plotting
the log10 of maximum errors recorded with different step lengths h in a given
interval [a,b] against computation efforts measured by total number of function
call for each method.

• HHM8: the proposed eight order four-stage explicit hybrid method de-
rived in this paper;

• RKFD: fifth order explicit four-stage Runge-Kutta direct method de-
rived in Hussain et al. (2016);

• JHM: fifth order four-stage explicit hybrid method for second order os-
cillatory problems derived in Jikantoro et al. (2016);

• FHM: third order three-stage explicit hybrid method for second order
oscillatory problems derived in Franco (2006);

• ME: logarithm to base 10 of maximum absolute error;

• FE: logarithm to base 10 of total function call.
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5.1 Test problems

Problem 1:
y′′′′ = −4y, 0 ≤ x ≤ 5,

y(0) = 1, y′(0) = 1, y′′(0) = 2, y′′′(0) = 2,

y(x) = exp(x) sin(x). Source: Mechee and Kadhim (2016b)

Problem 2:
y′′′′ = y2 + cos2(x) + sin(x)− 1, 0 ≤ x ≤ 5,

y(0) = 0, y′(0) = 1, y′′(0) = 0, y′′′(0) = −1,

y(x) = sin(x). Source: Hussain et al. (2016)

Problem 3:

y′′′′ =
3 sin(y)

(
3 + 2 sin2(y)

)
cos7(y)

, 0 ≤ x ≤ π

4
,

y(0) = 0, y′(0) = 1, y′′(0) = 0, y′′′(0) = 1,

y(x) = sin−1(x). Source: Hussain et al. (2016)

Problem 4: the ill-posed problem of a beam on elastic foundation:
y′′′′ = x− y, 0 ≤ x ≤ 5,

y(0) = 0, y′(0) = 0, y′′(0) = 0, y′′′(0) = 0,

y(x) = 1− 1/2 e−1/2
√
2x cos

(
1/2
√

2x
)
− 1/2 e1/2

√
2x cos

(
1/2
√

2x
)
.

Source: Jikantoro et al. (2018a)

Problem 5:
y′′′′1 = e3xy2, y1(0) = 1, y′1(0) = −1, y′′1 (0) = 1, y′′′1 (0) = −1,

y′′′′2 = 256e−xy3, y2(0) = 1, y′2(0) = −4, y′′2 (0) = 16, y′′′2 (0) = −64,

y′′′′3 = 81e−xy4, y3(0) = 1, y′3(0) = −3, y′′3 (0) = 9, y′′′3 (0) = −27,

y′′′′4 = 16e−xy1, y4(0) = 1, y′4(0) = −2, y′′4 (0) = 4, y′′′4 (0) = −8,

y1(x) = e−x, y2(x) = e−4x, y3(x) = e−3x, y4(x) = e−2x, 0 ≤ x ≤ 2.

Source: Dong et al. (2014)

The proposed method is not self-starting and it has similar function evaluation
as Runge-Kutta methods. To start the integration with the method, initial
point of the solution and three additional points are required as starting values.
The starting values are computed here by RKFD, see Hussain et al. (2016).
When the starting values are obtained, the integration proceeds with s − 3
function calls at every step. That means the proposed method has 4 function
evaluation per step.
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Note that JHM and FHM are specifically for solving second order equations
directly. As such, each of the test equations is transformed to twice its dimen-
sion for the two methods to be applied. Figures 1–5 are the graphs showing
the accuracy and the computational effort of the HHM8 method as compared
with those of the existing methods. Figure 6 shows the stability region of the
method. It is observed that for all the test problems solved, the proposed
method appear to be more accurate with comparable number of function eval-
uation. In addition, unlike the RKFD, integration with HHM8 does not require
computer memory space to store the values of derivatives of the solution.
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Figure 2: Efficiency curves for problem 1, h =
2−i, i = 2, ..., 6.
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Figure 3: Efficiency curves for problem 2, h =
2−i, i = 2, ..., 6.
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Figure 4: Efficiency curves for problem 3, h =
2−i, i = 4, ..., 8.

1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2
−13

−12

−11

−10

−9

−8

−7

−6

−5

−4

−3

FE

M
E

 

 

HHM8
JHM
RKFD
FHM

Figure 5: Efficiency curves for problem 4, h =
2−i, i = 2, ..., 6.
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Figure 6: Efficiency curves for problem 5, h =
2−i, i = 4, ..., 8.

6. Conclusion

A hybrid method that directly integrates special class of fourth order equa-
tions is proposed and derived. The method is similar to the class of two-step
hybrid methods for solving special second order ODEs proposed in Coleman
(2003). The major improved difference between the method and the methods
of its kind, example RKFD, is that it doesn’t require approximation of y′, y′′
and y′′′ for the numerical integration. Using Taylor series technique, algebraic
order conditions of the method are derived. The order conditions are used to
derive HHM8 method. Stability of the method is also analyzed and stability
region presented. Numerical results presented in Figures 2-6 reveal that the
new method is better than the existing methods considered in the paper.
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