UNIVERSITI PUTRA MALAYSIA

ARTIFICIAL DIETS AND THEIR EFFECTS ON BIOLOGICAL PERFORMANCE OF GREEN LACEWING, Chrysoperla nipponensis (OKAMOTO) (NEUROPTERA: CHRYSPIDAE)

SHAFIQUE AHMED

FP 2016 6
ARTIFICIAL DIETS AND THEIR EFFECTS ON BIOLOGICAL PERFORMANCE OF GREEN LACEWING, *Chrysoperla nipponensis* (OKAMOTO) (NEUROPTERA: CHRYSOPIDAE)

By

SHAFIQUE AHMED

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

May 2016
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
DEDICATION

My Paradise

My Mother
Abstract of the thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the Degree of Doctor of Philosophy

ARTIFICIAL DIETS AND THEIR EFFECTS ON BIOLOGICAL PERFORMANCE OF GREEN LACEWING, Chrysoperla nipponensis (OKAMOTO) (NEUROPTERA: CHRYSOPIDAE)

By

SHAFIQUE AHMED

May 2016

Chairman : Professor Dzolkhifli Omar, PhD
Faculty : Agriculture

Green lacewings (Neuroptera: Chrysopidae) are the most effective and generalist predators of many soft bodied insects. Chrysoperla nipponensis-B (Okamoto) is a recently recorded lacewing in Malaysia and detailed studies on its biological performance are lacking. Moreover, no comparative research has been done on the mass rearing of C. nipponensis under laboratory conditions on natural and artificial diets and their effect on its biological performance. Therefore, this study was conducted to evaluate the effects of two types of semi-solid artificial diets and two natural diets i.e., Aphis craccivora (Koch) and eggs of Corcyra cephalonica (Stainton) on the growth, development and predation of C. nipponensis larvae and their potential to be used for the mass rearing of C. nipponensis. Composition of artificial diets was same except the addition of whole eggs and ginger in diet-1 and, egg yolk and chemical antimicrobials in diet-2. Results suggested that diet-1 was found to be an alternate to natural diets for the mass rearing of C. nipponensis, as larvae reared on diet-1 performed better in terms of larval duration, fecundity and adult longevity as compared to natural diets. However, survival and weight of larvae and pupae was higher when reared on C. cephalonica eggs. No difference was recorded between diet-1 and C. cephalonica reared larvae in terms of length of 3rd instar larvae, head capsule of 1st and 2nd instar larvae, % adult emergence and their body length. The findings of the life table studies showed that the highest apparent mortality of C. nipponensis (37.26%) was observed in immature stages (1st, 2nd, 3rd and pupae) when reared on C. cephalonica eggs. The sex ratios (proportion of female to male) in the natural and artificial diets were 0.93:1.00 and 0.87:1.00, respectively. The females reared on artificial diet lived one day longer than those reared on C. cephalonica eggs. The maximum life span of females was observed when reared on artificial diet. The maximum oviposition by females reared on C. cephalonica eggs was recorded as 10.4 eggs laid on day five, whereas females reared on artificial diet laid a maximum of 9.26 eggs on day nine. The net reproductive rate (Ro) and maximum gross reproductive rate (GRR) of C. nipponensis fed on C. cephalonica eggs were 69.5 and 223.1 females per female per generation, respectively, while on artificial diet these parameters were 117.24 and 236.89 females per female per generation, respectively. Higher mean generation time (T)
and population doubling time of *C. nipponensis* were 48.16 and 7.00 days observed on artificial diet, respectively. However, intrinsic (*r*) and finite (*λ*) rate of increase (females per female per day) of *C. nipponensis* were higher when reared on *C. cephalonica* eggs. Studies on the functional response of 3rd instar *C. nipponensis* larvae reared on artificial diet and *C. cephalonica* eggs showed a type-II functional response to various densities of aphid (*A. craccivora*), mealybug (*Paracoccus marginatus*) (Williams and Granara de Willink) and whitefly (*Bemisia tabacci*) (Gennadius). Based on Holling’s disk equation, the highest search rate (á) of larvae (0.68 and 0.40) was observed against mealybug and whitefly when reared on artificial diet and *C. cephalonica* eggs, respectively. Both, artificial diet and *C. cephalonica* eggs reared *C. nipponensis* larvae showed maximum handling time on whiteflies. *Chrysoperla nipponensis* larvae reared on both diets exhibited maximum predation rate on mealybugs with minimum predation recorded on whiteflies. The same R^2 values were recorded for artificial diet and *C. cephalonica* eggs reared larvae against aphids, mealybugs and whiteflies. The newly recorded green lacewing *C. nipponensis* is an important predator in Malaysian agro-ecosystems. *Chrysoperla nipponensis* reared on ginger based artificial diet showed compatible or better performance for various biological and predation parameters, hence can be used for the mass rearing of the predator for the population management of many soft bodied insect pests.
Green lacewing merupakan pemangsa yang effektif dan generalis terhadap serangga berbadan lembut. *Chrysoperla nipponensis* direkodkan ada di Malaysia tetapi kajian terhadap prestasinya masih kurang. Tambahan pula, tiada perbandingan kajian yang dilakukan terhadap ternakan besar-besaran di bawah keadaan makmal pada diet semulajadi dan tiruan dan juga kesan terhadap prestasi lacewing. Oleh itu, kajian ini di jalankan untuk menilai kesan dua jenis diet separa pepejal dan dua jenis diet semulajadi iaitu *Aphis craccivora* dan telur *Corcyra cephalonica* terhadap pertumbuhan, perkembangan dan kadar pemangsaan larva *C. nipponensis* dan potensi diet ini untuk digunakan dalam ternakan besar-besaran *C. nipponensis*. Komposisi diet tiruan adalah sama kecuali tambahan keseluruhan telur dan halia dalam diet-1 manakala tambahan kuning telur dan bahan kimia perintang antibiotik dalam diet-2. Keputusan menunjukkan diet-1 boleh dijadikan pengganti kepada diet semulajadi bagi penternakan besar-besaran *C. nipponensis* kerana larva yang ditermakan pada diet-1 menunjukkan jangkamasa larva, kesuburan dan kepanjangan umur dewasa yang lebih baik. Walau bagaimanapun, kemandirian dan berat larva dan pupa lebih tinggi apabila ditermakan pada *C. cephalonica*. Tiada perbezaan direkodkan antara diet-1 dan *C. cephalonica* dari segi panjang larva peringkat ketiga, kapsul kepala larva peringkat kedua dan ketiga, % pengeluaran dan panjang badan dewasa. Hasil kajian jadual hidup menunjukkan kadar kematian tertinggi *C. nipponensis* apabila di ternak pada telur *C. cephalonica* adalah 37.26% dalam peringkat tidak matang (larva peringkat pertama, ke-2 dan ke-3 dan pupa) .Nisbah seks (kadar betina kepada jantan) dalam diet semulajadi dan tiruan adalah masing-masing pada 0.93:1.00 dan 0.87:1.00. Betina yang ditermakan pada diet tiruan hidup satu hari lebih lama berbanding pada telur *C. cephalonica*. Maksimum jangkamasa hidup betina diperhatikan apabila ditermakan pada diet tiruan. Kadar pengeluaran telur yang maksima oleh betina yang ditermakan pada telur *C. cephalonica* direkodkan pada hari ke-5 adalah 10.4, manakala yang ditermakan pada diet tiruan mengeluarkan telur yang maksima sebanyak 9.26 pada hari ke-9. Kadar bersih pembiakan (Ro) dan kadar kasar pembiakan GRR) *C. nipponensis* yang didapati pada telur *C. cephalonica* adalah masing-masing pada 69.5 dan 223.1 betina per betina per generasi, manakala pada diet tiruan adalah masing-masing pada 117.24 dan 236.89 betina per betina per
generasi. Min masa generasi (T) dan masa penggandaan populasi *C. nipponensis* juga lebih tinggi pada diet tiruan. Walau bagaimanapun, kadar pertambahan intrisik (r) dan terhingga (λ) (betina per betina per hari) *C. nipponensis* lebih tinggi apabila diterbang pada telur *C. cephalonica*. Kajian tindak balas berfungsi ke atas larva peringkat ke-3 *C. nipponensis* yang diterbang pada diet tiruan dan telur *C. cephalonica* menunjukkan tindak balas berfungsi jenis-2 terhadap densiti pelbagai pelbagai afid (*Aphis craccivora*), koya (*Paracoccus marginatus*) dan lalat putih (*Bemisia tabaci*). Berdasarkan persamaan Holling’s disk, kadar pencarian yang tertinggi (á) larva adalah masing-masing 0.68 dan 0.40 terhadap koya dan lalat putih yang diterbang pada diet tiruan dan telur *C. cephalonica*. Larva yang diterbang pada kedua-dua diet menunjukkan masa pengendalian yang maksimum ke atas lalat putih. Larva *C. nipponensis* yang diterbang pada kedua-dua diet juga mempamerkan kadar pemangsaan yang maksimum ke atas koya manakala kadar pemangsaan yang minimum pada lalat putih. Kadar R^2 adalah sama direkodkan oleh larva terhadap afid, koya dan lalat putih yang diterbang pada diet tiruan dan telur *C. cephalonica*. Green lacewing yang baru direkodkan sangat penting sebagai pemangsa dalam agro-ekosistem di Malaysia. *C. nipponensis* yang diterbang pada diet tiruan berasaskan halia menunjukkan keserasian atau prestasi yang lebih baik bagi pelbagai parameter biologi dan pemangsaan, oleh itu boleh digunakan untuk ternakan besar-besaran pemangsa serangga perosak berbadan lembut.
ACKNOWLEDGEMENTS

I bow before ALMIGHTY ALLAH Who blessed me with strength and patience to undertake this study. My cordial thank to HOLY PROPHET HAZARAT MUHAMMAD (PEACE BE UPON HIM).

I would like to express my sincerest thanks and appreciation to Professor Dr. Dzolkhifli Omar (Chairman) of my supervisory committee for his encouragement, familiar support, invaluable advice and intellectual guidance during my study, preparation of the research proposal, in the conduct of the research and in the writing up this thesis. I am also greatly indebted to my supervisory committee members, Professor Dr. Rita Muhamad Awang, Department of Plant Protection, Faculty of Agriculture and Professor Dr. Ahmad Said Bin Sajap, Department of Forest Management, Faculty of Forestry for their constructive comments, advice and help throughout my study and encouragement during the completion of this thesis.

My gratitude goes to the management of Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Balochistan, Pakistan for granting my study leave to pursue a Ph.D study at Universiti Putra Malaysia (UPM), Malaysia. Thanks to the Higher Education Commission (HEC) of Pakistan for providing Partial Support Fund. My special thanks to Dr Norhayu Asib for her technical support during the molecular identification of green lacewing species. Cooperation, patience and guidance from Dr. Irfan Gilal during preparation of this thesis are highly acknowledged. Finally, I will not forget to pay thanks to staff members in the Department of Plant Protection, Faculty of Agriculture, UPM especially Mr. Jarkasi, Mr. Hishamuddin Zainuddin, Mr. Mohammed Zaki for their assistance during my research work.

I wish to express my deepest appreciation to numerous people who walked with me along the journey of this study and thesis preparations. I enjoyed my time spent in Malaysia thoroughly and I would cherish these memories for the rest of my life. Finally, I find no words to thank the patience and unconditional love and support of my family during my entire PhD studies.
I certify that a Thesis Examination Committee has met on 06 May 2016 to conduct the final examination of Shafique Ahmed on his thesis entitled "Artificial Diets and Their Effects on Biological Performance of Green Lacewing, Chrysoperla nipponensis (Okamoto) (Neuroptera: Chrysopidae)" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Kamaruzaman b Sijam, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Lau Wei Hong, PhD
Lecturer
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Nur Azura binti Adam, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Ghulam Hussain Abro, PhD
Professor
Sindh Agriculture University
Pakistan
(External Examiner)

ZULKARNAIN ZAINAL, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 26 July 2016
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the supervisory committee were as follows:

Dzolkhifli Omar, PhD
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Rita Muhamad Awang, PhD
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

Ahmad Said Sajap, PhD
Professor
Faculty of Forestry
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

- This thesis is my original work;
- Quotations, illustrations and citations have been duly referenced;
- This thesis has not been submitted previously or concurrently for any other agree at any other institution
- Intellectual property of the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- Written permission must be obtained from the supervisor and the office of Deputy Vice Chancellor (Research and Innovation) before the thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other material as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- There is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ____________________________ Date: _________________

Name and Matric No.: Shafique Ahmed , GS36009
Declaration by Members of Supervisory Committee

This is to confirm that:

- The research conducted and the writing of this thesis was under our supervision;
- Supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: ______________________
Name of Chairman of Supervisory Committee: Professor Dr. Dzolkhifli Omar

Signature: ______________________
Name of Member of Supervisory Committee: Dr. Rita Muhamad Awang

Signature: ______________________
Name of Member of Supervisory Committee: Dr. Ahmad Said Sajap
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF PLATES</td>
<td>xv</td>
</tr>
</tbody>
</table>

CHAPTER

1. GENERAL INTRODUCTION
2. REVIEW OF LITERATURE
 2.1 Classification of green lacewings
 2.2 Taxonomical problems of green lacewings
 2.3 Distribution of green lacewings
 2.3.1 North and South America
 2.3.2 Africa and Middle East
 2.3.3 Europe
 2.3.4 Asia
 2.4 Green lacewings in Malaysia
 2.5 *Chrysoperla nipponensis*
 2.6 Life cycle of green lacewings
 2.6.1 Egg stage
 2.6.2 Larval stage
 2.6.3 Pupal stage
 2.6.4 Adult stage
 2.7 Green lacewings as predators
 2.8 Mass rearing and commercial production of green lacewings
 2.9 Rearing of green lacewings
 2.9.1 Natural diets
 2.9.2 Factitious diet for the larvae of green lacewings
 2.10 Artificial diets for the larvae of green lacewings
 2.11 Major nutrient requirements for formulating a diet
 2.12 Major nutrient requirements for formulating a diet
 2.12.1 Carbohydrates
 2.12.2 Proteins
 2.12.3 Lipids
 2.12.4 Vitamins
 2.12.5 Minerals

x
TO EVALUATE THE EFFECTS OF NATURAL AND ARTIFICIAL DIETS ON SURVIVAL, DEVELOPMENT AND REPRODUCTION OF Chrysoperla nipponensis

3.1 Introduction

3.2 Materials and Methods
 3.2.1 Collection and molecular identification of green lacewing species
 3.2.2 Composition and preparation of artificial diet for larvae of C. nipponensis
 3.2.3 Culture of rice moth, C. cephalonica, aphid, Aphis craccivora and C. nipponensis
 3.2.4 Effect of natural and artificial diets on survival, development and reproduction of C. nipponensis
 3.2.5 Data analysis
 3.2.6 Physio-chemical characteristics of artificial diet

3.3 Results and Discussions
 3.3.1 Molecular identification of green lacewing species
 3.3.2 Effect of natural and artificial diets on survival, development and reproduction of C. nipponensis
 3.3.3 Physio-chemical characteristics of artificial diet

3.4 Conclusion

4 COMPARISON OF GROWTH PARAMETERS OF C. nipponensis REARED ON NATURAL AND ARTIFICIAL DIET

4.1 Introduction

4.2 Materials and Methods
 4.2.1 Culture of green lacewing, C. nipponensis and rice moth, C. cephalonica
 4.2.2 Preparation of artificial diet
 4.2.3 Life table experiments in the laboratory

4.3 Results and Discussions
 4.3.1 Mortality of immature stages of C. nipponensis
 4.3.2 Age-specific survival life table
 4.3.3 Age-specific fecundity schedule

4.4 Conclusion

5 FUNCTIONAL RESPONSES OF C. nipponensis REARED ON NATURAL AND ARTIFICIAL DIET

5.1 Introduction

5.2 Materials and Methods
 5.2.1 Culture of green lacewing, C. nipponensis
 5.2.2 Culture of aphid, A. craccivora
 5.2.3 Culture of mealybug, P. marginatus
 5.2.4 Culture of whitefly, B. tabaci
5.2.5 Culture of rice moth, C. cephalonica 62
5.2.6 Composition and preparation of artificial diet 62
5.2.7 Predation 62
5.2.8 Data analysis 63
5.3 Results and discussions 63
 5.3.1 The predation on aphid, A. craccivora 65
 5.3.2 The predation on mealybug, P. marginatus 65
 5.3.3 The predation on whitefly, B. tabacci 66
5.4 Conclusion 68

6 CONCLUSIONS AND RECOMMENDATION FOR FUTURE RESEARCH 69
 6.1 Conclusion 69
 6.2 Recommendation 70
 6.3 The areas suggested for future research are as follows: 70

REFERENCES 71
APPENDICES 97
BIODATA OF STUDENT 98
LIST OF PUBLICATIONS 99
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Cycling conditions for pcr program partial mtco1 gene</td>
</tr>
<tr>
<td>3.2</td>
<td>Composition of larval artificial diets of C. nipponensis</td>
</tr>
<tr>
<td>3.3</td>
<td>Searching of nucleotide sequence similarity in NCBI database</td>
</tr>
<tr>
<td>3.4</td>
<td>Effect of different natural and artificial diets on biological parameters of C. nipponensis under laboratory conditions</td>
</tr>
<tr>
<td>3.5</td>
<td>Proximate analysis of chemical and physical characteristics of artificial diet of C. nipponensis</td>
</tr>
<tr>
<td>4.1</td>
<td>Pooled life table of green lacewing C. nipponensis reared on artificial and natural diet</td>
</tr>
<tr>
<td>4.2</td>
<td>Life and age-specific fecundity table of C. nipponensis reared on artificial diet</td>
</tr>
<tr>
<td>4.3</td>
<td>Life and age-specific fecundity table of C. nipponensis reared on a natural diet</td>
</tr>
<tr>
<td>4.4</td>
<td>Population and reproductive parameters of C. nipponensis reared on natural and artificial diet</td>
</tr>
<tr>
<td>5.1</td>
<td>The rate of successful search (a), handling time (Th) and the maximum predation rate (1/Th) describing type II functional response parameters of the C. nipponensis at different densities of preys reared on artificial diet and eggs of C. cephalonica at different prey densities</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Diagrammatic representation of the partial mtCO1 gene</td>
<td>34</td>
</tr>
<tr>
<td>3.2</td>
<td>Body length (mm) of C. nipponensis larvae produced on natural and artificial diet</td>
<td>38</td>
</tr>
<tr>
<td>3.3</td>
<td>Larval head capsule measurement (mm) of C. nipponensis produced on natural and artificial diet</td>
<td>38</td>
</tr>
<tr>
<td>4.1</td>
<td>Age-specific patterns of survivorship curves (lx) of C. nipponensis reared on a natural diet (left) and artificial diet (right)</td>
<td>53</td>
</tr>
<tr>
<td>4.2</td>
<td>Life and age-specific fecundity table of C. nipponensis reared on artificial diet (first) and natural diet (second)</td>
<td>54</td>
</tr>
<tr>
<td>5.1</td>
<td>Type II functional response of artificial diet and C. cephalonica eggs reared C. nipponensis larvae to different densities of aphid A. craccivora under laboratory conditions</td>
<td>65</td>
</tr>
<tr>
<td>5.2</td>
<td>Type II functional response of artificial diet and C. cephalonica eggs reared C. nipponensis larvae to different densities of papaya mealybug P. marginatus under laboratory conditions</td>
<td>66</td>
</tr>
<tr>
<td>5.3</td>
<td>Type II functional response of artificial diet and C. cephalonica eggs reared C. nipponensis larvae to different densities of whitefly B. tabacci under laboratory conditions</td>
<td>67</td>
</tr>
</tbody>
</table>
LIST OF PLATES

<table>
<thead>
<tr>
<th>Plate</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The life cycle of green lacewing</td>
<td>8</td>
</tr>
<tr>
<td>3.2</td>
<td>Feeding of Chrysoperla nipponensis larvae on artificial diet and eggs of Corcyra cephalonica in trays of ELISA wells</td>
<td>25</td>
</tr>
<tr>
<td>3.3</td>
<td>Culture of Corcyra cephalonica and artificial diet</td>
<td>26</td>
</tr>
<tr>
<td>3.4</td>
<td>Culture of Aphis craccivora</td>
<td>27</td>
</tr>
<tr>
<td>3.5</td>
<td>Eggs of Chrysoperla nipponensis</td>
<td>28</td>
</tr>
<tr>
<td>3.6</td>
<td>Larva of Chrysoperla nipponensis</td>
<td>28</td>
</tr>
<tr>
<td>3.7</td>
<td>Pupa of Chrysoperla nipponensis</td>
<td>29</td>
</tr>
<tr>
<td>3.8</td>
<td>Adult of Chrysoperla nipponensis</td>
<td>29</td>
</tr>
<tr>
<td>3.9</td>
<td>Provision of adult artificial diet on plastic strip for Chrysoperla nipponensis</td>
<td>30</td>
</tr>
<tr>
<td>5.1</td>
<td>Culture of mealybug, Paracoccus marginatus</td>
<td>61</td>
</tr>
<tr>
<td>5.2</td>
<td>Culture of whitefly, Bemisia tabacci</td>
<td>62</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

Human interests are always threatened by the presence of pests and pesticides as the most extensively applied methods for pest control. Approximately 2.7 million tons of pesticides were applied in the world in 2011 to control noxious pests (FAOSTAT, 2013). However, pesticide usage has many adverse effects on human and their environment, often resulted in pest resurgence and the killing of non target and beneficial individuals (Weathersbee and Mckenzie, 2005). Moreover, either directly or indirectly, pesticides are responsible for over 25 million cases of pesticide poisoning and 20,000 unintended deaths (Hajek, 2004; Ulhaq et al., 2006). Considering these adverse impacts, scientists always strive for alternate methods to control pests that could provide better pest management with less hazards to humans and their environment. During recent years, the use of biological control agents has shown potential to manage pest populations below their economic threshold. Accordingly, many integrated management programs with biological control as their key component have been employed against many damaging pests in various crops throughout the world (Canard et al., 1984).

Biological control is a method to control pests through the use of natural enemies as it is environmentally sound and economically efficient in mitigating the pest densities (Sarwar et al., 2012, 2013a, 2013b and 2014). The natural enemies are used in classical, augmentative and inundative biological control programs (Tauber et al., 2000). Predators, parasitoids and pathogens are the main groups of natural enemies widely used in the world. Among these, the role of predators to control many agricultural insect pests has been exploited in many countries of the world (Bram and Bickely, 1963, DeBach and Hagen, 1964, Henry, 1979, 1985 and 1993 and Brooks, 1994).

Green lacewings (Neuroptera: Chrysopidae) are important group of insect predators that have a wide geographic distribution and occur in many different cropping systems (Bai et al., 2005; Jiang and Xiao, 2010). Lacewing larvae are widely and effectively used as effective biological control agents against several insect pests (Harbaugh and Mattson, 1973; Sattar et al., 2007) due to their voracious feeding habits against soft-bodied insects such as aphids, mealybugs, white flies, leafhoppers, psyllids, thrips, caterpillars, insect eggs, mites and spiders (Rashid et al., 2012). Lacewing larvae have relatively short life cycle, a wide host range, have efficient searching ability and resistance against some widely used pesticides (Wihtcomb, 1964; Ridgway et al., 1970; Sattar et al., 2007; Sattar and Abro, 2011).

In Malaysia, availability of a huge diversity of biological control agents suggests their role in pest management in different agriculture and forest ecosystems (Wong, 1984; Chong, 1986; Ooi, 1986; Sajap et al., 1997; Farikah et al., 2007). Various promising species of the family Chrysopidae such as Chrysopa sp., Ankylopteryx

1
octopunctata F., A. trimaculata Gerst., Nothochrysa evanescens, Mch., Italochrysa aequalis Walk and Glenochrysa sp. have been reported in Malaysia (Yunus and Ho, 1980; Sajap et al., 1997; Farikhah et al., 2007).

Considering the importance of predators, especially green lacewings in pest management (Hagley, 1989; Maisonneuve and Marrec, 1999; Atlihan et al. 2004; Pappas et al., 2011), several efforts have been made to preserve and enhance their population density to get the desired results (McEwen et al., 1995). However, maintenance of continuous and large predator populations required the continuous supply of their prey species. But, due to unpredictable environmental conditions, continuous supply of natural prey species for rearing predators becomes very difficult. Accordingly, many efforts have been made for the mass rearing of predators on artificial diets to ensure maintenance of enough predator populations for their inundative and augmentative release against many noxious insect pests (Larock and Ellington, 1996). However, mass rearing of predators on artificial diet necessitates that diet is nutritionally adequate to induce feeding in the rearing insects and support their various physiological and biological processes (Cohen, 2004).

Artificial diets are classified in three different categories i.e., holidic diets, in which all ingredients are defined chemically; meridic diets, in which most of the ingredients are known chemically and oligidic diets, in which few of the ingredients are known chemically (Dougherty, 1959). Rearing of Chrysoperla carnea has been mostly based on holidic and meridic methods and many studies have been conducted on biological parameters of the C. carnea reared on such diets (Tauber et al., 1973; Zaki et al., 2001). The first artificial diet consisting of protein, lipid, carbohydrate, cholesterol, and water was developed by Cohen and Smith (1998) for mass rearing of C. carnea. The development of artificial diets for mass production of predators has greatly increased their capacity, reduced the production cost and enhanced their potential for the successful augmentative biological control programs (Cohen and Smith 1998; Lee and Lee, 2005).

Although, a large development has been done on larval artificial diets, but the chemically defined diets are usually more expensive and require further improvements to make them more economical (Nordlund et al., 2001). Moreover, in Malaysia little or no systematic work has been done on artificial diets for the rearing of recently recorded C. nipponensis and its role in the management of various agricultural pests. Therefore, studies were carried out to develop and evaluate larval artificial diets with the objective to improve the biological performance of C. nipponensis in the regulation of pest populations.

The objectives of the study were:

1. To evaluate the effects of natural and artificial diets on survival, development and reproduction of C. nipponensis (Neuroptera: Chrysopidae).
2. To compare growth parameters of *C. nipponensis* (Neuroptera: Chrysopidae) reared on natural and artificial diets.
3. To study the functional responses of *C. nipponensis* (Neuroptera: Chrysopidae) reared on natural and artificial diets.

The information obtained from this study could be utilized for the development of quality mass rearing technique of *C. nipponensis* to ensure maintenance of their enough population for successful IPM against various noxious insect pests.
REFERENCES

Pearl, R. (1928). The Rate of Living. Knopf, New York

Romeis, J., Dutton, A. and Bigler, F. (2004). *Bacillus thuringiensis* toxin (Cry1Ab) has no direct effect on larvae of the green lacewing *Chrysoperla carnea* (Stephens) (Neuroptera: Chrysopidae). *Journal of Insect Physiology*, 50: 175-183.

