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The reduction of the flow separation region or even eliminating it from the 
transonic axial flow compressor has been a motivating research area as it 
reduces turbulence and modifies the flow field into more desired state. Even a 
small performance improvement could be a big help in saving fuel cost. Several 
active and passive flow control options were established and one among them 
is synthetic jet. Synthetic jet provides unsteady momentum to the flow field 
without net mass injection. 
 
 
Synthetic jets with slot orifice are previously investigated in transonic level study 
for its efficiency enhancement. Hence, a systematic numerical investigation was 
carried out to understand the impact of circular jets as continuous steady jet in 
transonic level study which is followed by time constrained synthetic jet 
(transient) for the analysis of flow control effectiveness. The seven and fourteen 
array of jet formation were placed at three positions specifically upstream, 
downstream and close to the flow separation point (25%, 50% and 75% of the 
blade span) at suction side of transonic compressor rotor blade. Two velocities 
such as 300m/s and 500 m/s were tested in all three jet position models to 
discover the superior separation control model and finally one reasonable model 
with better flow control effectiveness was used to run the time constrained 
synthetic jet approach for analyzing the flow field. 
 
 
High actuation velocity provided (500m/s) shows healthier variation in flow 
control compared to lower velocity (300m/s) due to its low momentum coefficient. 
In seven array jet formations, the jet flow fixed upstream the separation point 
(25% of blade span) controls the separation region more effectively while in 
fourteen array configuration, the jet placed at the midpoint of the blade span 
(close to separation point) enhances the separation control showing desirable 
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flow control. However the vital part is that velocity distribution over the blade 
which reduces the flow separation in contradictory abundantly affects the total 
pressure ratio which also impacts adiabatic efficiency. Thus 4% of efficiency loss 
were calculated in seven array configuration and 13% of efficiency loss in 
fourteen array configuration. Comparative study over these models gives us the 
detailed analysis of flow field performance characteristics such as velocity 
variation, 3D velocity streamline, pressure distribution, Mach number 
distribution, efficiency and total pressure ratio. 
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Pengurangan kawasan pemisahan aliran atau penghapusan terus dari 
pemampat aliran paksi transonik telah menjadi motivasi kepada bidang 
penyelidikan kerana ia dapat mengurangkan gelora dan mengubah medan 
aliran kepada keadaan yang lebih dikehendaki. Malah peningkatan kecil dalam 
prestasi boleh memberi kesan yang besar dalam penjimatan kos bahan api. 
Beberapa pilihan aliran kawalan aktif dan pasif telah diwujudkan dan salah satu 
di antaranya adalah jet sintetik. Jet sintetik menyediakan momentum tidak 
mantap untuk medan aliran tanpa memerlukan suntikan jisim bersih. 
 
 
Kajian jet sintetik dengan slot orifis sebelum ini dijalankan terhadap tahap 
transonik untuk meningkatkan kecekapan. Oleh itu, kajian berangka secara 
sistematik dijalankan untuk memahami kesan jet bulatan sebagai jet kekal 
berterusan dalam kajian tahap transonik yang diikuti oleh jet sintetik dengan 
kekangan masa (fana) untuk analisis keberkesanan kawalan aliran. Tujuh dan 
empat belas tatasusunan formasi jet ditempatkan di tiga kedudukan khususnya 
huluan, hiliran dan berdekatan titik pemisahan aliran (25%, 50% dan 75% 
daripada span bilah) di bahagian sedutan transonik bilah pemampat rotor. Dua 
halaju seperti 300m/s dan 500 m/s telah diuji dalam ketiga-tiga model 
kedudukan jet untuk mencari model kawalan pemisahan yang unggul dan 
akhirnya satu model yang bersesuaian dengan keberkesanan kawalan aliran 
yang lebih baik telah digunakan untuk menjalankan kajian terhadap kaedah jet 
sintetik dengan kekangan masa untuk menganalisis medan aliran. 
 
 
Halaju pergerakan tinggi (500m/s) menunjukkan perubahan yang sihat dalam 
kawalan aliran berbanding halaju rendah (300m/s) kerana pekali momentum 
yang rendah. Dalam formasi jet tujuh tatasusunan, aliran jet tetap hulu titik 
pemisahan (25% daripada span bilah) mengawal kawasan pemisahan dengan 
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lebih berkesan manakala di formasi jet empat belas tatasusunan, jet yang 
diletakkan pada titik tengah span bilah (dekat dengan titik pemisahan) 
meningkatkan kawalan pemisahan yang menunjukkan kawalan aliran wajar. 
Walau bagaimanapun, bahagian yang penting adalah bahawa taburan halaju 
pada bilah yang mengurangkan pemisahan aliran turut memberi kesan terhadap 
jumlah nisbah tekanan yang juga kesan kecekapan adiabatik. Oleh itu 4% 
daripada kehilangan kecekapan dikira dalam formasi jet tujuh tatasusunan dan 
13% daripada kehilangan kecekapan dalam formasi jet empat belas 
tatasusunan. Kajian perbandingan ke atas model-model ini memberikan kita 
analisis terperinci ciri-ciri prestasi medan aliran seperti perubahan halaju, halaju 
arus 3D, taburan tekanan, pengedaran nombor Mach, kecekapan dan jumlah 
nisbah tekanan. 
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CHAPTER 1 

INTRODUCTION 

1.1  Overview 

 
 
Transonic axial compressors are vital components in aircraft engines for their 
ability to produce high pressure ratios, where high pressure ratio indicates better 
efficiency. However, the flow field in and around the compressor is very 
complicated due to the rise of strong shock boundary interaction (Cumpsty, 
1989)(Calvert, Emmerson, & Moore, 2003)(J.  D. Denton & Xu, 1999)(Law & 
Wadia, 1993) and tip clearance effects(Chima, 1998)(Kenneth L. Suder & 
Celestina, 1996) (Chen, Greitzer, Tan, & Marble, 1991)(Yamada, Funazaki, & 
Sasaki, 2008). Also these complications causes aerodynamic risks such as flow 
separation (Simpson, 1981), surge (Rao & Ramesh, 2007)(Niazi, 
2000)(Willems, 1997) and stall (E M Greitzer, 1980; Hah & Loellbach, 
1999)(Masaki & Kaji, 1997)(Hah & Loellbach, 1999)(Mcdougall, 1990)which are 
potential threats that can cause damage to the engines. Thus significant amount 
of researches have been carried both numerically and experimentally to 
understand the flow behavior of the compressor followed by proposals for 
controlling it.  
 
 
With a  number of analysis on flow behavior , optimized compressor models with 
modifications in casing and hub(X. Liu, Sun, Sun, & Wang, 2012), thickness 
distribution (K.  L. Suder, Chima, Strazisar, & Roberts, 1995) ,sweep and lean 
rotor blades (Benini & Biollo, 2007)(Abate, 2012) with better flow field were 
discovered. Hence understanding the flow and developing techniques to 
improve flow field to achieve good performance parameter, is considered 
mandatory in compressor characteristics. It includes improving the pressure 
ratio, efficiency and increasing stall margin. 
 
 
Various active and passive methods have been established to reduce the flow 
separation and control the flow behavior in desired path on turbo-machinery 
bladings. Active techniques such as fluidic actuators (Cerretelli & Kirtley, 2009) 
piezo-electric actuators(Watanabe, 2014), synthetic jet actuators (SJA)(Glezer 
& Amitay, 2002)(B.  L. Smith & Glezer, 2002)(Kral, Donovan, Cain, & Cary, 
1997), controls and sensors require energy input to reduce or eliminate the flow 
disabilities while passive techniques involve geometrical modifications such as 
longitudinal/circumferential grooves, casing treatments (X. Liu et al., 2012)to 
achieve the desired flow. Fluidic-oriented methods were researched for a 
decade, for its feasibility in suction, blowing and oscillating jet movement.  
 
 
Particularly, SJA have advantages in the areas of heat and mass transfer, 
enhancement in flow mixing, jet vectoring, control in separation and turbulence. 
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SJA have great efficiency to effectively delay the boundary layer separation on 
compressor. This characteristic feature of SJA has gained the attention of many 
researchers in recent years for its simple yet effective installation system. 
Optimal utilization of the working fluid in the flow system is one of its key 
characteristics. Thus, synthetic jets of active flow control technology has gained 
an important place in flow control process. 
 
 
The idea of synthetic jets were introduced by Glezer (Barton L Smith & Glezer, 
1998) and its impact is being widely explored experimentally and numerically for 
its vast applications such as mixing enhancement(Bae, Breuer, & Tan, 2005), 
boundary layer separation control (Seifert, Bachar, Koss, Shepshelovich, & 
Wygnanski, 1993)(Cerretelli & Kirtley, 2009),vortex shedding control and jet 
vectoring (B.  L. Smith & Glezer, 2002). The flow mechanism of synthetic jets 
(zero mass-flux) works as follows. A moving device, like a slice of piston makes 
up and down reciprocating movement inside a cavity through external excitation, 
which results in periodic suction and ejection at the jet nozzle. The ambient air 
is pulled into the cavity when the piston moves downward; and blown out when 
the piston moves upward.  
 
 
The working principle is very simple and the installation requires almost no 
pumps and pipes which makes this device very compact. Hence, many 
researches (Durán, López, & Ph, 2010)(Zhang & Zhong, 2010)(Matejka, 
Popelka, Safarik, & Nozicka, 2008)(Zaman & Culley, 2006) both numerically and 
experimentally were conducted to push the limitations of the application. 
Synthetic jets with circular orifice were widely employed as flow control 
applications but mostly in subsonic level. According to Biollo (Benini, Biollo, & 
Ponza, 2011a), circular synthetic jets have never been demonstrated 
experimentally in transonic axial flow compressors, because of its unfavorable 
pressure gradient occurrence. The presence of shock and boundary interaction 
make it hard to study the flow field at transonic level.  
 
 
1.2 Problem statement 

 
When dealing with the transonic level axial flow compressor, the formation of 
aerodynamic threats are inevitable around the compressor rotor blades. The 
flow separation region created due to the shock and boundary layer interaction 
can especially cause an immense deal in performance of the engine. Its 
disadvantages include energy loss, efficiency reduction, engine instability, 
blockage formation, stall and surge conditions. Thus various experimental and 
numerical research were concentrated on suppressing or eliminating flow 
separation region.  
 
 
Considerable amount of new active and passive techniques were developed for 
flow control effects and synthetic jets are significant among them due to its 
simple installation and effective results. Synthetic jets with slot orifice are 
previously investigated in transonic level study for its efficiency enhancement by 
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Biollo (Benini et al., 2011a). However, synthetic jets with circular orifice have 
never been demonstrated in transonic level for its effectiveness.  The author of 
this study intends to discover the effect of an array of circular orifice synthetic jet 
into the transonic level flow field.  
 
 
In this present study, a numerical investigation was carried out to understand 
the interaction of continuous steady jet with circular orifice into transonic flow 
field. Followed by time constrained synthetic jet for the analysis of aerodynamic 
behavior. The seven and fourteen array of jet formation were placed at three 
positions specifically upstream, downstream and close to the flow separation 
point (25%, 50% and 75% of the blade span) at suction side of transonic 
compressor rotor blade for its response. Two velocities such as 300m/s and 500 
m/s were tested in all three jet position models to discover the superior 
separation control model. One such model with better flow control result was 
used to run the time constrained synthetic jet approach to seek the performance 
parameters like total pressure ratio and adiabatic efficiency.  

1.3 Aims and Objectives 

 
The aim of this thesis is to study the resulting aerodynamic flow field behavior, 
when the transonic axial compressor rotor blade is equipped with seven and 
fourteen array of circular orifice jet. The two configurations to compare is 
baseline (no jet) rotor and rotor with circular orifice jets. The primary objectives 
are 
 

a) Develop and assess the baseline rotor blade model. 
b) Furnish it with array of circular orifice jet and conduct parametric study 

as continuous steady jet for jet position, total number of array and 
velocity study. 

c) Compare and analyze all the results for superior separation control 
model and conduct the synthetic jet injection (transient approach) to 
one better model for the flow behavior analysis. 

 
 

1.4 Scope and limitations 

 
This study intends to give the initial knowledge through computational 
investigation regarding the aerodynamic flow field behavior around the transonic 
axial compressor rotor blade, when it is equipped with circular orifice jet 
excitations. The effectiveness of circular orifice jets in the suction side of the 
compressor blade to reduce the flow separation region will be evaluated 
separately and compared for both steady and transient case. Some limitations 
needed to be considered such as,  
 
 

a) Due to time restriction, the analysis will be carried out with one rotor 
blade passage and the results were considered periodic. 
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b) Due to shock presence and unfavorable pressure gradients, the use of 
synthetic jet with circular orifice in transonic level axial compressors are 
not demonstrated experimentally before. Therefore this study is only a 
preliminary step taken through simulation to learn the flow control effect 
created by continuous steady jet and synthetic jet.  

c) The real time synthetic jets can produce velocity from 80m/s upto 
120m/s (Gilarranz, Traub, & Rediniotis, 2005), however this study 
intends to produce effective results rather delivering accurate values. 

 
 
1.5 Thesis layout 

 
This thesis is presented in five chapters including conclusion. 

o Chapter 1 introduces the introduction and motivation behind the 
thesis and points out the objectives of the research along with the 
research scope.  

o Chapter 2 provides detailed information regarding the theory and 
relevant literature review are discussed. The thesis starts with a 
discussion of transonic axial compressor and its flow disabilities 
which is followed by the factors governing these disabilities. Topics 
further include flow control concepts with emphasis on active flow 
control devices. Finally, introducing synthetic jets are introduced in 
detail along with its application which are also examined.   

o Chapter 3 reviews the numerical methodology exercised in the 
thesis. It starts with the modelling approach handled for the baseline 
model followed by the mesh generation. At the end, the steady and 
transient simulation approach is discussed with pre-setup and post 
processing selections along with calculated data’s.  

o Chapter 4 deals with the numerical results obtained and their detailed 
discussion. At first, the validation of the baseline model with the 
documented experimental results were carried out. Next, the results 
of steady circular jet are discussed along with various parameters 
which were carried out following by the comparison of the synthetic 
jet characterization results. Analysis of the optimal control 
parameters followed by the effect of synthetic jets on the flow are 
discussed at the end of the chapter.  

o Finally, Chapter 5 is summarized by conclusions and contributions 
of the thesis, as well as introduces ideas for future researches. 
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