UNIVERSITI PUTRA MALAYSIA

ASSESSING INTERCITY BUS SAFETY PERFORMANCE IN MALAYSIA USING A COMPOSITE SAFETY PERFORMANCE INDEX

MOHD SHAZWAN BIN DAUD

FK 2016 135
ASSESSING INTERCITY BUS SAFETY PERFORMANCE IN MALAYSIA USING A COMPOSITE SAFETY PERFORMANCE INDEX

By

MOHD SHAZWAN BIN DAUD

Thesis Submitted to the School Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

September 2016
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

ASSESSING INTERCITY BUS SAFETY PERFORMANCE IN MALAYSIA USING A COMPOSITE SAFETY PERFORMANCE INDEX

By

MOHD SHAZWAN BIN DAUD

September 2016

Chairman: Assoc. Prof. Law Teik Hua, PhD
Faculty: Engineering

In recent years in Malaysia, serious road traffic accidents involving intercity buses have been increasing. Intercity bus drivers are generally at a higher risk for crashes due to long hours of driving and exposure to different road conditions. Therefore, understanding and quantifying their risks and taking steps to manage them could improve intercity bus safety. However, testing intercity bus safety levels through a complete set of road crash risk indicators is difficult to quantify and interpret. In order to avoid this difficulty, it has been recommended that the analysis of intercity bus safety could be tackled by aggregating a multidimensional set of risk indicators into a composite safety performance index (SPI) by giving different weighted importance to different risk domains. However, the development of the composite SPI is sensitive to the choice of weighting method. Given this background, the present work has two objectives. First, to examine the suitability of different weighting methods to develop the composite SPI for intercity buses. Second, to apply SPI values obtained by appropriate weighting method to measure and compare intercity bus safety in terms of risk domains. The risk domains considered in this study are road environment conditions, bus driver driving behaviours and bus safety conditions. A two-stage sampling method was used to choose intercity bus samples. In the first stage, a simple random sampling technique was used to select 30 out of 50 active intercity bus companies in Malaysia. At the second stage of sampling, 30% of the total number of buses were randomly selected from each selected intercity bus company. A correlation analysis of each weighting method ranking and the road crash (RC) ranking was performed to determine which weighting method ranking appropriate for developing the SPI. The paired sample t-test was then applied to the best weighting method to determine which SPI were significantly different from each other. Of the three risk domains, road environment conditions have the highest average weight over the three weighting methods. This implies that an improvement in the road environment could increase the overall safety performance of intercity buses. The results of correlation analysis indicated that the FA method fits the best with the road crash (RC) ranking. The results of paired sample t-test indicated that road environment conditions have contributed more to intercity bus safety risks on the East coast than on the West coast.
of peninsular Malaysia. The evidence presented in this study reveals that different intercity bus companies showed mixed safety performance in different risk domains. Therefore, we suggest the development of targeted road safety programs for each intercity bus company to address intercity bus safety problems. In sum, the composite SPI can not only be used to identify possible risk management strategies to improve intercity bus safety but also to provide safety information for intercity bus passengers, making them fully aware of bus safety conditions. This, in turn, could place economic pressure on bus operators to improve their vehicles’ safety performance.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Sarjana Sains

PENILAIAN PRESTASI KESELAMATAN BAS ANTARA BANDAR DI MALAYSIA MENGGUNAKAN KOMPOSIT INDEKS PRESTASI KESELAMATAN

Oleh

MOHD SHAZWAN BIN DAUD

Pengerusi: Prof. Madya Law Teik Hua, PhD
Fakulti: Kejuruteraan

September 2016

Dalam beberapa tahun kebelakangan ini di Malaysia, kemalangan jalan raya yang serius melibatkan bas antara bandar telah meningkat. Pemandu bas antara bandar secara umumnya mempunyai risiko yang lebih tinggi terlibat dalam kemalangan kerana waktu pemanduan yang panjang dan terdedah kepada keadaan jalan yang berbeza. Oleh itu, memahami dan mengukur risiko serta mengambil langkah-langkah untuk menguruskan risiko tersebut boleh meningkatkan keselamatan bas antara bandar. Walau bagaimanapun, pengujian tahap keselamatan bas antara bandar melalui satu set lengkap petunjuk risiko kemalangan jalan raya adalah menjadi sukar untuk diukur dan diterangkan. Bagi mengelakkan masalah ini, adalah dicadangkan bahawa analisis keselamatan bas antara bandar dapat ditangani dengan menjumlahkan satu set pelbagai dimensi penunjuk risiko ke dalam komposit indeks prestasi keselamatan (SPI) dengan memberi kepentingan pemberat yang berbeza untuk risiko domain yang berbeza. Walau bagaimanapun, pembangunan komposit SPI adalah sensitif kepada pilihan kaedah pemberat. Berdasarkan latar belakang ini, kajian semasa mempunyai dua objektif. Pertama, untuk mengkaji kesesuaian kaedah pemberat yang berbeza bagi membina komposit SPI untuk bas-bas antara bandar. Kedua, untuk mengaplikasikan nilai-nilai SPI yang diperoleh daripada kaedah pemberat yang sesuai untuk mengukur dan membandingkan keselamatan bas antara bandar dari segi domain risiko. Domain risiko dipertimbangkan dalam kajian ini adalah keadaan persekitaran jalan raya, tingkah laku pemanduan pemandu bas dan keadaan keselamatan bas. Kaedah persampelan dua peringkat telah digunakan untuk memilih sampel bas antara bandar. Di peringkat pertama, teknik persampelan rawak mudah telah digunakan untuk memilih 30 daripada 50 syarikat bas antara bandar yang aktif di Malaysia. Pada peringkat persampelan kedua, 30% daripada jumlah bilangan bas telah dipilih secara rawak daripada setiap syarikat bas antara bandar yang terpilih. Analisis korelasi setiap kedudukan kaedah pemberat dan kedudukan kemalangan jalan raya (RC) dilakukan untuk menentukan kaedah pemberat sesuai untuk membangunkan komposit SPI. Sampel berpasangan t-test kemudiannya diaplikasikan kepada kaedah pemberat yang terbaik untuk menentukan SPI yang jauh berbeza antara satu sama lain. Daripada tiga domain risiko,
ACKNOWLEDGEMENT

In the name of Allah, the Beneficent, the Merciful. May Allah’s peace and blessing be upon our Beloved Prophet Muhammad who was a mercy unto us from Allah S.W.T., who character and notability none has seen before or after Him (S.A.W.). All praise is due to Allah S.W.T. for giving me a chance in completing my Master degree in Universiti Putra Malaysia.

I would like to take this opportunity to gives special thanks to my beloved parents for being supportive persons to me in finishing my research. Your prayer for me was what sustained me thus far. I also appreciate my brother and my beloved sisters for their love, prayers and invaluable assistance provided throughout my research studies. Words cannot express how grateful I am.

I would also like to thank to my main research supervisor, Associate Professor Dr. Law Teik Hua for his tireless effort, helpful discussion, guidance, critics and supportive comments. Without his continued support and interest, this thesis would not have been the same as presented here. I would like to express my profound gratitude to my committee member, Associate Professor Dr. Hussain bin Hamid and Dr. Nuzul Azam bin Haron for their support and guidance. Finally, I would like to express appreciation to Kementerian Pengajian Tinggi and University Putra Malaysia for the scholarship and thanks to my fellow friends for their help, friendship and encouragement. May Allah S.W.T. make all our intentions sincere for His pleasure alone Amin.
I certify that a Thesis Examination Committee has met on 26 September 2016 to conduct the final examination of Mohd Shazwan bin Daud on his thesis entitled “Assessing Intercity Bus Safety Performance In Malaysia Using A Composite Safety Performance Index” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Examination Committee were as follows:

Biswa Pradhan, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Helmi Zulhaidi Mohd Shafri, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Khoo Hooi Ling @ Lai Hooi Ling, PhD
Associate Professor, Ir
Department of Civil Engineering
Faculty of Engineering and Science
Universiti Tunku Abdul Rahman
(External Examiner)

NOR AINI AB. SHUKOR, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 27 December 2016
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Law Teik Hua, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Hussain bin Hamid, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Nuzul Azam bin Haron, PhD
Senior Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Member)

ROBIAH BINTI YUNUS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ________________________ Date: __________________
Name and Matric No.: ___
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: __________________________ Signature: __________________________
Name of Chairman of
Supervisory Committee:____________________

Signature: __________________________
Name of Member of Supervisory Committee: __________________________

Signature: __________________________
Name of Member of Supervisory Committee: __________________________
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xiv</td>
</tr>
<tr>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Background</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Problem Statement</td>
<td>1</td>
</tr>
<tr>
<td>1.3 Research Questions</td>
<td>2</td>
</tr>
<tr>
<td>1.4 Objectives</td>
<td>2</td>
</tr>
<tr>
<td>1.5 Outline of the Thesis</td>
<td>2</td>
</tr>
<tr>
<td>2. LITERATURE REVIEW</td>
<td>4</td>
</tr>
<tr>
<td>2.1 Risk Factors Associated with Road Traffic Accident</td>
<td>4</td>
</tr>
<tr>
<td>2.1.1 Driver Driving Behaviours</td>
<td>4</td>
</tr>
<tr>
<td>2.1.1.1 Speeding</td>
<td>4</td>
</tr>
<tr>
<td>2.1.1.2 Mobile Phone Use While Driving</td>
<td>5</td>
</tr>
<tr>
<td>2.1.1.3 Driving Under Influence Alcohol and Drugs</td>
<td>6</td>
</tr>
<tr>
<td>2.1.1.4 Red Light Running</td>
<td>7</td>
</tr>
<tr>
<td>2.1.2 Vehicle Safety Conditions</td>
<td>8</td>
</tr>
<tr>
<td>2.1.2.1 Vehicle Tyre Condition</td>
<td>8</td>
</tr>
<tr>
<td>2.1.2.2 Age of Vehicle</td>
<td>8</td>
</tr>
<tr>
<td>2.1.2.3 Periodic Vehicle Inspection</td>
<td>9</td>
</tr>
<tr>
<td>2.1.3 Road Environment Conditions</td>
<td>9</td>
</tr>
<tr>
<td>2.1.3.1 Gradients of Roads</td>
<td>10</td>
</tr>
<tr>
<td>2.1.3.2 Road Shoulder</td>
<td>10</td>
</tr>
<tr>
<td>2.1.3.3 Number of Lanes</td>
<td>11</td>
</tr>
<tr>
<td>2.1.3.4 Travel Time</td>
<td>11</td>
</tr>
<tr>
<td>2.2 Data Analysis - Weighting Methods</td>
<td>12</td>
</tr>
<tr>
<td>2.2.1 Exploratory Factor Analysis</td>
<td>12</td>
</tr>
<tr>
<td>2.2.2 Budget Allocation</td>
<td>13</td>
</tr>
<tr>
<td>2.2.3 Equal Weighting</td>
<td>13</td>
</tr>
<tr>
<td>2.3 Safety Performance Index</td>
<td>14</td>
</tr>
<tr>
<td>2.4 Summary</td>
<td>16</td>
</tr>
<tr>
<td>3. METHODOLOGY</td>
<td>17</td>
</tr>
<tr>
<td>3.1 Sample</td>
<td>19</td>
</tr>
<tr>
<td>3.2 Data Collection</td>
<td>19</td>
</tr>
<tr>
<td>3.2.1 Driver’s Driving Behaviours</td>
<td>19</td>
</tr>
<tr>
<td>3.2.1.1 Speeding</td>
<td>19</td>
</tr>
<tr>
<td>3.2.1.2 Mobile Phone Use While Driving</td>
<td>20</td>
</tr>
<tr>
<td>3.2.2 Bus Safety Conditions</td>
<td>21</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Summary of three commonly used weighting methods</td>
<td>15</td>
</tr>
<tr>
<td>4.1</td>
<td>Results of the EFA</td>
<td>33</td>
</tr>
<tr>
<td>4.2</td>
<td>Three sets of risk domain weights</td>
<td>34</td>
</tr>
<tr>
<td>4.3</td>
<td>Correlation analysis between risk indicators ranking and RC ranking</td>
<td>35</td>
</tr>
<tr>
<td>4.4</td>
<td>Risk domains contributions and the composite SPI values based on the EFA</td>
<td>36</td>
</tr>
<tr>
<td>4.5</td>
<td>Risk domains contributions and the composite SPI values based on the BA</td>
<td>37</td>
</tr>
<tr>
<td>4.6</td>
<td>Risk domains contributions and the composite SPI values based on the EW</td>
<td>38</td>
</tr>
<tr>
<td>4.7</td>
<td>Rankings based on the three weighting methods and the RC ranking</td>
<td>39</td>
</tr>
<tr>
<td>4.8</td>
<td>Descriptive statistics for all indicators related to intercity bus safety (26 intercity bus companies mainly operating on the west coast of peninsular Malaysia)</td>
<td>40</td>
</tr>
<tr>
<td>4.9</td>
<td>Descriptive statistics for all indicators related to intercity bus safety (4 intercity bus companies mainly operating on the east coast of peninsular Malaysia)</td>
<td>41</td>
</tr>
<tr>
<td>4.10</td>
<td>Table 4.10. The number of road crashes for years 2012 and 2013, the daily vehicle kilometre travelled, and the number of observed buses for each intercity bus company</td>
<td>42</td>
</tr>
<tr>
<td>4.11</td>
<td>Paired sample t-test results for 26 intercity bus companies mainly operating on the west coast of peninsular Malaysia</td>
<td>43</td>
</tr>
<tr>
<td>4.12</td>
<td>Paired sample t-test results for 4 intercity bus companies mainly operating on the east coast of peninsular Malaysia</td>
<td>43</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>3.1</td>
<td>Flowchart of the overall research methods for the development of composite SPI using three different weighting methods</td>
<td>19</td>
</tr>
<tr>
<td>3.2</td>
<td>The recorded data of bus running speed</td>
<td>21</td>
</tr>
<tr>
<td>3.3</td>
<td>Tread Wear Indicator (TWI)</td>
<td>23</td>
</tr>
<tr>
<td>3.4</td>
<td>The sketch map of profile parameters of a descending road section</td>
<td>24</td>
</tr>
<tr>
<td>3.5</td>
<td>CGTK GPX Generator</td>
<td>25</td>
</tr>
<tr>
<td>3.6</td>
<td>GPS Visualizer</td>
<td>26</td>
</tr>
<tr>
<td>4.1</td>
<td>Scree plot</td>
<td>33</td>
</tr>
<tr>
<td>4.2</td>
<td>Scatter plot of road environment conditions domain vs. bus driver driving behaviours domain</td>
<td>44</td>
</tr>
<tr>
<td>4.3</td>
<td>Scatter plot of road environment conditions domain vs. bus safety conditions domain</td>
<td>44</td>
</tr>
<tr>
<td>A1</td>
<td>Questionnaire Intercity Bus Survey</td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>Questionnaire Expert Survey</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS</td>
<td>Antilock Braking System</td>
</tr>
<tr>
<td>ARTSA</td>
<td>Australian Road Transport Suppliers Association</td>
</tr>
<tr>
<td>BA</td>
<td>Budget Allocation</td>
</tr>
<tr>
<td>BAC</td>
<td>Blood Alcohol Concentration</td>
</tr>
<tr>
<td>CI</td>
<td>Composite Index</td>
</tr>
<tr>
<td>DWI</td>
<td>Driving While Intoxicated</td>
</tr>
<tr>
<td>EC</td>
<td>European Commission</td>
</tr>
<tr>
<td>EFA</td>
<td>Exploratory Factor Analysis</td>
</tr>
<tr>
<td>EW</td>
<td>Equal Weighting</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>KMO</td>
<td>Kaiser-Meyer-Olkin</td>
</tr>
<tr>
<td>OECD</td>
<td>Organisation For Economic Co-Operative And</td>
</tr>
<tr>
<td></td>
<td>Development</td>
</tr>
<tr>
<td>PDT</td>
<td>Peripheral Detection Task</td>
</tr>
<tr>
<td>RC</td>
<td>Road Crash</td>
</tr>
<tr>
<td>RLR</td>
<td>Red Light Running</td>
</tr>
<tr>
<td>RMP</td>
<td>Royal Malaysian Police</td>
</tr>
<tr>
<td>RSDI</td>
<td>Road Safety Development Index</td>
</tr>
<tr>
<td>RTA</td>
<td>Road Traffic Accidents</td>
</tr>
<tr>
<td>SPI</td>
<td>Safety Performance Index</td>
</tr>
<tr>
<td>SPSS</td>
<td>Statistical Package For The Social Sciences</td>
</tr>
<tr>
<td>TWI</td>
<td>Tread Wear Indicator</td>
</tr>
<tr>
<td>UN</td>
<td>United Nations</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

The purpose of this chapter is to present the background of this study and its problem statement. It is also to set the scene for the research questions addressed in this thesis. This chapter identifies the rationale behind the decision to develop a composite SPI for intercity buses in Malaysia. The next section will outline the background of the research with an overview of the current intercity bus operation, followed by the its problems in Malaysia. In addition, the research questions related to this research will be briefly discussed and to be followed by, the objectives of the research together with an outline and summary of each chapter.

1.1 Background of the study

Public transport provides an efficient and equitable transport alternative for the community. An increase in public transport usage leads to a decrease in private vehicle ownership and hence a reduction in gas emissions (Dirgahayani, 2013; Steg, 2003). In Malaysia, an intercity bus service is a regular scheduled bus service provided for the public. It operates this service with limited stops over fixed routes connecting between two or more cities, towns, or other populated areas. It provides not only a more flexible but a cheaper alternative which can be considered to be a safer mode of transportation (European Commission, 2009; Govender and Pan, 2011; Augustin et. al., 2014). As a result, the demand for intercity bus service has increased significantly. These intercity buses are specifically designed for longer distance travel and typically operate at higher speeds when compared to other buses (Chang and Yeh, 2005; Rohani et. al., 2013; Horowitz, 2014). Moreover, for long distance trips, the intercity buses also operate during the early hours which consequently, could lead to higher number of road traffic accidents (RTA).

1.2 Problem Statement

In recent years in Malaysia, serious RTA involving buses have been increasing. According to Royal Malaysian Police (RMP), the crash rate for buses and the injury rate for bus occupants are relatively high compared to other transport modes. In 2012, the crash rate for buses was 140 for every thousand buses. This was higher than passenger cars and motorcycles crashes, which were 60 cases for every thousand passenger cars and 10 cases for every thousand motorcycles, respectively. As compared to other bus types, the fatality and injury rates for intercity buses were the highest, comprising 20 fatalities and 30 injuries per thousand intercity buses (RMP, 2013). This situation has attracted considerable attention in the media because intercity bus-related crashes resulted in higher number of killed or seriously injured. With increased public concerns about intercity bus safety, effectively managing travel risk has become critical for both intercity bus operators and road safety policy makers. Intercity bus drivers are generally at a higher risk for crashes due to long hours of driving and exposure to
different road conditions. Therefore, understanding and quantifying their risks and taking steps to manage them could improve intercity bus safety. However, testing intercity bus safety levels through a complete set of road crash risk indicators is difficult to quantify and interpret. In order to avoid this difficulty, it has been recommended that the analysis of intercity bus safety could be tackled by aggregating a multidimensional set of indicators into a composite safety performance index (SPI) by giving different weighted importance to different indicators.

The composite SPI has been widely used in different research areas for the purpose of benchmarking, monitoring, policy evaluation, and communicating with public (Spangenberg et al., 2002; Hermans et. al., 2008; Papadimitriou and Yannis, 2013; Christoph et. al., 2013; Chen et. al., 2016). Specifically, in a road safety research, numerous composite SPI have been developed in order to assess safety performance in different topics. However, no studies have been conducted regarding the application of composite SPI to assess the intercity bus safety performance. Therefore, it is the aim of this study to fill the gap that existed in the literature. This is by developing and exploring a comprehensive composite SPI to improve the intercity bus performance in Malaysia. Although the composite SPI is viewed as a useful tool to improve safety performance of intercity buses, the development of the composite SPI is however sensitive to the choice of weighting method. Thus, in order to develop a valuable composite SPI, it is necessary to examine the suitability of different weighting methods.

1.3 Research Questions

The research questions addressed in this study are as below:
1) Which weighting method is appropriate in developing the composite SPI for intercity buses in Malaysia?
2) What are the risk domains that contributed to intercity bus safety risk using appropriate weighting method?

1.4 Objectives

This research work was carried out to develop the composite SPI for intercity buses in Malaysia. The specific objectives of this research are as follows:
1. To examine the suitability of different weighting methods to develop the composite SPI for intercity buses;
2. To apply SPI values obtained by appropriate weighting method to measure and compare intercity bus safety in terms of risk domains.

1.6 Outline of the Thesis

This study is focused on the development of composite SPI for intercity buses in Malaysia. For this thesis, there are five chapters namely, Chapter 1 where it introduces
the study background and intercity bus safety problems in Malaysia. The research questions and objectives of the study have also been outlined in this chapter. Chapter 2 will discuss on the relevant literature from previous study, while Chapter 3 to focus on the methodology to be adopted in this study. Chapter 4 presents the results and discussions of the study and Chapter 5 on the summary, research contributions, limitations and recommendations for future research. The thesis is organized as follows:

Chapter 2: Literature Review
This chapter begins by reviewing the risk domains that affect the safety performance of motor vehicles, including driver’s driving behaviours, vehicle safety conditions and road environment conditions. Several important risk indicators for each risk domain will be discussed together with an overview of the weighting methods as well as its application in previous studies. As for the SPI literatures they will be reviewed at the end of this chapter.

Chapter 3: Methodology
This chapter presents the methodology to be adopted in this study. First, in order to conduct a survey, the risk indicators are selected and the samples of intercity buses are identified. Second, by using the proposed weighting methods, the data would be analyzed. The correlation analysis between weighting ranking and the road crash ranking was performed to identify suitable method for the composite SPI development. The best weighting method is selected and the paired sample t-test was then applied to determine which SPI for risk domain were significantly different from each other.

Chapter 4: Result & Discussion
This chapter presents the applications of each weighting method as well as its impact on the intercity bus safety performance rankings. Additionally, the correlation analysis between each weighting method ranking and the RC ranking be demonstrated. A brief overview of descriptive statistics for all risk indicators related to intercity bus safety for intercity bus companies mainly operating on the West and East Coast of peninsular Malaysia would be provided. Finally, the results of paired sample t-test to be discussed in this chapter.

Chapter 5: Conclusions and recommendation for further research
The final chapter provides a conclusion whereby a summary of the main findings, research contributions, limitations of the study, as well as recommendation for future research.

Service d’études techniques des routes et autoroutes (Sétra); Understanding the principal geometric design parameters for roads: France, 2006.

