EFFECT OF MANGANESE AND CADMIUM ON BIOLOGICAL ATTRIBUTES OF WILD WATER SPINACH (Ipomoea aquatica Forssk.)

BILLY GUAN TECK HUAT

FPAS 2017 10
EFFECT OF MANGANESE AND CADMIUM ON BIOLOGICAL ATTRIBUTES OF WILD WATER SPINACH (*Ipomoea aquatica* Forssk.)

By

BILLY GUAN TECK HUAT

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Doctor of Philosophy

September 2017
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Doctor of Philosophy

EFFECT OF MANGANESE AND CADMIUM ON BIOLOGICAL ATTRIBUTES OF WILD WATER SPINACH (Ipomoea aquatica Forssk.)

By

BILLY GUAN TECK HUAT

September 2017

Chairman : Ferdaus @ Ferdius Mohamad Yusuff, PhD
Faculty : Environmental Studies

Heavy metals are inorganic pollutants that are hazardous and toxic to the environment. Agricultural activities have indirectly introduced heavy metals peculiarly manganese (Mn) and cadmium (Cd) to the ecosystem and eventually have polluted aquatic ecosystem which included the ponds located in Universiti Putra Malaysia. Water pollution caused by the heavy metals can greatly affect the life of the wild water spinach (Ipomoea aquatica Forssk.), an edible aquatic plant that is living in the ponds. Consequently, human health can be threatened when the metal-contaminated wild water spinach was foraged for consumption. Hence, the metals effects of Mn and Cd on the health status, growth, anatomy, and DNA quality of the wild water spinach were studied. Furthermore, the metal uptake ability by the wild water spinach was determined. The metal bioavailability and health risk were also assessed upon consumption of the metal-contaminated wild water spinach. The mature wild water spinach was hydroponically cultivated under greenhouse conditions and was subjected to Mn and Cd treatments which included low treatment (0.30 mg/L for Mn and 0.10 mg/L for Cd), high treatment (1.50 mg/L for Mn and 0.50 mg/L for Cd), and the control (distilled water) for seven days. ANOVA analysis indicated that significant reduction was observed for roots length and surface area, shoots length, leaves surface area in the metal-contaminated wild water spinach with the increasing Mn and Cd concentrations (p < 0.05). Toxicity symptoms such as chlorosis and necrosis also occurred on the wild water spinach from the metal exposure. In the cellular level, the xylem, phloem, epidermis, parenchyma, sclerenchyma, and cell walls of the cross-sectional and longitudinal roots, stems, and leaves have experienced breaking and changes in size, shape, and arrangement that were induced by the metal accumulation. ANOVA results showed that the leaves’ DNA concentrations were significantly reduced ranging from 67.73 to 195.54 ng/µL and 56.10 to 212.05 ng/µL at higher Mn and Cd concentrations; similarly to the changes in DNA purity (p < 0.05). The ANOVA statistics showed that the removal efficiency, water-to-shoot bioaccumulation factor (BAF), and root-to-shoot translocation factors (TF) was significantly reduced at higher Mn concentrations (p < 0.05). The highest concentration of Mn and Cd was found in the dried (DHS) and raw (RHS) shoots with the highest slope values of 3.75
and 19.50, respectively. Both Mn and Cd had the highest bioaccessibility for absorption in the gastric phase (slope values = 9.68 and 28.28) than intestinal phase (slope values = 0.24 and 17.99). The health risk index showed values > 1, indicated that the raw (RHS) and cooked (CHS) wild water spinach contaminated with Mn and Cd were not safe to be consumed for the studied population in Selangor, Malaysia. As conclusion, impacts of Mn and Cd were clearly seen when changes occurred in the health status, growth, histological structure, and DNA quality of the metal-contaminated wild water spinach. These metals absorbed in the human gastrointestinal tract could eventually cause health hazards when consuming the metal-contaminated wild water spinach as demonstrated in this work. Nevertheless, wild water spinach can serve as an alternative for phytoremediation on metals-contaminated aqueous medium due to its fairly good metal uptake ability.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

KESAN MANGAN DAN KADMIUM KE ATAS ATRIBUT BIOLOGI KANGKUNG LIAR (Ipomoea aquatica Forssk.)

Oleh

BILLY GUAN TECK HUAT

September 2017

Pengerusi : Ferdaus @ Ferdius Mohamad Yusuff, PhD
Fakulti : Pengajian Alam Sekitar

Logam berat adalah bahan pencemar inorganik yang berbahaya dan bertoksik kepada alam sekitar. Aktiviti pertanian secara tidak langsung menyebabkan logam berat khasnya mangan (Mn) dan kadmium (Cd) memasuki ekosistem dan akhirnya telah mencemarkan ekosistem akuatik termasuk kolam-kolam yang terletak berhampiran di Universiti Putra Malaysia. Percemaran air oleh logam berat tersebut boleh memberi kesan kepada kehidupan kangkung liar (Ipomea aquatica Forssk.), iaitu sejenis tumbuhan akuatik yang boleh dimakan yang hidup di dalam kolam. Oleh demikian, kesihatan manusia terancam apabila logam berat dimakan oleh mereka. Jadi, kesan-kesan Mn dan Cd terhadap status kesihatan, pertumbuhan, anatomi, dan kualiti DNA bagi kangkung liar dikaji. Tambah pula, keupayaan pengambilan logam berat oleh kangkung liar perlu ditentukan. Bioavailabiliti logam berat dan risiko kesihatan juga telah dinilai untuk apabila logam berat dimakan. Kangkung liar yang matang telah ditanam secara hidroponik di dalam rumah hijau dan diberikan rawatan Mn dan Cd pada kepekatan rendah (0.30 mg/L untuk Mn dan 0.10 mg/L untuk Cd), kepekatan yang tinggi (1.50 mg/L untuk Mn dan 0.50 mg/L untuk Cd), dan air suling sebagai kawalan selama tujuh hari. Analisis ANOVA menunjukkan pengurangan yang ketara telah diperhatikan bagi panjang dan kawasan permukaan akar, panjang pucuk, dan kawasan permukaan daun kangkung liar tercemar oleh logam berat dengan peningkatan kepekatan Mn dan Cd (p < 0.05). Simptom toksik iaitu klorosis dan nekrosis juga berlaku pada kangkung liar selepas diberikan rawatan logam berat. Kajian histologi menunjukkan sel xilem, floem, epidermis, parenkima, sklerenkim, dan dinding sel bagi keratan rentas dan memanjang akar, batang, dan daun telah mengalami pemecahan dan perubahan saiz, bentuk, dan susunan yang disebabkan oleh pengumpulan logam berat. Keputusan ANOVA menunjukkan bahawa pengurangan yang signifikan pada kepekatan DNA daun di antara 67.73 dan 195.54 ng/µL dan antara 56.10 dan 212.05 ng/µL apabila kepekatan Mn dan Cd semakin meningkat. Pengurangan yang ketara juga berlaku pada ketulenan DNA daun (p < 0.05). Statistik ANOVA menunjukkan bahawa removal efficiency, faktor biokonsentrasi water-to-shoot (BAF), dan faktor translokasi root-to-shoot (TF) telah dikiturangkan dengan ketara pada kepekatan Mn yang tinggi (p < 0.05).
Kandungan Mn and Cd yang tertinggi telah dijumpai di CHS and RHS dengan kecerunan tertinggi iaitu 3.75 dan 19.50. Kedua-dua logam berat ini menunjukkan bioasesibiliti tertinggi dalam proses penyerapan dalam fasa gastrik (Nilai kecerunan = 9.68 dan 28.28) berbanding dengan fasa usus (Nilai kecerunan = 0.24 dan 17.99). Indeks risiko bahaya (HRI) menunjukkan nilai > 1, menunjukkan kangkung liar yang tercemar dengan Mn and Cd adalah tidak selamat untuk dimakan bagi populasi yang telah dikaji di Selangor, Malaysia. Secara kesimpulannya, kesan-kesan toksik Mn dan Cd dapat dilihat dengan jelas apabila perubahan berlaku pada status kesehatan, pertumbuhan, histologi, dan kualiti DNA Logam berat akan diserap dalam saluran percernaan manusia dan berkemungkinan merbahaya kepada kesehatan Namun demikian, kangkung liar boleh digunakan sebagai alternatif untuk fitoremediasi bagi medium akuues yang tercemar dengan logam berat kerana tumbuhan ini mempunyai keupayaan pengambilan logam berat yang agak baik.
ACKNOWLEDGEMENTS

In the name of mighty God, thank you for the well blessings upon me throughout my Doctor of Philosophy study and research at the Department of Environmental Sciences, Faculty of Environmental Studies, Universiti Putra Malaysia.

First and foremost, I would like to express my sincere gratitude to my direct and academic supervisor at the Department of Environmental Sciences, Dr. Ferdaus @ Ferdius Mohamat Yusuff for the continuous support throughout my Doctor of Philosophy study and research, for her insightful comments, patience, care, motivation, enthusiasm, and immense knowledge. It is also gratifying to acknowledge the assistances, teachings, and insightful comments rendered by my co-supervisors at the Department of Environmental Sciences, Dr. Normala Halimoon; Department of Biology, Dr. Christina Yong Seok Yien who had given me many constructive ideas during the times of research and writing of this thesis for improvements. All in all, the feedbacks from all of my advisors have been invaluable and encouraging and I really appreciate their keenness to help and educate me.

Besides my advisors, I would like to thank to the officers at the Department of Environmental Sciences and Department of Biology: Mr. Tengku Shahrul, Pn Rusnani, Pn. Farah, and Pn. Zaharah for their guidance and technical help in using the laboratory equipment and supervised me in my laboratory works. My sincere thanks also to my lab mates and course mates for their encouragement and support.

Last but not the least; I would like to express my sincere gratitude to my family: My parents Tony and Winnie, my brothers James, and Ben for their love, support, patience, and endurance throughout my study and research. Research has its ups and downs, but my family especially my mother. Winnie has never given up on me. She continues to have faith and always give her full support to me.
I certify that a Thesis Examination Committee has met on 8 September 2017 to conduct the final examination of Billy Guan Teck Huat on his thesis entitled “Effect of Manganese and Cadmium on Biological Attributes of Wild Water Spinach (Ipomoea aquatica Forssk.)” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the These Examination Committee were as follows:

Latifah Abdul Manaf, PhD
Associate professor
Faculty of Environmental Studies
Universiti Putra Malaysia
(Chairman)

Rosimah Binti Nulit, PhD
Associate professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Hishamuddin Bin Omar, PhD
Senior lecturer
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Mokhtar Ibrahim Yousef, PhD
Professor
University of Alexandria
Egypt
(External Examiner)

NOR AINI AB. SHUKOR, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 30 November 2017
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Ferdaus @ Ferdius Mohamad Yusuff, PhD
Senior lecturer
Faculty of Environmental Studies
Universiti Putra Malaysia
(Chairman)

Normala Halimoon, PhD
Senior lecturer
Faculty of Environmental Studies
Universiti Putra Malaysia
(Member)

Christina Yong Seok Yien, PhD
Senior lecturer
Faculty of Science
Universiti Putra Malaysia
(Member)

ROBIAH BINTI YUNUS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

• this thesis is my original work;
• quotations, illustrations and citations have been duly referenced;
• this thesis has not been submitted previously or concurrently for any other degree at any other institution;
• intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
• written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
• there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ________________________ Date: _____________________

Name and Matric No.: __
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: ________________________
Name of Chairman of Supervisory Committee: ________________________

Signature: ________________________
Name of Member of Supervisory Committee: ________________________

Signature: ________________________
Name of Member of Supervisory Committee: ________________________
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF SYMBOL</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xix</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

2 LITERATURE REVIEW

2.1 Heavy Metals Pollution in General

2.1.1 Agricultural Pollution for Heavy Metals in Soils, Water and Air

2.1.2 Indirect Heavy Metals Pollution in Soils, Water, and Food Chain from Surface Runoff

2.1.3 The Threats from Less Popular Heavy Metals

2.2 Status of Manganese and Cadmium Pollution in the Surface Water and Other Water Sources in Malaysia

2.3 Previous Studies and Their Limitations in Malaysia

2.3.1 Effects of Manganese and Cadmium on the Biological Attributes in Plants

2.3.2 Phytoremediation on Manganese and Cadmium Pollution

2.3.3 Heavy Metals Bioavailability through In Vitro Human Gastrointestinal Digestion

2.3.4 Health Risk Assessment on the Consumption of Heavy Metals Contaminated Food

2.4 The Threats from Manganese and Cadmium to the Environment and Biological System

2.4.1 Source of Manganese Pollution and the Risk of Manganese to the Biological System

2.4.2 Source of Cadmium Pollution and the Risk of Cadmium to the Biological System

2.5 Surface Water Quality and Maximum Permissible Limit for Manganese and Cadmium

2.6 Past and Present Heavy Metals Mitigation Approach

2.7 Bioremediation and Phytoremediation for Heavy Metals

2.8 Various Concepts of Phytoremediation

2.8.1 Techniques and Application of Phytoremediation
2.8.2 Phytofiltration 23
2.8.3 Rhizofiltration 26
2.8.4 Handling and Disposal of Phyto-remediated Residue 27

2.9 Choice of Phytoremediator 28
2.9.1 Hyperaccumulator for Heavy Metals 28
2.9.2 Aquatic Plants 30
2.9.3 Edible Aquatic Plants 31
2.9.4 Water Spinach 32
2.9.5 Wild Water Spinach 33

2.10 Heavy Metals Uptake Mechanism in Plants 35
2.11 Bioavailability and Bioaccessibility of Heavy Metals 39
2.12 Assessment on the Impacts of Heavy Metals on Plants 41
 2.12.1 Growth and Morphology 41
 2.12.2 Histological Structure 42
 2.12.3 Genetic Assessment 46

3 MATERIALS AND METHODS
3.1 Screening of Heavy Metals Pollution in the Selected Ponds 51
 Water
3.2 Collection and Cultivation of Wild Water Spinach 55
3.3 Setting-up Hydroponic System and Running the Heavy Metal Uptake Experiments 57
3.4 Harvesting of the Control and Metal-contaminated Wild Water Spinach 60
 3.4.1 Health Status and Growth Study 60
 3.4.2 Histological Study on the Control and Metal-contaminated Wild Water Spinach 61
 3.4.3 DNA Quality Study on the Control and Metal-contaminated Wild Water Spinach 63
 3.4.4 Acid Digestion on the Control and Metal-contaminated Wild Water Spinach 65
 3.4.5 In Vitro Gastrointestinal Digestion on the Dried, Raw, and Cooked of the Control and Metal-contaminated Wild Water Spinach 66
3.5 Data Collection and Analysis 69
 3.5.1 Heavy Metals Uptake Assessment 69
 3.5.2 Heavy Metals Bioaccessibility Assessment 71
 3.5.3 Health Risk Assessment 71
 3.5.4 Statistical Analysis 72

4 RESULTS AND DISCUSSION
4.1 Results 74
 4.1.1 Characteristics of the Health Status for the Control and Metal-contaminated Wild Water Spinach 74
 4.1.2 Characteristics of the Growth for the Control and Metal-contaminated Wild Water Spinach 79
 4.1.3 Characteristics of the Histological Structure for the Control and Metal-contaminated Wild Water Spinach 82
4.1.4 Characteristics of the DNA Quality for the Control and Metal-contaminated Wild Water Spinach

4.1.5 Characteristics of the Nutrient Quality Before and After Heavy Metal Treatment

4.1.6 Characteristics of Manganese And Cadmium Uptake by the Wild Water Spinach

4.1.7 Characteristics of the Metal Bioavailability for the Control and Metal-contaminated Wild Water Spinach

4.1.8 Health Risk Assessment

4.2 Discussion

4.2.1 Plant Health Status

4.2.2 Plant Growth

4.2.3 Plant Histological Structure

4.2.4 Plant DNA Quality

4.2.5 Plant Heavy Metal Uptake

4.2.6 Plant Heavy Metal Bioavailability

4.2.7 Human Health Risk Assessment from the Consumption of the Metal-contaminated Wild Water Spinach

5 CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

5.2 Recommendations for Future Studies

REFERENCES

APPENDICES

BIODATA OF STUDENT

LIST OF PUBLICATIONS
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Cadmium contamination in various types of plants</td>
</tr>
<tr>
<td>2.2</td>
<td>Cadmium contamination in various types of aquatic animals</td>
</tr>
<tr>
<td>2.3</td>
<td>Highest Mn reported in surface waters in certain countries</td>
</tr>
<tr>
<td>2.4</td>
<td>Highest Cd reported in surface waters in certain countries</td>
</tr>
<tr>
<td>2.5</td>
<td>Permissible limits of Mn and Cd regulated by the authorities from different countries</td>
</tr>
<tr>
<td>2.6</td>
<td>Conventional technologies for heavy metals treatment</td>
</tr>
<tr>
<td>2.7</td>
<td>The differences for the selected water treatment methods</td>
</tr>
<tr>
<td>2.8</td>
<td>Concepts and applications of bioremediation and phytoremediation</td>
</tr>
<tr>
<td>2.9</td>
<td>Phytoremediation techniques and their mechanisms and applications</td>
</tr>
<tr>
<td>2.10</td>
<td>The overall advantages and disadvantages of phytoremediation technique</td>
</tr>
<tr>
<td>2.11</td>
<td>The overall strengths and limitations of rhizofiltration technique</td>
</tr>
<tr>
<td>2.12</td>
<td>Phyto-remediated residue treatment methods and their potential resource utilization</td>
</tr>
<tr>
<td>2.13</td>
<td>Hyperaccumulators for different type of heavy metals</td>
</tr>
<tr>
<td>2.14</td>
<td>Metals accumulation found in edible aquatic plants</td>
</tr>
<tr>
<td>2.15</td>
<td>The characteristics between water spinach and wild water spinach</td>
</tr>
<tr>
<td>2.16</td>
<td>Differences between bioavailability and bioaccessibility of heavy metals at various aspects</td>
</tr>
<tr>
<td>2.17</td>
<td>Affected tissues in plant organs from the heavy metals toxicity</td>
</tr>
<tr>
<td>3.1</td>
<td>The locations and coordinates of the selected sites for the water sampling</td>
</tr>
<tr>
<td>3.2</td>
<td>Baseline data on the elements and in situ water quality parameters at sites A, B, and C</td>
</tr>
<tr>
<td>3.3</td>
<td>Baseline data on the Mn and Cd concentration detected in the wild water spinach roots and shoots from the sites A, B and C (mean ± SE, n = 3)</td>
</tr>
<tr>
<td>3.4</td>
<td>Initial weights of mature cultivated wild water spinach before treatment (mean ± SE, n = 3)</td>
</tr>
<tr>
<td>3.5</td>
<td>Chlorosis rating scale for plant</td>
</tr>
<tr>
<td>3.6</td>
<td>Analysis tools used in this work</td>
</tr>
<tr>
<td>4.1</td>
<td>The mean number of plants with different conditions after exposure to Mn and Cd (n = 3*)</td>
</tr>
<tr>
<td>4.2</td>
<td>The number of plants that associated with chlorosis at different conditions scales after exposure to Mn and Cd (n = 3)</td>
</tr>
<tr>
<td>4.3</td>
<td>The range of reduction for the growth parameters from the metal treatment</td>
</tr>
<tr>
<td>4.4</td>
<td>Parameters of plant growth for the uncontaminated and Mn-contaminated wild water spinach (mean ± SE, n = 3*)</td>
</tr>
<tr>
<td>4.5</td>
<td>Parameters of plant growth for the uncontaminated and Cd-contaminated wild water spinach (mean ± SE, n = 3)</td>
</tr>
<tr>
<td>4.6</td>
<td>DNA concentration in the different organs of wild water spinach for each metal (mean ± SE, n = 3*)</td>
</tr>
<tr>
<td>4.7</td>
<td>Means of DNA purity detected in different organs of wild water spinach for each metal (mean ± SE, n = 3*)</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>4.8</td>
<td>In situ measurements for the uncontaminated and metal-contaminated nutrient solution</td>
</tr>
<tr>
<td>4.9</td>
<td>Manganese and cadmium concentration in the uncontaminated and metal-contaminated nutrient solution (mean ± SE, n = 3)</td>
</tr>
<tr>
<td>4.10</td>
<td>Manganese and cadmium concentration in the uncontaminated and metal-contaminated wild water spinach (mean ± SE, n = 3)</td>
</tr>
<tr>
<td>4.11</td>
<td>Removal efficiency for Mn and Cd by the wild water spinach at different treatment concentrations (mean ± SE, n = 3)</td>
</tr>
<tr>
<td>4.12</td>
<td>Bioaccumulation factor of Mn and Cd for the wild water spinach at different treatment concentrations (mean ± SE, n = 3)</td>
</tr>
<tr>
<td>4.13</td>
<td>Translocation factor of Mn and Cd for the wild water spinach at different treatment concentrations (mean ± SE, n = 3)</td>
</tr>
<tr>
<td>4.14</td>
<td>Manganese and cadmium concentrations detected in the wild water spinach samples at different treatment concentrations and phases (mean ± SE, n = 3)</td>
</tr>
<tr>
<td>4.15</td>
<td>Comparison of bioaccessibilities of Mn between the DHS, RHS, and CHS at different digestion phases and treatment concentrations (mean ± SE, n = 3)</td>
</tr>
<tr>
<td>4.16</td>
<td>Comparison of bioaccessibilities of Cd between the DHS, RHS, and CHS at different digestion phases and treatment concentrations (mean ± SE, n = 3)</td>
</tr>
<tr>
<td>4.17</td>
<td>Daily intake of metals from the consumption of metal-contaminated wild water spinach (mean ± SE, n = 3)</td>
</tr>
<tr>
<td>4.18</td>
<td>Health risk index for Mn and Cd in raw and cooked wild water spinach (mean ± SE, n = 3)</td>
</tr>
<tr>
<td>4.19</td>
<td>Summary of the statistical results of all the studied components in the plant growth of wild water spinach</td>
</tr>
<tr>
<td>4.20</td>
<td>Comparisons of the changes observed in plants’ tissues caused by metal toxicity</td>
</tr>
<tr>
<td>4.21</td>
<td>DNA degradation found on plant species resulted from heavy metal toxicity</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>General Phytofiltration Process in a Hydroponic System (Own Drawing)</td>
<td>25</td>
</tr>
<tr>
<td>2.2</td>
<td>Four Main Mechanisms in Heavy Metals Uptake by Plants (Own Drawing)</td>
<td>38</td>
</tr>
<tr>
<td>2.3</td>
<td>DNA Gel Electrophoresis of the Southern Cutgrass Leaves under Chromium (Cr) Treatment (Cai et al., 2014)</td>
<td>47</td>
</tr>
<tr>
<td>2.4</td>
<td>Agarose Gel Electrophoresis Showing DNA Degradation in Chickpea Leaves Contaminated with Vanadium (Imtiaz et al., 2016)</td>
<td>47</td>
</tr>
<tr>
<td>3.1</td>
<td>Flow Chart of Research Design of the Study</td>
<td>50</td>
</tr>
<tr>
<td>3.2</td>
<td>Pond Water Sampling at Sites A, B, and C around Universiti Putra Malaysia, Selangor, Malaysia</td>
<td>52</td>
</tr>
<tr>
<td>4.1</td>
<td>Physical Appearance for the Wild Water Spinach (a) Healthy Plant; (b) Unhealthy Plant with Chlorosis</td>
<td>78</td>
</tr>
<tr>
<td>4.2</td>
<td>Cross Section of Wild Water Spinach Roots (Magnification 400×) (a) Mn Experiment; (b) Cd Experiment (n = 3). Abbreviation: Epidermis (ep), Parenchyma (p), Sclerenchyma (scl), Xylem (xyl), and Phloem (phl). Scale: 100 µm. Arrow Indicates the Breaking of Cortex Cells and Changes in Size, Shape, and Arrangement of Vascular Bundle</td>
<td>84</td>
</tr>
<tr>
<td>4.3</td>
<td>Cross Section of Wild Water Spinach Stems (Magnification 400×) (a) Mn Experiment; (b) Cd Experiment (n = 3). Abbreviation: Epidermis (ep), Collenchyma (c), Parenchyma (p), Sclerenchyma (scl), Xylem (xyl), and Phloem (phl). Scale: 100 µm. Arrow Indicates the Breaking of Cortex Cells and Changes in Size, Shape, and Arrangement of Vascular Bundles</td>
<td>85</td>
</tr>
<tr>
<td>4.4</td>
<td>Cross Section of Wild Water Spinach Leaves (Magnification 100×) (a) Mn Experiment; (b) Cd Experiment (n = 3). Abbreviation: Epidermis (ep), Collenchyma (c), Parenchyma (p), Sclerenchyma (scl), Xylem (xyl), and Phloem (phl). Scale: 100 µm. Arrow Indicates the Breaking of Cortex Cells, Vascular Bundles, Etc.</td>
<td>86</td>
</tr>
<tr>
<td>4.5</td>
<td>Longitudinal Sections of Wild Water Spinach (a) Root (Magnification 100×; Scale: 100 µm); (b) Stem (Magnification 400×; Scale: 150 µm); (c) Leaf (Magnification 100×; Scale: 100 µm). Abbreviation: Xylem (xyl), Phloem (phl), Cortex (ct), Guard Cell (gc), Stoma (st), Epidermis (ep), and Mesophyll (mp)</td>
<td>88</td>
</tr>
<tr>
<td>4.6</td>
<td>Longitudinal Sections (Magnification 400×) of Wild Water Spinach Roots’ Cortex (Vacuole Region) for the Selected Sample (a) Mn-C1; (b) Mn-T1a; (c) Mn-T2a; (d) Cd-C1; (e) Cd-T1a; (f) Cd-T2a. Scale: 150 µm. Arrow Indicates the Localization of Metal in the Cortex Regions</td>
<td>89</td>
</tr>
<tr>
<td>4.7</td>
<td>Longitudinal Sections (Magnification 400×) of Wild Water Spinach Stems’ Cortex (Vacuole Region) for the Selected Sample (a) Mn-C1; (b) Mn-T1a; (c) Mn-T2a; (d) Cd-C1; (e) Cd-T1a; (f) Cd-T2a. Scale: 150 µm. Arrow Indicates the Localization of Metal in the Cortex Regions and Thickening of Cell Walls</td>
<td>90</td>
</tr>
</tbody>
</table>
4.8 Longitudinal Sections (Magnification 400×) of Wild Water Spinach Leaf Tissues for the Selected Sample (a) Mn-C1; (b) Mn-T1a; (c) Mn-T2a; (d) Cd-C1; (e) Cd-T1a; (f) Cd-T2a. Scale: 150 μm. Arrow Indicates the Thickening of Mesophyll and Spiral

4.9 Agarose Gel Electrophoresis of the DNA extracted from the Wild Water Spinach (a) Roots; (b) Stems; (c) Leaves with Identical Sample Arrangement. Lanes 1 and 20 = The Lambda Hindlll DNA Marker (fragments from 564 to 2027, 2322, 4361, 6557, 9416, and 23130 bp); Lanes 2 to 7 = The Mn-Control Specimen of 1 to 6; Lanes 8 to 13 = The Mn-T1-Treated Specimen of 1 to 6; Lanes 14 to 19 = The Mn-T2-Treated Specimen of 1 to 6; Lanes 21 to 26 = The Cd-T2-Treated Specimen of 6 to 1; Lanes 27 to 32 = The Cd-T1-Treated Specimen of 6 to 1; Lanes 33 to 38 = The Cd-Control Specimen of 6 to 1

4.10 Comparisons between the Mean Cd Concentrations and Maximum Permissible Limits (mean ± SE, n = 3)
LIST OF SYMBOL

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>Percentages</td>
</tr>
<tr>
<td>°C</td>
<td>Celsius</td>
</tr>
<tr>
<td>μmol</td>
<td>Micromols</td>
</tr>
<tr>
<td>rpm</td>
<td>Revolutions per minute</td>
</tr>
<tr>
<td>mBar</td>
<td>Millibars</td>
</tr>
<tr>
<td>H</td>
<td>Hours</td>
</tr>
<tr>
<td>min</td>
<td>Minutes</td>
</tr>
<tr>
<td>ms</td>
<td>Millisiemens</td>
</tr>
<tr>
<td>μS/cm</td>
<td>Microsiemens per centimeter</td>
</tr>
<tr>
<td>L</td>
<td>Liters</td>
</tr>
<tr>
<td>mL</td>
<td>Milliliters</td>
</tr>
<tr>
<td>μL</td>
<td>Microliters</td>
</tr>
<tr>
<td>cm²</td>
<td>Square centimeters</td>
</tr>
<tr>
<td>cm</td>
<td>Centimeters</td>
</tr>
<tr>
<td>mm</td>
<td>Millimeters</td>
</tr>
<tr>
<td>μm</td>
<td>Micrometers</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometers</td>
</tr>
<tr>
<td>kg</td>
<td>Kilograms</td>
</tr>
<tr>
<td>g</td>
<td>Grams</td>
</tr>
<tr>
<td>G</td>
<td>Gravity forces</td>
</tr>
<tr>
<td>mg</td>
<td>Milligrams</td>
</tr>
<tr>
<td>μg</td>
<td>Micrograms</td>
</tr>
<tr>
<td>mg/kg</td>
<td>Milligrams per kilogram</td>
</tr>
<tr>
<td>mg/g</td>
<td>Milligrams per gram</td>
</tr>
</tbody>
</table>
\begin{itemize}
\item \(\mu g/g\) Micrograms per gram
\item \(mg/L\) Milligrams per liter
\item \(\mu g/L\) Micrograms per liter
\item \(mg/mL\) Milligrams per milliliter
\item \(mg/\mu L\) Milligrams per microliter
\item \(ng/\mu L\) Nanograms per microliter
\item \(g/d\) Grams per day
\item \(mg/d\) Milligrams per day
\item \(mg/kg/d\) Milligrams per kilogram per day
\item \(\mu g/d\) Micrograms per day
\item \(kg/d\) Kilograms per day
\item \(g/cm^3\) Grams per cubic centimeter
\item ppm Parts per million
\item \(mg/m^3/year\) Milligrams per square meter per year
\item \(ng/m^3\) Nanograms per cubic meter
\item \(\mu g/m^3\) Micrograms per cubic meter
\item \(gm/Nm^3\) Grams per normal cubic meter
\item mA Microamperes
\item \(g/mL\) Grams per milliliter
\item M Molars
\item mM MilliMolars
\item \(\mu M\) MicroMolars
\item \(\mu M/L\) MicroMolars per liter
\item \(mg/dm^3\) Milligrams per cubic decimeter
\end{itemize}
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAS</td>
<td>Atomic absorption spectroscopy</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>ANVISA</td>
<td>National Agency for Sanitary Vigilance</td>
</tr>
<tr>
<td>BAF/BCF</td>
<td>Bioaccumulation factor/bioconcentration factor</td>
</tr>
<tr>
<td>C, T1, and T2</td>
<td>Control, low treatment, and high treatment</td>
</tr>
<tr>
<td>CAC</td>
<td>Codex Alimentarius Commission</td>
</tr>
<tr>
<td>Cd</td>
<td>Cadmium</td>
</tr>
<tr>
<td>CTAB</td>
<td>Cetyltrimethylammonium bromide</td>
</tr>
<tr>
<td>DHS, RHS, and CHS</td>
<td>Dry-harvest shoots, raw-harvest shoots, and cook-harvest shoots</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>DO</td>
<td>Dissolved oxygen</td>
</tr>
<tr>
<td>DOE</td>
<td>Department of Environment of Malaysia</td>
</tr>
<tr>
<td>DSM</td>
<td>Department of Statistics Malaysia</td>
</tr>
<tr>
<td>EC</td>
<td>Electrical conductivity/ European Commission</td>
</tr>
<tr>
<td>EQA</td>
<td>Malaysia Environmental Quality Act</td>
</tr>
<tr>
<td>EU</td>
<td>European Union</td>
</tr>
<tr>
<td>FAA</td>
<td>Formalin, acetic acid, and alcohol</td>
</tr>
<tr>
<td>FAMA</td>
<td>Federal Agricultural Marketing Authority</td>
</tr>
<tr>
<td>FAO/WHO</td>
<td>Joint Food and Agriculture Organization and World Health Organization</td>
</tr>
<tr>
<td>G1, G2, and G3</td>
<td>Greenhouse 1, greenhouse 2, and greenhouse 3</td>
</tr>
<tr>
<td>GT</td>
<td>Gastrointestinal tract</td>
</tr>
<tr>
<td>HKFEHD CFS</td>
<td>Hong Kong Food and Environmental Hygiene Department, Centre for Food Safety</td>
</tr>
<tr>
<td>HMs</td>
<td>Heavy metals</td>
</tr>
<tr>
<td>Abbr.</td>
<td>Full Form</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
</tr>
<tr>
<td>HRI</td>
<td>Health risk index</td>
</tr>
<tr>
<td>ICP-OES</td>
<td>Inductively coupled plasma optical emission spectrometry</td>
</tr>
<tr>
<td>INWQS</td>
<td>Interim National Water Quality Standards Malaysian</td>
</tr>
<tr>
<td>MHPRC</td>
<td>Ministry of Health of the People’s Republic of China</td>
</tr>
<tr>
<td>MFR</td>
<td>Malaysian Food Regulations</td>
</tr>
<tr>
<td>Mn</td>
<td>Manganese</td>
</tr>
<tr>
<td>MWA</td>
<td>Malaysian Water Association</td>
</tr>
<tr>
<td>PFA</td>
<td>Prevention of Food Adulteration Act</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>SRM</td>
<td>Standard reference material</td>
</tr>
<tr>
<td>TF</td>
<td>Translocation factor</td>
</tr>
<tr>
<td>UK</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>USA</td>
<td>United States of America</td>
</tr>
<tr>
<td>USDA</td>
<td>United States Department of Agriculture</td>
</tr>
<tr>
<td>USDHHS</td>
<td>United Stated Department of Health and Human Services</td>
</tr>
<tr>
<td>USEPA</td>
<td>United States Environmental Protection Agency</td>
</tr>
<tr>
<td>WEPs</td>
<td>Wild edible plants</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>WHO/EU</td>
<td>World Health Organization Regional Office for Europe</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

Surface water serves as the breeding habitat for aquatic life. However, the quality of surface water is deteriorating due to the increasing of anthropogenic activities. Huang et al. (2015) have reported that the number of clean rivers in Malaysia was reduced from 338 to 278 when compared to year 2005 with 2012. Surface water pollution occurs when there is excessive of organic or inorganic pollutant present in the water. Heavy metals (HMs) such as chromium (Cr), copper (Cu), zinc (Zn), manganese (Mn), iron (Fe), magnesium (Mg), nickel (Ni), and cobalt (Co), mercury (Hg), arsenic (As), cadmium (Cd), and lead (Pb) are examples of inorganic pollutants. Agriculture activity is one of the anthropogenic sources for heavy metals particularly Mn and Cd. Many of the agrochemicals used in the agriculture contain Mn and Cd (Zhao et al., 2015). Thus the uncontrollable usage of fertilizers and pesticides can indirectly pollute the surface waters like lakes, ponds, and streams that are located near to the agricultural land through surface runoff (Parris, 2011; Wang et al., 2016).

Heavy metal contamination in surface water can endanger the aquatic life that is living in the water. Aquatic plants absorb nutrients from the water through roots that are essential for photosynthesis. Meanwhile, heavy metals that are existed in the water are being absorbed by the aquatic plants as well. Consequently, the continuous accumulation of heavy metals can disrupt the plant growth and trigger photo-oxidative stress (Lambert and Davy, 2011). Heavy metals contaminated aquatic plants in the water become a human health concern because some species of aquatic plants are edible. Examples of edible aquatic plants are wild water spinach, wild taro, cattails, wild rice, etc. The edible aquatic plants mentioned previously are actually being harvested or foraged for consumption by the locals in some countries including Malaysia. The heavy metals that were bioaccumulated in the edible aquatic plants can be absorbed, transferred, and stored in the human bodies from ingestion; in the long-term, the central nervous system, liver, kidneys, heart, lungs, skin, reproduction can be damaged due to the carcinogenicity of heavy metals (Panagos et al., 2013). One of the most serious cases of heavy metal poisoning was happened in Toyama, Japan in the early 1950s where the locals suffered a disease called as itai-itai disease that was caused by acute cadmium toxicity (Bhattacharya, 2009; Yang et al., 2012). The outbreak of the disease was due to the consumption of cadmium contaminated rice.

Different countries have different mitigation approaches to overcome the water pollution issues. In Malaysia, legislations such as Environmental Quality Act (EQA) 1974, National Water Quality Standards (NWQS), Malaysian Water Association’s (MWA) raw water quality criteria, and water quality index (WQI) are adopted to control the water pollution; besides that, swale, infiltration facility, bioretention, gross pollutant traps (GPTs), sediment ponds, wet ponds, wetlands, and wastewater treatment plant were implemented which were proposed in the Urban Stormwater Management Manual for Malaysia (MSMA) to improve the water quality (Mamum and Zainudin, 2013). On the other hand, a hands-on approach is applied in China to deal with the water pollution which includes water diversions, dredging, and wetland construction.
(Yang et al., 2010). In addition, physical, chemical, and biological methods, for example membrane filtration, ion exchange, electrodialysis, and biosorption can be carried out to solve the water pollution problems (Gunatilake, 2015). These techniques are effective but also expensive, labor and energy intensive, hazardous, and complicated (Barakat, 2011).

Phytoremediation is a promising method that is relatively low cost, safe, and easy to remove unwanted heavy metals from the contaminated water. Phytoremediation is the use of plants to remediate contamination. In order to effectively remove heavy metals from the water, it is crucial to select suitable plant species that able to adapt well in the aqueous environment. Aquatic plants are ideal choices because of their free-floating and submerge capability in water. Water hyacinth, water lettuce, and duckweed are examples of heavy metal hyperaccumulating aquatic plants. Generally, heavy metals is taken, accumulated, translocated, and stored in plant organs. The metal uptake mechanisms by a plant can be through adsorption, accumulation, and absorption. Phytoremediation is becoming increasingly popular, trendy, and fast growing especially in the United States and Europe (Lelie et al., 2001). Nevertheless, phytoremediation is still not well-known in the Asian countries and thus it is deserved to be further explored.

This research has proposed an edible aquatic plant that is commonly found in the ponds or lakes to be added into the existing list of potential plants for phytoremediation. Wild water spinach or Kangkung is one of the native plants in Malaysia and it is merely considered as a type of vegetable; despite that, this underrated plant can be exploited for the application of phytoremediation to clean the heavy metals contaminated surface water. It will be beneficial to promote the establishment of many research and development (R & D) companies to focus in phytoremediation technology in the future. Since wild water spinach is easily available and abundant but most importantly it is effective in eliminating heavy metals, therefore it will certainly be an attractive addition to other aquatic plants species such as water hyacinth and duckweed that were hugely studied for remediating heavy metal polluted water. Furthermore, this research will help to promote public awareness in regards to food safety. Wild water spinach is able to uptake heavy metals from its surrounding and it will be a public health concern when eating the metal-contaminated wild water spinach. So far it is yet to discover any casualty involved due to the consumption of metal-contaminated wild water spinach.
The objectives of this research are listed as follows:

1. To examine the health status and growth of the metal-contaminated wild water spinach.

2. To identify and investigate the changes on the microscopic cell structure and DNA quality of the metal-contaminated wild water spinach.

3. To determine the effectiveness of Mn and Cd uptake by wild water spinach.

4. To assess the bioavailability of metals for absorption from the *in vitro* gastrointestinal digestion of wild water spinach.
REFERENCES

Fu, J. and Cui, Y. (2013). In vitro digestion/Caco-2 cell model to estimate cadmium and lead bioaccessibility/bioavailability in two vegetables: The influence of cooking and additives. *Food and Chemical Toxicology* 59: 215-221.

Hunt, P.R., Olejnik, N. and Sprando, R.L. (2012). Toxicity ranking of heavy metals with screening method using adult *Caenorhabditis elegans* and *Propidium iodide* replicates toxicity ranking in rat. *Food and Chemical Toxicology* 50(9): 3280-3290.

Massachusetts, Division of Fisheries and Game. (2011). Massachusetts Wildlife Volumes 61-62. Massachusetts: Massachusetts Division of Fisheries and Game.

Yabanli, M., Yozukmaz, A. and Sel, F. (2014). Heavy metal accumulation in the leaves, stem and root of the invasive submerged macrophyte *Myriophyllum spicatum* L. (Haloragaceae): An example of Kadin Creek (Mugla, Turkey). *Brazilian Archives of Biology and Technology* 57(3): 434-440.

