EFFECTS OF Erythroxylum Cuneatum (Miq.) Kurz ON CELLULAR AND SYNAPTIC ADAPTATION OF CHRONIC MORPHINE-ADDICTED HUMAN NEUROBLASTOMA CELL LINE AT PROTEIN LEVEL

NOOR AZUIN BINTI SULIMAN

FPSK(P) 2017 10
EFFECTS OF *Erythroxylum Cuneatum* (Miq.) Kurz ON CELLULAR AND SYNAPTIC ADAPTATION OF CHRONIC MORPHINE-ADDICTED HUMAN NEUROBLASTOMA CELL LINE AT PROTEIN LEVEL

By

NOOR AZUIN BINTI SULIMAN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

March 2017
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any materials contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
EFFECTS OF ERYTHROXYLUM CUNEATUM (MIQ.) KURZ ON CELLULAR AND SYNAPTIC ADAPTATION OF CHRONIC MORPHINE-ADDICTED HUMAN NEUROBLASTOMA CELL LINE AT PROTEIN LEVEL

By

NOOR AZUIN BINTI SULIMAN

March 2017

Chair: Mohamad Aris Bin Mohd Moklas, PhD
Faculty: Medicine and Health Sciences

Erythroxylum cuneatum (E. cuneatum) is a tropical flowering plant listed under Erythroxylaceae family. E. cuneatum is widely distributed within Southeast Asia. Uses of E. cuneatum in alternative medicines or remedies are limited. Indigenous traditional healer claimed that the plant was used in treating drug withdrawal. However, there is no scientific data to support the claim. Thus, the study was designed to evaluate the potential of anti-withdrawal properties of alkaloid extract of the plant on chronic morphine-addicted cell. An alkaloid extract of E. cuneatum (designated as ECAI) was extracted for all the tests. The human neuroblastoma cell line, SK-N-SH, was used throughout the study. The effects of ECAI on the chronic morphine-addicted cell were observed in two different groups, the co- and pre-treatments of morphine. Throughout the study, ECAI (0.1, 0.5, and 1.0 µg/mL) was compared to morphine and methadone. The receptor involved for the effects of the plant was determined using antagonists. The expressions of Cyclic adenosine 3', 5'-monophosphate (cAMP), intracellular calcium ion ([Ca^{2+}]), and α-synuclein were studied. At the beginning of the study, withdrawal markers [α-synuclein and calmodulin] were observed, followed by the receptor trafficking [Vesicle-associated membrane protein 2 (VAMP 2) and synaptotagmin 1], desensitisation or internalisation of the receptor [G protein-coupled receptor kinases (GRK) 2, β-arrestin 1/2, and clathrin], and cellular adaptation [mitogen-activated protein (MAP)/extracellular signal-regulated (ERK) kinase (MEK) 1/2, ERK 2, cAMP-
dependent protein kinase (PKA), and protein kinase C (PKC)] affected by the ECAI. Through the receptor affinity studies, ECAI bound to µ-opioid receptor, similar to methadone and morphine. Present data showed that ECAI possesses anti-withdrawal properties. ECAI was observed to enhance the receptor trafficking and cause the internalisation of the receptor. The cellular and synaptic adaptations modulated by ECAI were consistent throughout all study and parallel with the effects of the methadone. The administration of ECAI at the optimal doses was postulated to minimise the withdrawal, dependence, and tolerance against morphine-addicted cell. The alkaloid extract of the plant has a potential in opioid substitution therapy.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

KESAN-KESAN TERHADAP ADAPTASI SEL DAN SINAPS OLEH ERYTHROXYLUM CUNEATUM

Oleh

NOOR AZUIN BINTI SULIMAN

Mac 2017

Pengerusi: Mohamad Aris Bin Mohd Moklas, PhD
Fakulti: Perubatan dan Sains Kesihatan

Erythroxylum cuneatum (E. cuneatum) adalah tumbuhan berbunga tropika yang disenaraikan di bawah keluarga Erythroxylaceae. E. cuneatum tumbuh secara meluas di Asia Tenggara. Penggunaan E. cuneatum sebagai ubat-ubatan atau rawatan alternatif adalah terhad. Terdapat dakwaan oleh pengamal perubatan tradisional dikalangan orang asli mengenai penggunaan tumbuhan ini dalam merawat ketagihan dadah. Walau bagaimanapun, tiada data saintifik untuk menyokong dakwaan tersebut. Oleh itu, kajian ini bertujuan untuk mengkaji kewujudan ciri-ciri anti-ketagihan dalam ekstrak alkaloid tumbuhan ke atas sel yang terawat dengan morfin secara kronik. Ekstrak alkaloid E. cuneatum (dinyatakan sebagai ECAl) telah diekstrak untuk semua ujian. Sel neuroblastoma manusia, SK-N-SH, telah digunakan untuk kajian ini. Kesaran ECAI pada kronik morfin diperhatikan dalam dua kumpulan yang berbeza iaitu rawatan bersama dan pra-rawatan morfin. Sepanjang kajian ini, ECAI (0.1, 0.5, dan 1.0 μg/mL) dibandingkan dengan morfin dan metadon. Reseptor yang terlibat bagi kesan tumbuhan itu telah ditentukan dengan menggunakan antagonis. Ekspresi cyclic adenosine 3',5'-monophosphate (cAMP), kalsium ion intrasel ([Ca2+]), dan α-synuclein telah dikaji. Di awal kajian, protein sebagai indikasi penarikan (α-synuclein dan calmodulin) telah diperhatikan, diikuti dengan kitaran reseptor [vesicle-associated membrane protein 2 (VAMP 2) dan synaptotagmin 1], penyahpekaan atau internalisasi reseptor [G protein-coupled receptor kinases (GRK) 2, β-arrestin 1/2, dan clathrin], dan adaptasi sel [mitogen-activated protein (MAP)/extracellular signal-regulated (ERK) kinase (MEK) 1/2, ERK 2, cAMP-dependent protein kinase (PKA), dan protein kinase C (PKC)] dipengaruhi oleh ECAI. Melalui kajian terhadap afiniti reseptor, ECAI terikat untuk μ-opioid reseptor, sama seperti metadon dan morfin. Data kajian
ACKNOWLEDGEMENTS

“In the name of Allah S.W.T, the most Benevolent and Most Merciful”

Praise to Allah for granting me grace and strength to persevere throughout my study and to overcome all the challenges that I have gone through during the project.

I would like to express my deepest gratitude to my supervisor Associate Professor Dr. Mohamad Aris Mohd Moklas for his full support, expert guidance, understanding and encouragement throughout my study and research. Without his incredible patience and timely wisdom and counsel, my thesis work would have been a frustrating and overwhelming pursuit. In addition, I express my appreciation to Dr. Che Norma Mat Taib and Professor Mohd Ilham Adenan for having served on my committee. Their thoughtful questions and comments were valued greatly.

I would also like to thank all the post-graduate students and staffs of the Department of Human Anatomy for their help throughout my study. Special thanks go to my few friends who helped and supported me during my study and writing of the thesis.

Finally, I would like to thank my parents; Suliman Bin Sukar and Zainab Binti Jidon, siblings, and close family members for their unconditional love and support during the last three years. I would not have been able to complete this thesis without their continuous love and encouragement.
APPROVAL

I certify that a Thesis Examination Committee has met on (date of viva voce) to conduct that final examination of Noor Azuin Binti Suliman on her thesis entitled “Exploration of Erythroxylum Cuneatum on Cellular and Synaptic Adaptation” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded with (insert the name of relevant degree).

Members of the Thesis Examination Committee were as follows:

Sharida binti Fakurazi, PhD
Associate Professor Datin
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Norshariza binti Nordin, PhD
Dr.
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Md Zuki bin Abu Bakar @ Zakaria, PhD
Professor
Institute of Bioscience
Universiti Putra Malaysia
(Internal Examiner)

David Kendall, PhD
Professor
School of Pharmacy and Biomolecular Sciences
Liverpool John Moores University
United Kingdom
(External Examiner)

ZULKARNAIN ZAIAL, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of (type of degree). The members of the Supervisory Committee were as follows:

Mohamad Aris Bin Mohd Moklas, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Che Norma Binti Mat Taib, PhD
Senior Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Mohd Ilham Adenan, PhD
Professor
Atta-ur-Rahman Institute for Natural Product Discovery
University of Technology (MARA)
(Member)

ROBIAH BINTI YUNUS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:
- this thesis is my original work;
- quotation, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, poster, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature:_____________________ Date:___________

Name and Matric No.:_____________________

viii
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhere to.

Signature:

Name of Chairman of Supervisory Committee: Associate Professor Dr. Mohamad Aris Bin Mohd Moklas

Signature:

Name of Member of Supervisory Committee: Dr. Che Norma Binti Mat Taib

Signature:

Name of Member of Supervisory Committee: Professor Dr. Mohd Ilham Adenan
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xix</td>
</tr>
</tbody>
</table>

CHAPTER

1. INTRODUCTION

1.1. Background of study
1.2. Problem statement
1.3. Significance of the study
1.4. Hypothesis
1.5. Objectives of the study

2. LITERATURE REVIEW

2.1. Bioactive compound of plant
2.2. *Erythroxylum cuneatum* (EC)
2.3. Tropane alkaloid
2.4. Morphine
2.4.1. Introduction to morphine
2.4.2. Morphine on multiple receptors
2.4.3. Morphine and addiction
2.5. Methadone
2.6. Muscarinic receptor
2.7. Addiction and its mechanism
2.7.1. Introduction to morphine addiction
2.7.2. Morphine dependence and withdrawal
2.7.3. Morphine tolerance
2.8. Initial steps of opioid action
2.8.1. Receptors/Ligands
2.8.2. Second messengers/Effectors
2.9. Cellular adaptation induced by opioids

3. MATERIALS AND METHODS

3.1. Materials
3.2. Research design
3.3. Plant extraction

x
3.4. Cell culture and neuronal induction
3.5. Cytotoxicity test of ECal on cell line
3.6. Determination of optimal doses and time duration
 3.6.1. Methadone and ECal on normal cell
 3.6.2. Measuring the cAMP level
 3.6.3. Optimising the ideal doses and timeframe of the treatment
 3.6.4. Measuring the \([\text{Ca}^{2+}]_i\)
3.7. Receptor affinity
 3.7.1. Antagonists induction
 3.7.2. Measurement of cAMP level
 3.7.3. Measurement of \([\text{Ca}^{2+}]_i\)
 3.7.4. Determination of the protein of interest
3.8. Observation on the withdrawal properties
 3.8.1. Cell culture and treatment
 3.8.2. Determining the expression of protein of interest
3.9. Study on endocytic machinery
 3.9.1. Cell culture and treatment
 3.9.2. Determining the expression of protein of interest
3.10. Exploration on desensitisation or internalisation of receptor
 3.10.1. Cell culture and treatment
 3.10.2. Determining the expression of protein of interest
3.11. Study on the cellular adaptation
 3.11.1. Cell culture and treatment
 3.11.2. Determining the expression of protein of interest
 3.11.3. cAMP-dependent protein kinase (PKA)
 3.11.4. Protein kinase (PKC)

4. RESULT
4.1. Percentage yield of the extract
4.2. Cytotoxicity test of ECal on cell line
4.3. Optimal doses and time duration
 4.3.1. Methadone and ECal on normal cell
 4.3.2. Measuring the cAMP level
 4.3.3. Measuring the \([\text{Ca}^{2+}]_i\)
4.4. Receptor affinity
 4.4.1. Measurement of cAMP level
4.4.2. Measurement of $[Ca^{2+}]_i$ 64
4.4.3. Measurement of α-synuclein 67
4.5. Withdrawal properties 70
 4.5.1. Expression of α-synuclein and calmodulin 70
4.6. Endocytic machinery 73
 4.6.1. Expression of VAMP 2 and synaptotagmin 1 73
4.7. Desensitisation or internalisation of receptor 76
 4.7.1. Expression of GRK 2, β-arrestin, and clathrin heavy chain 76
4.8. Cellular adaptation 80
 4.8.1. Expression of MEK 1/2 and ERK 2 80
 4.8.2. Concentration of PKA and PKC 83

5. DISCUSSION 85
5.1. Research design 85
 5.1.1. Human neuroblastoma cell line, SK-N-SH 85
 5.1.2. Retinoic acid (RA) 86
 5.1.3. Co-treatment of morphine 87
 5.1.4. Pre-treatment of morphine 88
5.2. Cytotoxicity test of $E. cuneatum$ on cell line 90
5.3. Optimal doses and time duration 90
 5.3.1. Methadone and ECAI on normal cell 90
 5.3.2. Influence on the level of cAMP 90
 5.3.3. Association between the adenylyl cycles (AC) to cAMP 92
 5.3.4. Optimal doses of ECAI 92
5.4. Receptor affinity 93
 5.4.1. Muscarinic and opioid receptors screening 93
 5.4.2. Morphine on μ-opioid receptor 95
5.5. Withdrawal, dependency, and tolerance properties 97
 5.5.1. Concentration of cAMP 97
 5.5.2. Expression of α-synuclein 98
 5.5.3. Expression of calmodulin 99
5.6. Neurotransmission process 101
 5.6.1. Expression of Vesicle-associated membrane protein 2 (VAMP 2) 102
 5.6.2. Expression of synaptotagmin 1 103
 5.6.3. Concentration of intracellular calcium ion ([Ca$^{2+}$]) 104
5.7. Desensitisation or internalisation of receptor 106
5.7.1. Expression of G protein receptor kinase 2 (GRK 2) 108
5.7.2. Expression of β-arrestin 109
5.7.3. Expression of clathrin heavy chain 110

5.8. Cellular adaptation 111
5.8.1. Expression of mitogen-activated protein kinase (MAPK) kinase (MEK 1/2) 112
5.8.2. Expression of extracellular signal-regulated kinase 2 (ERK 2) 113
5.8.3. Concentration of cAMP-dependent protein kinase (PKA) 114
5.8.4. Concentration of protein kinase C (PKC) 116

5.9. Tolerance, dependence, and withdrawal properties 118
5.9.1. Receptor affinity 118
5.9.2. Tolerance and dependence properties 119
5.9.3. Withdrawal property 123

6. SUMMARY, GENERAL CONCLUSION, AND RECOMMENDATION FOR FUTURE RESEARCH 125

REFERENCES 128
APPENDICES 167
BIODATA OF STUDENT 178
LIST OF PUBLICATIONS 179
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Activation of different G-proteins upon treatment of morphine</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>Morphine withdrawal symptoms categorised by the time frame after last uptake of the drug</td>
<td>13</td>
</tr>
<tr>
<td>5.1</td>
<td>Summary of the present data on the co- (tolerance, dependence) and pre-treatments of morphine (withdrawal) signs against chronic morphine exposure.</td>
<td>121</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Erythroxylum cuneatum (EC).</td>
</tr>
<tr>
<td>2.2</td>
<td>Features of Erythroxylum cuneatum (EC).</td>
</tr>
<tr>
<td>2.3</td>
<td>Schematic figure of biosynthesis tropane.</td>
</tr>
<tr>
<td>2.4</td>
<td>Schematic figure of morphine, C₁₇H₁₉NO₃.</td>
</tr>
<tr>
<td>2.5</td>
<td>Schematic figure of methadone, C₂₁H₂₇NO.</td>
</tr>
<tr>
<td>2.6</td>
<td>Schematic drawing of the role of spinal ERK 1/2 signalling pathway in morphine dependence.</td>
</tr>
<tr>
<td>2.7</td>
<td>Schematic drawing of the role of spinal ERK 1/2 signalling pathway in morphine withdrawal.</td>
</tr>
<tr>
<td>2.8</td>
<td>Schematic drawing of the role of spinal ERK signalling pathway in morphine tolerance</td>
</tr>
<tr>
<td>2.9</td>
<td>An illustration of effector activation of opioid receptor.</td>
</tr>
<tr>
<td>2.10</td>
<td>Schematic diagram illustrates the normal event of calcium.</td>
</tr>
<tr>
<td>2.11</td>
<td>Schematic of cellular steps of post-synaptic receptor trafficking in neurons.</td>
</tr>
<tr>
<td>2.12</td>
<td>An illustration of the events of opioid receptor internalisation.</td>
</tr>
<tr>
<td>2.13</td>
<td>Summary of opioid receptor signalling.</td>
</tr>
<tr>
<td>3.1</td>
<td>Study design</td>
</tr>
<tr>
<td>4.1</td>
<td>Cytotoxicity of alkaloid extract of E. cuneatum (ECAI).</td>
</tr>
<tr>
<td>4.2</td>
<td>Expression of cAMP after 24 hrs of treatment without pre-treatment of morphine.</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>4.3</td>
<td>Level of cAMP expressed by cell after co-treatment of morphine for 6 and 24 hrs.</td>
</tr>
<tr>
<td>4.4</td>
<td>Concentration of cAMP on pre-treatment of morphine-treated for 6 and 24 hrs incubation times.</td>
</tr>
<tr>
<td>4.5</td>
<td>Concentration of cAMP in co- and pre-treatments of morphine.</td>
</tr>
<tr>
<td>4.6</td>
<td>Percentage of concentration of intracellular calcium ([Ca^{2+}]) for co- and pre-treatments of morphine.</td>
</tr>
<tr>
<td>4.7</td>
<td>Expression of cAMP over control for muscarinic receptors (M1 – M5).</td>
</tr>
<tr>
<td>4.8</td>
<td>Expression of cAMP over control for opioid receptors (µ-, κ-, β-opioid receptors).</td>
</tr>
<tr>
<td>4.9</td>
<td>The expression of [Ca^{2+}] upon treatments of muscarinic receptor antagonists (M1 – M5).</td>
</tr>
<tr>
<td>4.10</td>
<td>Expression of [Ca^{2+}] over control for opioid receptors (µ-, κ-, β-opioid receptors).</td>
</tr>
<tr>
<td>4.11</td>
<td>Concentration of α-synuclein level against control (in percentage) for muscarinic receptor antagonists.</td>
</tr>
<tr>
<td>4.12</td>
<td>Concentration of α-synuclein level against control (in percentage) for opioid receptor antagonists.</td>
</tr>
<tr>
<td>4.13</td>
<td>Expression of α-synuclein for pre- and co-treatment of morphine.</td>
</tr>
<tr>
<td>4.14</td>
<td>Expression of calmodulin for pre- and co-treatments of morphine.</td>
</tr>
<tr>
<td>4.15</td>
<td>Expression of VAMP 2 observed in pre- and co-treatments of morphine.</td>
</tr>
<tr>
<td>4.16</td>
<td>Expression of synaptotagmin 1 for pre- and co-treatments of morphine.</td>
</tr>
<tr>
<td>4.17</td>
<td>Expression of GRK 2 for pre- and co-treatments of morphine.</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>4.18</td>
<td>Expression of β-arrestin 2 for pre- and co-treatments of morphine.</td>
</tr>
<tr>
<td>4.19</td>
<td>Expression of clathrin heavy chain for pre- and co-treatments of morphine.</td>
</tr>
<tr>
<td>4.20</td>
<td>Expression of MEK 1/2 for pre- and co-treatments of morphine.</td>
</tr>
<tr>
<td>4.21</td>
<td>Expression of ERK 2 for pre- and co-treatments of morphine.</td>
</tr>
<tr>
<td>4.22</td>
<td>Concentration of PKA for pre- and co-treatments of morphine.</td>
</tr>
<tr>
<td>4.23</td>
<td>Concentration of PKC for pre- and co-treatments of morphine.</td>
</tr>
<tr>
<td>5.1</td>
<td>Co-treatments of morphine with methadone or ECAI.</td>
</tr>
<tr>
<td>5.2</td>
<td>Pre-treatment of morphine.</td>
</tr>
<tr>
<td>5.3</td>
<td>Activation of calmodulin by calcium ion.</td>
</tr>
<tr>
<td>5.4</td>
<td>Vesicle trafficking for transporting neurotransmitter.</td>
</tr>
<tr>
<td>5.5</td>
<td>Mechanism of receptor desensitisation, endocytosis, internalisation, sequestration, and resensitisation.</td>
</tr>
<tr>
<td>5.6</td>
<td>Activation of MEK-ERK.</td>
</tr>
<tr>
<td>5.7</td>
<td>Activation of PKA from increased cAMP.</td>
</tr>
<tr>
<td>5.8</td>
<td>Activation of PKC by morphine.</td>
</tr>
<tr>
<td>5.9</td>
<td>Receptor adaptation.</td>
</tr>
<tr>
<td>6.1</td>
<td>Schematic of suggested reactions of methadone and ECAI on the chronic morphine-treated cell on the μ-opioid receptor.</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Solutions for Western Blot</td>
<td>167</td>
</tr>
<tr>
<td>B</td>
<td>Standard curve for cAMP</td>
<td>169</td>
</tr>
<tr>
<td>C</td>
<td>Images of α-synuclein after blocking with muscarinic receptor antagonists</td>
<td>170</td>
</tr>
<tr>
<td>D</td>
<td>Images of α-synuclein after blocking with opioid receptor antagonists</td>
<td>171</td>
</tr>
<tr>
<td>E</td>
<td>Standard curve for PKA</td>
<td>172</td>
</tr>
<tr>
<td>F</td>
<td>Standard curve for PKC</td>
<td>173</td>
</tr>
<tr>
<td>G</td>
<td>List of chemicals and manufacturers</td>
<td>174</td>
</tr>
<tr>
<td>H</td>
<td>List of apparatus and manufacturers</td>
<td>177</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Ca(^{2+})]_i</td>
<td>Concentration of intracellular calcium ion</td>
</tr>
<tr>
<td>βARK 1</td>
<td>β-adrenergic receptor kinase 1</td>
</tr>
<tr>
<td>5-HT</td>
<td>5-hydroxytryptamine</td>
</tr>
<tr>
<td>AC</td>
<td>Adenylyl cyclase</td>
</tr>
<tr>
<td>ACh</td>
<td>Acetylcholine neurotransmitter</td>
</tr>
<tr>
<td>AFDX-116</td>
<td>11-[[2-[(diethylamino)methyl]-1-piperidinyl]acetyl]-5,11-dihydro-6H-pyrido[2,3-b][1,4]benzodiazepine-6-on</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>AP-2</td>
<td>Adaptor protein 2</td>
</tr>
<tr>
<td>ATCC</td>
<td>American Type Culture Collection</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine triphosphate</td>
</tr>
<tr>
<td>APS</td>
<td>Ammonium persulfate</td>
</tr>
<tr>
<td>Ca(^{2+})</td>
<td>Calcium ion</td>
</tr>
<tr>
<td>Ca(^{2+})-CaM</td>
<td>Ca(^{2+})-calmodulin</td>
</tr>
<tr>
<td>CAMKII</td>
<td>Ca(^{2+})/calmodulin-dependent protein kinase II</td>
</tr>
<tr>
<td>cAMP</td>
<td>Cyclic adenosine 3', 5'-monophosphate</td>
</tr>
<tr>
<td>cGMP/PKG</td>
<td>Cyclic guanosine 3',5'-monophosphate / protein kinase G</td>
</tr>
<tr>
<td>CME</td>
<td>Clathrin-mediated endocytosis</td>
</tr>
<tr>
<td>CNS</td>
<td>Central nervous system</td>
</tr>
<tr>
<td>CPP</td>
<td>Conditioned place preference</td>
</tr>
<tr>
<td>CREB</td>
<td>cAMP response element-binding protein</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>DA</td>
<td>Dopamine</td>
</tr>
<tr>
<td>DAG</td>
<td>Diacylglycerol</td>
</tr>
<tr>
<td>DAO</td>
<td>Diamineoxide</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>ECAI</td>
<td>Alkaloid extract of Erythroxylum cuneatum</td>
</tr>
<tr>
<td>EGR1</td>
<td>Early growth response 1</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td>ER</td>
<td>Endoplasmic reticulum</td>
</tr>
<tr>
<td>ERK</td>
<td>Extracellular signal-regulated kinase</td>
</tr>
<tr>
<td>FBS</td>
<td>Fetal bovine serum</td>
</tr>
<tr>
<td>FRIM</td>
<td>Forest Research Institution of Malaysia</td>
</tr>
<tr>
<td>GDP</td>
<td>Guanosine diphosphate</td>
</tr>
<tr>
<td>GIRK</td>
<td>G protein-linked inwardly rectifying K⁺ channels</td>
</tr>
<tr>
<td>GRK</td>
<td>G protein-coupled receptor kinases</td>
</tr>
<tr>
<td>GPCR</td>
<td>G protein-coupled receptor</td>
</tr>
<tr>
<td>GTP</td>
<td>Guanosine triphosphate</td>
</tr>
<tr>
<td>HCl</td>
<td>Hydrochloride acid</td>
</tr>
<tr>
<td>HRP</td>
<td>Horseradish peroxide</td>
</tr>
<tr>
<td>Hr(s)</td>
<td>Hour (s)</td>
</tr>
<tr>
<td>IBMX</td>
<td>Isobutylmethylxanthine</td>
</tr>
<tr>
<td>IDV</td>
<td>Integrated density values</td>
</tr>
<tr>
<td>IFN-γ</td>
<td>Interferon-γ</td>
</tr>
<tr>
<td>IH</td>
<td>Voltage-dependent current</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Term</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>IP3</td>
<td>Inositol triphosphate</td>
</tr>
<tr>
<td>JNK</td>
<td>C-Jun N-terminal kinase</td>
</tr>
<tr>
<td>K⁺</td>
<td>Potassium</td>
</tr>
<tr>
<td>K<sub>ATP</sub></td>
<td>Adenosine triphosphate (ATP)-sensitive K⁺</td>
</tr>
<tr>
<td>LC</td>
<td>Locus coeruleus</td>
</tr>
<tr>
<td>LTD</td>
<td>Long-term depression</td>
</tr>
<tr>
<td>LTP</td>
<td>Long-term potential</td>
</tr>
<tr>
<td>M</td>
<td>Muscarinic receptor</td>
</tr>
<tr>
<td>MAP</td>
<td>Mitogen-activated protein</td>
</tr>
<tr>
<td>MAPK</td>
<td>Mitogen-activated protein (MAP) kinase</td>
</tr>
<tr>
<td>MEM</td>
<td>Minimum essential medium</td>
</tr>
<tr>
<td>MEK</td>
<td>Mitogen-activated protein (MAP)/extracellular signal-regulated (ERK) kinase</td>
</tr>
<tr>
<td>Min (s)</td>
<td>Minute (s)</td>
</tr>
<tr>
<td>MRI</td>
<td>Mean relative intensity</td>
</tr>
<tr>
<td>MTT</td>
<td>Thiazolyl blue tetrazolium bromideme</td>
</tr>
<tr>
<td>NA</td>
<td>Noradrenaline</td>
</tr>
<tr>
<td>NADH</td>
<td>Nicotinamide adenine dinucleotide</td>
</tr>
<tr>
<td>NE</td>
<td>Norepinephrine</td>
</tr>
<tr>
<td>NMDA</td>
<td>N-methyl-D-aspartate receptors</td>
</tr>
<tr>
<td>NO</td>
<td>Nitric oxide</td>
</tr>
<tr>
<td>OST</td>
<td>Opioid substitution therapy</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffer saline</td>
</tr>
<tr>
<td>PDE</td>
<td>Phosphodiesterase</td>
</tr>
</tbody>
</table>

xxi
pERK Phosphorylated ERK1/2
PIP2 Phosphatidylinositol 4,5-bisphosphate
PKA cAMP-dependent protein kinase
PKC Protein kinases C
PKCε Phosphokinase C
PLA2 Phospholipase A₂
PLC Phospholipase C
PMT Putrescine N-methyltransferase
PNS Peripheral nervous system
PSD Post-synaptic density
PVDF Polyvinylidene difluoride
RA Retinoid acid
RIPA Radioimmunoprecipitation assay
RNA Ribonucleic acid
RNApol Ribonucleic acid polymerase
RSK Ribosomol S6 Kinase
SAPK Stress-activated protein kinases
SDS Sodium dodecyl sulfate
SFK Src family kinase
SNARE Soluble N-ethylmaleimide-sensitive factor activating protein receptor
t-SNARE Target soluble N-ethylmaleimide-sensitive factor activating protein receptor
TBST Tris-buffered saline and tween 20
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEMED</td>
<td>Tetramethylethylenediamine</td>
</tr>
<tr>
<td>TR-I</td>
<td>Tropinone reductase I</td>
</tr>
<tr>
<td>TR-II</td>
<td>Tropinone reductase II</td>
</tr>
<tr>
<td>UK</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>UPM</td>
<td>Universiti Putra Malaysia</td>
</tr>
<tr>
<td>USA</td>
<td>United State of America</td>
</tr>
<tr>
<td>v-SNARE</td>
<td>Vesicular soluble N-ethylmaleimide-sensitive factor activating protein receptor</td>
</tr>
<tr>
<td>VAMP 2</td>
<td>Vesicle-associated membrane protein 2</td>
</tr>
<tr>
<td>VDCC</td>
<td>Voltage-gated Ca(^{2+}) channel</td>
</tr>
<tr>
<td>VTA</td>
<td>Ventral tegmental area</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of study

Three classes of medication that responsible for misuse liability are prescription opioids, stimulants, and the central nervous system (CNS) depressants. There are the number of factors that contribute to such phenomenon which includes great distribution of medications, aggressive marketing by pharmaceutical companies, and easy accessibility to public users. These contributing factors escalate the number of non-medical usage of opioid analgesic and overdose deaths (Mack, 2013).

In 2013, more than 11 million people mistreated with heroin or prescription pain reliever were recorded ("SAMHSA Releases Behavioral Health, United States, 2012", 2013). There is a long list of adverse effects of the opioid abuse. One of the major problems of opioid abuse is the chronic pain experienced by more than 62% of opioid substitution therapy (OST) patients (Voon et al., 2015). Meanwhile, 30.7% of general population grieved the pain (Johannes et al., 2010). The chronic pain is observed from the exhibition of opioid-induced hyperalgesia and super-sensitivity to pain (Williams et al., 2001).

Repeated intake of opioids causes the inhibition of production of endogenous opioids such as endorphins and encephalins. The cellular adaptation is responsible for the withdrawal, tolerance, and dependence signs. These addictive symptoms in future will trigger the drug addicts to increase their uptake of the drug to obtain desired effects. This subsequential event will lead to overdose, a new problem of drug usage (Williams et al., 2001).

Opioids are effective for acute severe pain following trauma, extensive burns, or surgery. They also are used for painful terminal diseases such as cancer (Pasternak, 2011). Edlund et al. (2007) claimed that the rare addiction incident occurred when opioid analgesics are used appropriately. At the same time, Ballantyne and LaForge (2007) suggested that chronic opioid on chronic pain patient has increased the addiction and opioid abuse. Thus, it is consistent with Kalso et al. (2004) proclaimed the effective analgesia in chronic pain patient treated with the acute opioid. To what extent is a prescription of painkillers to create an epidemic abuse? The answer is not simple (Fields, 2011). Fields (2011)
suggested that more than 70% of the opioid abusers got the drug unlawfully while less than 20% got the drugs through a prescription from a doctor. Some users overdose or wind up dead from respiratory depression (Edlund et al., 2007).

1.2 Problem statement

Opioids, such as morphine, heroin, and oxycodone, act as an agonist of the µ-opioid receptor to produce analgesia effect. Though, drugs activating µ-opioid receptor are most commonly abused (Koob and Le Moal, 2005). Opioid addiction becomes an epidemic problems. One death in every 19 minutes was recorded in the United States only (Centers for Disease Control and Prevention (CDC), 2012).

There are numbers of therapies or commercialised drugs that are used to treat opioid addiction, withdrawal, tolerance, or overdoses such as buprenorphine, methadone, and clonidine (Doyon et al., 2004). However, these drugs are classified as opioid and widely known to cause abuse (Bailey et al., 2009). Prescribed opioid addiction or morphine addiction patients in the US are enrolled in methadone maintenance treatments programs (Rosenblum et al., 2007).

Methadone is an opioid agonist that is effective for treating severe pain. It has potential advantages against another opioid including low cost, high bioavailability, long half-life, and lack of active metabolites. According to the National Institutes of Health, the government of United States spent over $180 billion for illicit drug abuse just in 2008. The costs include the medical expenses and unlawful activity, social welfare, secondary medical issues, and efficiency losses. The misuse of methadone and opioid contributes to noticeable economic burden to civilisation (Scavone et al., 2013). Furthermore, methadone substitution as a treatment for opioid addiction has been criticised widely. It is claimed that the methadone is not effective to restraint addiction (Bennett, 2011).

The focus of the management is to confront the negative impact of the abuse on health and mortality while preserving the role of the opioid in managing pain. The use of alternative medicines is one of the options to deal with opioid misusage. The local Malaysian folks claim the use of Chinta Mula on treating morphine craving. Chinta Mula or scientifically known as Erythroxylum
Erythroxylum cuneatum (EC) can be found in Southeast Asia, especially in Malaysia, Philippine, and Indonesia (Chung, 2006). EC belongs to the family of Erythroxylaceae, *Erythroxylum spp.* and contains cocaine as one of its psychoactive alkaloid that proclaimed to influence the CNS (Plowman and Rivier, 1983).

1.3 Significance of the study

The output from this study will provide a new approach in regards to managing the opioid misuse. Instead of using a drug to treat misuse of the drug, alternative medicines such as plant will be a better approach. As compared to commercialised drugs, alternative medicines are cheaper and comparatively safer.

1.4 Hypothesis

Following the problem statements, the hypothesis of the study is that *Erythroxylum cuneatum* (EC) is mimicking the effects of methadone against the induction of morphine. EC is hypothesised to express anti-addiction properties; anti-dependence, anti-tolerance, and anti-withdrawal, against chronic morphine. EC is expected to minimise the addiction symptoms on the morphine-treated cell line observed by increasing fusion machinery at the pre-synaptic terminal internalising the involved receptor and influencing the cellular adaptation processes.

1.5 Objectives of the study

General Objective

- To observe the anti-withdrawal properties of alkaloid extract of EC (designated as ECAI) by comparing to methadone in morphine-induced addicted cell line.

Specific Objectives

1. To determine the ideal dosage of ECAI on treating the morphine-treated cell on different time duration.
2. To predict the involvement of receptor on withdrawal properties of ECAI.
3. To examine the role of ECAI in the fusion machinery at the pre-synaptic terminal against chronic morphine.
4. To predict the effects of ECAI on desensitisation/internalisation of receptor on the morphine-treated cell line.
5. To study the cellular adaptation induced by the prolonged morphine and counteracting of ECAI.
REFERENCES

Chen, Y., Jiang, Y., Yue, W., Zhou, Y., Lu, L., & Ma, L. (2008b). Chronic, but not acute morphine treatment, up-regulates α-Ca²⁺/calmodulin dependent

with the adaptin AP2 complex modulates inhibitory synaptic currents in hippocampal neurons. *Journal of Neuroscience, 20*(21): 7972-7977.

phospholipase C, [Ca2+]\textsubscript{i} and adenylyl cyclase. *British Journal of Pharmacology, 120*(6): 1165-1171.

of Galpha (16) and evidence for a synergic interaction between Gbeta gamma and the alpha subunit of a receptor activated G protein. *Proceedings of the National Academy of Sciences*, 93(7): 2827-2831.
