MECHANISMS OF INTERFERON-GAMMA (IFN-γ)-INDUCED HYPERPERMEABILITY CHANGES IN HUMAN UMBILICAL VEIN ENDOTHELIAL CELLS

NG CHIN THENG

FPSK(P) 2017 9
MECHANISMS OF INTERFERON-GAMMA (IFN-γ)-INDUCED HYPERPERMEABILITY CHANGES IN HUMAN UMBILICAL VEIN ENDOTHELIAL CELLS

By

NG CHIN THENG

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

January 2017
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
MECHANISMS OF INTERFERON-GAMMA (IFN-γ)-INDUCED HYPERPERMEABILITY CHANGES IN HUMAN UMBILICAL VEIN ENDOTHELIAL CELLS

By

NG CHIN THENG

January 2017

Chair : Zuraini Ahmad, PhD
Faculty : Medicine and Health Sciences

Endothelial dysfunction, characterized by increased endothelial permeability, is the initiating step in the pathogenesis of vascular diseases such as atherosclerosis. Interferon-gamma (IFN-γ), a pro-inflammatory cytokine, has been reported to impair the endothelial barrier and thus, increases vascular permeability. However, the mechanism by which IFN-γ disrupts the endothelial barrier has never been clarified. Therefore, this study aimed to evaluate the underlying mechanisms of IFN-γ-induced hyperpermeability changes using human umbilical vein endothelial cells (HUVECs). HUVECs were used as a model system to study permeability changes because inflammatory events are commonly occurs in postcapillary venules in vivo. As a preliminary step, the HUVECs viability was determined using MTT and ATP assays. Permeability changes were assessed using in vitro permeability assay kits. Localization of F-actin, caldesmon, β-catenin and vascular endothelial cadherin (VE-cadherin) was studied using confocal microscope. Total protein expressions of β-catenin, VE-cadherin, F-/G-actin, p38 MAP kinase, phosphorylated-p38 MAP kinase (p-p38 MAP kinase), caldesmon and phosphorylated-caldesmon (p-caldesmon) were performed using Western blot analysis. Protein expressions of β-catenin and VE-cadherin in different cell compartments were studied using subcellular protein fractionation kit. The interactions of caldesmon to actin and myosin were studied using a co-immunoprecipitation assay. The levels of nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) were detected using Griess assay and enzyme-linked immunosorbent assay (ELISA), respectively. The present study showed that IFN-γ increased HUVECs permeability in a biphasic manner. The hyperpermeability changes may be associated with actin remodeling and alteration of adherens junctions (AJs). In the first phase, IFN-γ caused cell rounding and peripheral actin bands, which may be regulated by caldesmon phosphorylation and dissociation of actin with caldesmon. Besides, IFN-γ induced discontinuous AJs formation without altering the AJs expression level. On the other hand, the second phase of increased permeability involves cell elongation and stress fiber formation, which may be regulated by F-actin hyperpolymerization. Besides, IFN-γ induced linearized AJs, and downregulated the AJs expression level in membrane and cytoskeleton fractions. The results showed that
IFN-γ activated p38 MAP kinase in the signaling pathway. However, p38 MAP kinase only regulated the first phase of IFN-γ-mediated increased permeability, and F-actin remodeling. Besides, NO partially regulated the IFN-γ-induced HUVECs hyperpermeability and this was independently of cGMP. In summary, the study enhances the current knowledge on the mechanism of IFN-γ in inducing endothelial dysfunction. The mechanisms underlie IFN-γ-mediated HUVECs hyperpermeability may involve F-actin remodeling and alteration of AJs structure and expression, suggesting that actin cytoskeleton and AJs may serve as the potential therapeutic targets for prevention of the endothelial dysfunction mediated by IFN-γ. The p38 MAP kinase and NO are not the primary regulator for the regulation of IFN-γ-induced endothelial barrier impairment.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

MEKANISME PERUBAHAN HIPERKEBOLEHTELAPAN ARUHAN INTERFERON-GAMMA (IFN-γ) PADA SEL ENDOTELIAL VENA UMBILIKAL MANUSIA

Oleh

NG CHIN THENG

Januari 2017

Pengerusi : Zuraini Ahmad, PhD
Fakulti : Perubatan dan Sains Kesihatan

and mengurangkan ekspresi AJs pada pecahan-pecahan membran dan sitoskeleton.

Keputusan menunjukkan IFN-γ mengaktifkan p38 MAP kinase dalam lata isyarat molekul. Tetapi, p38 MAP kinase hanya mengawal pembentukan semula aktin dan peningkatan ketelapan yang dicetuskan oleh IFN-γ dalam fasa pertama. Selain daripada itu, NO juga terlibat dalam mengawal peningkatan ketelapan yang dicetuskan oleh IFN-γ, dan ini tidak bersandar pada cGMP. Kesimpulannya, kajian ini meningkatkan pemahaman semasa mengenai mekanisme pencetusan dysfungsi endotelial oleh IFN-γ. Mekanisme IFN-γ yang mencetuskan peningkatan ketelapan mungkin terlibat pembentukan semula aktin dan perubahan pada struktur dan expresi AJs. Justru itu, sitoskeleton aktin dan AJs mungkin merupakan sasaran terapeutik baharu bagi mencegah dysfungsi endotelial yang dicetuskan oleh IFN-γ. Keputusan juga menunjukkan p38 MAP kinase dan NO bukan faktor utama yang menjelaskan fungsi pengadang sel endotelial yang diaruahkan oleh IFN-γ.
ACKNOWLEDGEMENTS

Pursuing a Ph.D. study is a challenging and enjoyable experience. The completion of the study is a combined effort from various groups of individuals. Though it will not be enough to express my appreciation in words to all those people who supported me, I would still like to give my many, many thanks to all these people.

First of all, I want to express my deepest appreciation to my supervisor, The Late Associate Professor Dr. Zuraini Ahmad, who accepted me as her Ph.D. student without any hesitation when I approached her after I had finished my Bachelor Degree. Throughout my study, she taught me how to think critically as a scientist and how to conduct a good research. Besides, her encouragement and motivation always supported me through the down times especially when I failed to get the desire results in my experiments. Furthermore, her positive attitude and patience made me not afraid of performing laborious and challenging tasks such as protein and imaging studies. Thus, I always benefited from her broad views and constructive advices on research and life in general. Unfortunately, she passed away last year after a long struggle with the illness. I was shocked and saddened by the lost of the best teacher I have ever had. I will never forget her kindness, laugh, compassion and wonderful sense of humour. She will live forever in my heart.

I would also like to express my sincere gratitude to my co-supervisors, Professor Dr. Roslan Sulaiman and Associate Professor Dr. Mohamad Aris Mohd Moklas, for their constructive comments and valuable discussion along my studies. Not forgotten, I would like to thank Professor. Dr. Muhammad Nazrul Hakim for his help and valuable time he spent to answer my inquiries after Dr Zuraini’s passing.

I would also like to thank all the staffs in Physiology Lab: Mdm. Normayati Bt. Sulaiman, Mdm. Hasmieh Alias @Yaakub and Mr. Nasrul Rizal Zainal Abidin for their support, effort and always assisted me whenever I need their help. I would also like to acknowledge the staffs in Cell Signaling Lab: Mr. Abdul Rahman Hassan, Mr. Zulkhairi Zainol and Mdm. Nora Asyikin Salim for helping me to operate some of the lab equipments such as gel doc system, fluorescent microscope and autoclave machine.

I want to express my gratitude to Miss Mushunada Mustaffa and Miss Norazimah Abdul Nasir for allowing me to use the Western blot apparatus in Anatomy and Histology Lab. I would also like to thank the staffs in Multipurpose Laboratory: Nor Aidah Bt Abdullah and Nurul Munirah Bt Manan for allowing me to use the centrifuge machine and willing to wait for me until I finished my work.

Special thanks to Mr. Mohd Khairil Othman from Matrix Optics Company for his warmhearted help. He taught me how to operate the confocal laser scanning microscope and allowed me to continue using the microscope even when he was out for lunch. With his help, I was able to complete the imaging studies very fast.

I would also like to thank my research group members, Mdm. NurFarah Dilla and Ms. NurNabila Huda as well as my friends, Dr. Teh Soek Sin, Dr. Mah Siau Hui, Dr. Tor Yin Sim, Dr. Tan Kai Leng and Ms. Chung Pui Ping for their support and encouragement during these stressful moments. My greatest gratitude goes to my best friend Dr. Fong Lai Yen who supported me at every bit and without her it would be
impossible to accomplish my study. I would never forget all the fun, happy and joyful moments that we spent together.

I would like to express my deep thanks to my senior Dr. Yong Yoke Keong for the valuable advices, assistances and support during the whole period of my study. I have been extremely lucky to have a senior who always encouraged and inspired me with positive and motivational words.

Lastly, I would like to express my deepest gratitude to my family for their love, trust, encouragement and unconditional support throughout my studies and my life. Special thanks to Mr. Tan Sin Yee for his love, support and patiently waiting for me to complete my study. This journey of study would not have been possible without the support from them. Thank you.
I certify that a Thesis Examination Committee has met on 26 January 2017 to conduct the final examination of Ng Chin Theng on her thesis entitled “Mechanisms of Interferon-Gamma (IFN-γ)-Induced Hyperpermeability Changes in Human Umbilical Vein Endothelial Cells” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Roslida Abd Hamid, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Abdah Md Akim, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Goh Yong Meng, PhD
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Internal Examiner)

Huang Yu, PhD
Professor
Faculty of Medicine
Chinese University of Hong Kong
Hong Kong
(External Examiner)

NOR AINI AB SHUKOR, PHD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 22 March 2017
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirements for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Zuraini Ahmad, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Mohd Roslan Sulaiman, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Mohamad Aris Mohd Moklas, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

ROBIAH BINTI YUNUS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by Graduate Student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by University Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ____________________ Date: _______________

Name and Matric No.: Ng Chin Theng (GS31253)
Declaration by Members of Supervisory Committee

This is to confirm that:
- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature : ________________________
Name of Chairman of Supervisory Committee : Prof. Dr. Mohd Roslan Sulaiman

Signature : ________________________
Name of Member of Supervisory Committee : Assoc. Prof. Dr. Mohamad Aris Mohd Moklas

Signature : ________________________
Name of Member of Supervisory Committee : Assoc. Prof. Dr. Zuraini Ahmad
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xx</td>
</tr>
</tbody>
</table>

CHAPTER 1
INTRODUCTION
1.1 Justification of the study 1
1.2 Background of the Study 2
1.3 Objective 2
1.3.1 General Objective 2
1.3.2 Specific Objectives 2
1.4 Hypotheses 3

CHAPTER 2
LITERATURE REVIEW
2.1 Inflammation 4
2.2 Cytokines 5
2.2.1 Characteristics of Cytokines 5
2.3 Interferon Family 6
2.3.1 Interferon-gamma (IFN-γ) 7
2.3.2 Role of IFN-γ in Inflammatory Diseases 8
2.3.3 Role of IFN-γ in Barrier Function 8
2.4 Vascular Endothelium 9
2.4.1 Capillary, Artery and Vein Endothelium 10
2.4.2 Macrovascular versus Microvascular Endothelial Cells 12
2.4.3 Human umbilical vein endothelial cells 13
2.4.4 The Endothelium at Rest 14
2.4.5 Type I Endothelial Cell Activation 15
2.4.6 Type II Endothelial Cell Activation 15
2.5 The Endothelial Barrier 16
2.5.1 Mural Cells 17
2.5.2 Transcellular Pathway 18
2.5.3 Paracellular Pathway 19
2.6 Cytoskeleton 21
2.6.1 Actin Cytoskeleton 21
2.7 Cytoskeleton-Associated Protein 23
2.7.1 Caldesmon 24
2.8 Adherens Junction 25
2.8.1 VE-cadherin 25
2.8.2 β-catenin 27
2.9 P38 MAP Kinases Pathway
2.9.1 Isoforms of p38 MAP Kinases
2.9.2 Role of p38 MAP Kinases in Inflammation
2.10 NO-cGMP Pathway

3 MATERIALS AND METHODS
3.1 Materials
3.2 Determination of the Effects of IFN-γ in HUVECs monolayer
3.2.1 Cell Culture
3.2.2 Determination of Cytotoxicity
3.2.2.1 MTT Assay
3.2.2.2 ATP Assay
3.2.3 Determination of HUVECs Permeability
3.2.4 Evaluation of the Involvement of Actin Cytoskeleton in IFN-γ-Induced Endothelial Hyperpermeability
3.2.5 Evaluation of Cell Morphology and Actin Distribution
3.2.6 Determination of F-/G-actin Ratio
3.2.6.1 Isolation of F- and G-actin
3.2.6.2 Detection of F-/G-actin by Western Blot
3.2.7 Evaluation of Caldesmon Localization
3.2.8 Detection of Phosphorylated Caldesmon
3.2.9 Evaluation of the Interactions of Caldesmon with Actin and Myosin
3.2.9.1 Sample Preparation
3.2.9.2 Pre-clear Lysates
3.2.9.3 Antibody Immobilization
3.2.9.4 Elution of Co-IP
3.2.9.5 Detection of Caldesmon, Actin and Myosin by Western Blot
3.2.10 Evaluation of Adherens Junction Localization
3.2.11 Detection of Adherens Junction Protein Expression
3.2.12 Determination of Adherens Junction in Different Cell Compartments
3.2.12.1 Isolation of Cytosolic, Membrane and Cytoskeleton Fractions
3.2.12.2 Detection of VE-cadherin and β-catenin by Western Blot
3.3 Evaluation of Signaling Pathway
3.3.1 Detection of p38 MAP Kinase Phosphorylation
3.3.2 Evaluation of the Effect of SB203580 in HUVECs Permeability
3.3.3 Evaluation of the Effect of SB203580 in Cell Morphology and Actin Distribution
3.3.4 Evaluation of the Effect of SB203580 in F-/G-actin Ratio
3.3.4.1 Isolation of F- and G-actin
3.3.4.2 Detection of F-/G-actin by Western Blot
3.3.5 Evaluation of the Effect of SB203580 in Caldesmon
3.3.6 Evaluation of the Effect of SB203580 in Phosphorylated Caldesmon

3.3.7 Evaluation of the Effect of SB203580 in Interaction of Caldesmon to Actin and Myosin
3.3.7.1 Sample Preparation
3.3.7.2 Pre-clear Lysates
3.3.7.3 Antibody Immobilization
3.3.7.4 Elution of Co-IP
3.3.7.5 Detection of Caldesmon, Actin and Myosin by Western Blot

3.3.8 Evaluation of the Effect of SB203580 in Adherens Junction Localization

3.3.9 Evaluation of the Effect of SB203580 in Adherens Junction Protein Expressions

3.3.10 Evaluation of the Effect of SB203580 in Subcellular Fractionation of Adherens Junction
3.3.10.1 Isolation of Cytosolic, Membrane and Cytoskeleton Fractions
3.3.10.2 Detection of VE-cadherin and β-catenin by Western Blot

3.3.11 Detection of NO Levels
3.3.12 Detection of cGMP Levels
3.3.13 Evaluation of NO-cGMP Pathway in IFN-γ-induced HUVECs Hyperpermeability
3.3.14 Evaluation of the Involvement of NOS in IFN-γ-induced HUVECs Hyperpermeability

3.4 Statistical Analysis

4 RESULTS
4.1 Determination of the Effects of IFN-γ in HUVECs Monolayers
4.1.1 Effect of IFN-γ on HUVECs viability
4.1.2 Effect of IFN-γ on HUVECs Permeability
4.1.3 Determination of the Involvement of Actin Cytoskeleton in IFN-γ-induced HUVECs Hyperpermeability
4.1.4 Effect of IFN-γ on HUVECs Morphology and Actin Distribution
4.1.5 Determination of F-/G-actin Ratio upon IFN-γ Stimulation
4.1.6 Evaluation of Caldesmon Localization upon IFN-γ Stimulation
4.1.7 Detection of Caldesmon Phosphorylation upon IFN-γ Stimulation
4.1.8 Evaluation of the Interactions of Caldesmon to Actin and Myosin upon IFN-γ Stimulation
4.1.9 Evaluation of Adherens Junctions Localization after IFN-γ Stimulation
4.1.9.1 VE-cadherin
4.1.9.2 β-catenin

xiii
4.1.10 Detection of Adherens Junction Protein Expressions upon IFN-γ Stimulation

4.1.11 Determination of Adherens Junction Expressions in Different Subcellular Fractions of HUVECs upon IFN-γ Stimulation

4.2 Signaling Pathways

4.2.1 Detection of p38 MAP Kinase Phosphorylation upon IFN-γ Stimulation

4.2.2 Effect of p38 MAP Kinase Inhibitor in IFN-γ-induced HUVECs Hyperpermeability

4.2.3 Effect of p38 MAP Kinase Inhibitor in IFN-γ-induced Cell Morphology Changes and Actin Remodeling

4.2.4 Effect of p38 MAP Kinase Inhibitor on IFN-γ-induced Increased F-/G-actin Ratio

4.2.5 Effect of p38 MAP Kinase Inhibitor on IFN-γ-induced Caldesmon Relocalization

4.2.6 Effect of p38 MAP Kinase Inhibitor on IFN-γ-induced Increased Caldesmon Phosphorylation

4.2.7 Effect of p38 MAP Kinase Inhibitor on Interactions of Caldesmon to Actin and Myosin in IFN-γ-treated HUVECs

4.2.8 Effect of p38 MAP Kinase Inhibitor on IFN-γ-induced Adherens Junction Relocalization

4.2.8.1 VE-cadherin

4.2.8.2 β-catenin

4.2.9 Effect of p38 MAP Kinase Inhibitor on IFN-γ-induced Reduced Adherens Junction Protein Expressions

4.2.10 Effect of p38 MAP Kinase Inhibitor on Adherens Junction Expressions in Different Cellular Compartments in IFN-γ-treated HUVECs.

4.2.11 Effect of IFN-γ on NO and cGMP Levels

4.2.12 Evaluation of the Involvement of NO-cGMP in IFN-γ-induced Endothelial Hyperpermeability

4.2.13 Evaluation of the Involvement of NOS in IFN-γ-induced Endothelial Hyperpermeability

5 DISCUSSION

6 SUMMARY, CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH

6.1 Summary

6.2 Conclusion

6.3 Recommendations for Future Research

REFERENCES

APPENDICES
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>A schematic representation of the IFN-γ signal transduction pathway</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>A schematic representation of an artery in cross section</td>
<td>10</td>
</tr>
<tr>
<td>2.3</td>
<td>Endothelial cells in arteries, veins and capillaries</td>
<td>11</td>
</tr>
<tr>
<td>2.4</td>
<td>Multiple functions of endothelium</td>
<td>14</td>
</tr>
<tr>
<td>2.5</td>
<td>Differences between a healthy and a dysfunctional endothelium</td>
<td>16</td>
</tr>
<tr>
<td>2.6</td>
<td>Pathways that control the barrier function in endothelial cells</td>
<td>17</td>
</tr>
<tr>
<td>2.7</td>
<td>Transport pathways in endothelium</td>
<td>18</td>
</tr>
<tr>
<td>2.8</td>
<td>Interendothelial junction complexes in endothelial cells</td>
<td>20</td>
</tr>
<tr>
<td>2.9</td>
<td>Cytoskeleton distribution and signaling molecules that contribute to barrier stabilization and barrier dysfunction</td>
<td>22</td>
</tr>
<tr>
<td>2.10</td>
<td>The domain structures of H- and L-caldesmon</td>
<td>24</td>
</tr>
<tr>
<td>2.11</td>
<td>P38 MAP kinases signaling pathways</td>
<td>28</td>
</tr>
<tr>
<td>2.12</td>
<td>NO-sGC-cGMP-PKG pathway</td>
<td>30</td>
</tr>
<tr>
<td>4.1</td>
<td>Cytotoxicity effect of IFN-γ on HUVECs</td>
<td>47</td>
</tr>
<tr>
<td>4.2</td>
<td>Permeability changes induced by IFN-γ at various time points</td>
<td>50</td>
</tr>
<tr>
<td>4.3</td>
<td>Dose-response studies of IFN-γ in HUVECs permeability</td>
<td>51</td>
</tr>
<tr>
<td>4.4</td>
<td>Involvement of actin in IFN-γ-induced HUVECs hyperpermeability</td>
<td>53</td>
</tr>
<tr>
<td>4.5</td>
<td>Fluorescence images of cell morphology and actin distribution (600X magnification)</td>
<td>56</td>
</tr>
<tr>
<td>4.6</td>
<td>Changes in F-/G-actin ratio after challenged with IFN-γ</td>
<td>58</td>
</tr>
<tr>
<td>4.7</td>
<td>Fluorescent images of caldesmon localization (600X magnification)</td>
<td>62</td>
</tr>
<tr>
<td>4.8</td>
<td>Western blot analysis of caldesmon phosphorylation</td>
<td>64</td>
</tr>
<tr>
<td>4.9</td>
<td>Interaction of caldesmon with actin and myosin after IFN-γ</td>
<td>66</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>4.10</td>
<td>Fluorescent images of VE-cadherin organization (600X magnification)</td>
<td>70</td>
</tr>
<tr>
<td>4.11</td>
<td>Quantification of VE-cadherin junctional area upon IFN-γ stimulation</td>
<td>71</td>
</tr>
<tr>
<td>4.12</td>
<td>Fluorescent images of β-catenin localization (600X magnification)</td>
<td>75</td>
</tr>
<tr>
<td>4.13</td>
<td>Quantification of β-catenin junctional area upon IFN-γ stimulation</td>
<td>76</td>
</tr>
<tr>
<td>4.14</td>
<td>VE-cadherin and β-catenin protein expression after IFN-γ treatment</td>
<td>78</td>
</tr>
<tr>
<td>4.15</td>
<td>Subcellular fractionation studies of β-catenin and VE-cadherin expression after IFN-γ treatment</td>
<td>82</td>
</tr>
<tr>
<td>4.16</td>
<td>Phosphorylation of p38 MAP kinase</td>
<td>84</td>
</tr>
<tr>
<td>4.17</td>
<td>Permeability changes of HUVECs</td>
<td>86</td>
</tr>
<tr>
<td>4.18</td>
<td>Confocal images of actin remodeling and cell shape changes (600X magnification)</td>
<td>88</td>
</tr>
<tr>
<td>4.19</td>
<td>Changes of F/G-actin ratio on HUVECs</td>
<td>90</td>
</tr>
<tr>
<td>4.20</td>
<td>Confocal images of caldesmon redistribution (600X magnification)</td>
<td>93</td>
</tr>
<tr>
<td>4.21</td>
<td>Western blot analysis of caldesmon phosphorylation</td>
<td>95</td>
</tr>
<tr>
<td>4.22</td>
<td>Interaction of caldesmon with actin and myosin</td>
<td>97</td>
</tr>
<tr>
<td>4.23</td>
<td>Confocal images of VE-cadherin disorganization (600X magnification)</td>
<td>101</td>
</tr>
<tr>
<td>4.24</td>
<td>Quantification of VE-cadherin junctional areas</td>
<td>102</td>
</tr>
<tr>
<td>4.25</td>
<td>Confocal images of β-catenin disorganization (600X magnification)</td>
<td>106</td>
</tr>
<tr>
<td>4.26</td>
<td>Quantification of β-catenin junctional areas</td>
<td>107</td>
</tr>
<tr>
<td>4.27</td>
<td>Western blot analysis of β-catenin and VE-cadherin expressions</td>
<td>109</td>
</tr>
<tr>
<td>4.28</td>
<td>Expression of β-catenin and VE-cadherin in subcellular fractions</td>
<td>113</td>
</tr>
<tr>
<td>4.29</td>
<td>Levels of NO and cGMP</td>
<td>115</td>
</tr>
</tbody>
</table>
4.30 Involvement of NO and cGMP in IFN-γ-induced endothelial hyperpermeability 117

4.31 Role of NOS in IFN-γ-induced endothelial hyperpermeability 119
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Preparations of buffers of western blot</td>
<td>154</td>
</tr>
<tr>
<td>A2</td>
<td>NO standard curve</td>
<td>156</td>
</tr>
<tr>
<td>A3</td>
<td>cGMP standard curve</td>
<td>157</td>
</tr>
<tr>
<td>A4</td>
<td>Actin standard curve</td>
<td>158</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AJ</td>
<td>Adherens junction</td>
</tr>
<tr>
<td>ERK</td>
<td>Extracellular signal-regulated kinase</td>
</tr>
<tr>
<td>FITC</td>
<td>Fluorescein isothiocyanate</td>
</tr>
<tr>
<td>ICAM</td>
<td>Intercellular adhesion molecule</td>
</tr>
<tr>
<td>IFN</td>
<td>Interferon</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>JAK</td>
<td>Janus kinase</td>
</tr>
<tr>
<td>JAM</td>
<td>Junction adhesion molecule</td>
</tr>
<tr>
<td>JAM</td>
<td>Junctional adhesion molecule</td>
</tr>
<tr>
<td>MAPK</td>
<td>Mitogen-activated protein kinase</td>
</tr>
<tr>
<td>MLC</td>
<td>Myosin regulatory light chain</td>
</tr>
<tr>
<td>NF-κB</td>
<td>Nuclear factor-kappa B</td>
</tr>
<tr>
<td>NO</td>
<td>Nitric oxide</td>
</tr>
<tr>
<td>NOS</td>
<td>Nitric oxide synthase</td>
</tr>
<tr>
<td>p38MAPK</td>
<td>p38 mitogen-activated protein kinase</td>
</tr>
<tr>
<td>PAF</td>
<td>Platelet-activating factor</td>
</tr>
<tr>
<td>PECAM</td>
<td>Platelet endothelial cell adhesion molecule</td>
</tr>
<tr>
<td>PI3K</td>
<td>Phosphoinositol-3'-OH kinase</td>
</tr>
<tr>
<td>PKC</td>
<td>Protein kinase C</td>
</tr>
<tr>
<td>PMA</td>
<td>Phorbol-12-myristate-13-acetate</td>
</tr>
<tr>
<td>RFU</td>
<td>Relative fluorescence unit</td>
</tr>
<tr>
<td>ROCK</td>
<td>Rho-associated protein kinase</td>
</tr>
<tr>
<td>SOCS</td>
<td>Suppressor of cytokine signaling</td>
</tr>
<tr>
<td>STAT</td>
<td>Signal transducer and activator of transcription</td>
</tr>
<tr>
<td>TJ</td>
<td>Tight junction</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumour necrosis factor</td>
</tr>
<tr>
<td>VCAM</td>
<td>Vascular cell adhesion molecule</td>
</tr>
<tr>
<td>VVO</td>
<td>Vesiculo-vacuolar organelle</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Justification of the Study

Endothelial dysfunction, characterized by an increase in endothelial permeability, is an early step in the pathogenesis of vascular diseases. Endothelial dysfunction is mainly resulted from disruption of the endothelial barrier function. IFN-γ, a pro-inflammatory cytokine, has been reported to impair the endothelial barrier and causes increased endothelial permeability (Stolpen et al., 1986). Accumulating evidence over the past decade has highlighted the roles of IFN-γ in mediating various types of vascular diseases such as atherosclerosis (Voloshyna et al., 2014). However, the underlying mechanisms by which IFN-γ causes increased endothelial permeability, particularly the roles of cytoskeleton and interendothelial junctions, have never been clarified. In addition, the signaling pathways leading to IFN-γ-induced endothelial hyperpermeability remain unknown. Therefore, understanding of the mechanisms underlie IFN-γ-induced endothelial barrier disruption is important and it could provide novel therapeutic targets that can be further developed to treat IFN-γ-associated vascular diseases.

1.2 Background of the study

Vascular endothelial cells form a thin monolayer called endothelium which encloses the inner surface of the blood vessels, forming a natural protective barrier that separates the bloodstream from underlying tissue. This protective barrier allows the small molecules to pass through the endothelium while restricts the passage of large molecules; this is known as semi-permeable barrier (Vandenbroucke et al., 2008). Under inflammatory condition, the endothelial cells become activated that in turn leads to impairment of the barrier function; this is known as endothelial dysfunction. As a consequence, large amount of solutes and cells escape from bloodstream and enter into underlying tissue; these result in oedema formation, a hallmark of acute inflammation (Murakami and Hirano, 2012).

IFN-γ is a proinflammatory cytokine well known to interfere with viral replication and defense against microbial infection. Due to this reason, the immunoregulatory activity of IFN-γ has been well studied and characterized (Akdis et al., 2011). However, accumulating evidence has shown that IFN-γ is a major cytokine that participates actively in the development of vascular diseases such as atherosclerosis (Voloshyna et al., 2014). Indeed, elevated levels of IFN-γ have been detected in atherosclerotic lesions of atherosclerosis patients and animal models (Voloshyna et al., 2014). However, the impact of IFN-γ in regards to inflammation, particularly endothelial dysfunction, largely remains unknown.

In physiological conditions, the endothelial cells are closely bound to each other through interendothelial junctions such as adherens junctions (AJs) (Gavard, 2009;
Vandenbroucke et al., 2008). The AJs are connected to intracellular actin cytoskeleton via β-catenin linker protein (Yuan and Rigor, 2010b). Besides, the actin stability is regulated by an actin-binding protein known as caldesmon (Mayanagi and Sobue, 2011). The AJs, actin and caldesmon have been recognized as key regulators for the maintenance of barrier function, and therefore disturbances of these molecules will promote the leakage of molecules across the vascular endothelium. Apart from the aforementioned regulators, signaling molecules such as p38 mitogen-activated protein (p38 MAP) kinase (Adderley et al., 2015), nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) (Atochin and Huang, 2010) are also well known to regulate the endothelial barrier function. Given the significance roles of actin, caldesmon, AJs, p38 MAP kinase and NO-cGMP in the regulation of endothelial barrier, a better understanding of the roles of these regulators in regulating the IFN-γ-induced hyperpermeability changes might lead to the development of new pharmacotherapies to mitigate vascular disease progression initiated by IFN-γ.

In this study, HUVECs were selected due to the critical importance of vascular endothelial cells in the development of vascular disease. Importantly, inflammatory events, such as increased permeability, occur predominantly in postcapillary venules in vivo (Aird, 2007). Therefore, endothelial cells derived from human vein are more responsive to inflammatory stimuli such as proinflammatory cytokine. Under appropriate culture conditions, HUVECs form a continuous endothelium, characterized by continuous endothelial cell layer and well-formed basement membrane, (Hamilton et al., 2007), yet they can undergo dynamic cellular changes towards agonist (Aird, 2012). Due to these unique features of HUVECs, HUVECs are a suitable model system for the assessment of permeability changes in vitro, and the application of IFN-γ was used to mimic the inflammatory conditions in human body.

1.3 Objective

1.3.1 General Objective

The study was to determine the underlying mechanisms of IFN-γ in increasing permeability of human umbilical vein endothelial cells.

1.3.2 Specific Objectives

The specific objectives of this study were:
1. To investigate the effect of IFN-γ in HUVECs permeability.
2. To elucidate the role of cytoskeleton in the regulation of HUVECs permeability following IFN-γ stimulation.
3. To elucidate the regulatory role of cytoskeleton-associated protein on IFN-γ-induced cytoskeletal remodeling.
4. To elucidate the organization of interendothelial junction upon IFN-γ stimulation.
5. To examine the signaling molecules that regulates HUVECs permeability changes, cytoskeleton remodeling and alteration of interendothelial junction upon IFN-γ stimulation.

1.4 Hypotheses

IFN-γ will impair the HUVECs barrier function by inducing endothelial permeability changes, which will involve cytoskeleton, cytoskeleton-associated protein and interendothelial junction. The molecular mechanisms activated by IFN-γ will involve p38 MAP kinase and NO-cGMP pathways.
REFERENCES

dependent on its interaction with globular actin in human umbilical vein endothelial cells. *J Mol Cell Cardiol*, 51(3): 419-427.

