UNIVERSITI PUTRA MALAYSIA

METABOLIC EFFECTS OF Cosmos caudatus Kunth (ULAM RAJA) SUPPLEMENTATION IN TYPE-2 DIABETES MELLITUS PATIENTS

CHENG SHI HUI

FPSK(P) 2017 3
METABOLIC EFFECTS OF *Cosmos caudatus* Kunth (ULAM RAJA) SUPPLEMENTATION IN TYPE-2 DIABETES MELLITUS PATIENTS

By

CHENG SHI HUI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Doctor of Philosophy

January 2017
All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

METABOLIC EFFECTS OF *Cosmos caudatus* Kunth (ULAM RAJA) SUPPLEMENTATION IN TYPE-2 DIABETES MELLITUS PATIENTS

By

CHENG SHI HUI

January 2017

Chair : Barakatun Nisak Mohd Yusof, PhD
Faculty : Medicine and Health Sciences

Cosmos caudatus, or locally known as “Ulam Raja” is a medicinal plant in Southeast Asia countries with reported medicinal benefits. Previously, supplementation with *C. caudatus* extract was found able to reduce plasma blood glucose in rats, but its effect in patients with type 2 diabetes mellitus (T2DM) was not established. To address this research gap, the present study aimed to determine the metabolic effects of *C. caudatus* in T2DM patients. The study was started by identifying the best way of *C. caudatus* supplementations. The first aim was to determine the antioxidant capacity of *C. caudatus* leaf extracts and juice using different extraction solvents (100% methanol, 100% ethanol, 95% ethanol, 50% ethanol). The findings found that *C. caudatus* leaves extracts had higher antioxidant capacity than *C. caudatus* juice. Following the first study, a two-arm randomized controlled clinical trial was carried out to determine the effectiveness and safety of *C. caudatus* supplementation in T2DM patients.

A total of 101 T2DM patients (age: 49.7 ± 9.1 years; mean HbA1C: 8.8 ± 1.6 %; BMI: 29.8 ± 4.7 kg/m²; 56% male) were enrolled into the study. Participants were randomly assigned to diabetic-ulam group or diabetic controls. Patients in diabetic-ulam group consumed 15g of raw *C. caudatus* daily for 8 weeks while diabetic controls were abstained from taking *C. caudatus*. Both groups received standard lifestyle interventions. Changes in glycemic control, cardiovascular risk factors (anthropometric, blood pressure, lipid profile, high sensitivity C-reactive protein), renal profile, and liver function were measured at baseline, week 4, week 8 and week 12 (post-intervention follow-up) of the study.

As compared to diabetic controls, *C. caudatus* consumption significantly reduced serum insulin (−1.16 versus +3.91 µU/ml in controls), lowered homeostasis model assessment of insulin resistance (HOMA-IR) (−1.09 versus +1.34 unit in controls), and increased quantitative insulin sensitivity check index (QUICKI) (+0.05 versus −0.03 unit in
controls) in diabetic-ulam group. Subjects in diabetic-ulam group showed greater improvement in HbA1C (−0.76 %) as compared to diabetic controls (−0.37 %). Furthermore, supplementation of *C. caudatus* also resulted in the reduction of inflammation marker (hs-CRP) and systolic blood pressure, indicated its beneficial effect on reducing cardiovascular risk factors. Furthermore, *C. caudatus* consumption was found to be safe throughout the duration of the study as evident by no significant difference in liver and renal profile at the end of the study. Other parameters did not change significantly between the two groups.

In addition, a proton nuclear magnetic resonance spectroscopy (¹H NMR) based metabolomics approach was performed to determine the metabolic perturbation following *C. caudatus* consumption in T2DM patients. A total of 39 healthy individuals (age: 38.7 ± 8.5 years; BMI: 22.0 ± 1.7 kg/m²; 44% male) were recruited as healthy controls, and their urine and blood serum metabolic profiles were compared with those obtained from diabetic controls and diabetic-ulam groups. As compared to healthy individuals, the concentrations of urinary lactate, branched-chain amino acids (BCAA, including valine, leucine and isoleucine), alanine, lysine, glutamate, glutamine, and pyruvate were significantly increased in T2DM patients, whereas the concentration of urinary urea was significantly decreased in T2DM patients. In addition, concentrations of blood serum lactate, BCAA (valine, leucine and isoleucine), alanine, lysine, glutamate, and N-acetylglutamate were significantly elevated in T2DM patients as compared to healthy individuals. These findings are consistent with published literature.

Following supplementation with *C. caudatus*, serum concentration of alanine, lactate and N-acetylglutamate were significantly decreased in diabetic-ulam group. The findings indicated a partial reversal of diabetes-induced metabolic changes through altered glycolysis, gluconeogenesis and glutamate metabolism. In addition, supplementation with *C. caudatus* was found to increase the concentration of urinary hippurate in diabetic-ulam group as compared to diabetic controls, suggesting changes in gut microflora metabolism.

In conclusion, the current study provided evidence that supplementation with *C. caudatus* improved insulin sensitivity in T2DM patients, evidenced by improved HOMA-IR and QUICKI parameters. It also improved hs-CRP and systolic blood pressure in T2DM patients, suggesting its effect in reducing the cardiovascular risk factors. The current results also showed that *C. caudatus* did not negatively affect liver and renal functions, suggesting that it is safe for T2DM patients. Furthermore, metabolomic data showed that *C. caudatus* supplementation partially reversed some known diabetes-induced metabolic changes such as lactate and BCAA in blood and urine. In summary, the current study uncovered the beneficial potential of *C. caudatus* for T2DM patients, and a longer term randomized controlled clinical trial is warranted to fully explore its therapeutic potential.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

KESAN METABOLIK SUPPLEMEN Cosmos caudatus KUNTH (ULAM RAJA) DI KALANGAN PESAKIT DIABETES MELLITUS JENIS DUA

Oleh

CHENG SHI HUI

Januari 2017

Pengerusi : Barakatun Nisak Mohd Yusof, PhD

Fakulti : Perubatan dan Sains Kesihatan

Cosmos caudatus, atau dikenali sebagai “Ulam Raja” adalah sejenis herba yang digunakan untuk tujuan perubatan di negara Asia Tenggara. Sebelum ini, didapati ekstrak C. caudatus dapat mengurangkan plasma glukosa darah dalam model tikus, tetapi kesannya di kalangan pesakit diabetes melitus jenis dua (T2DM) masih tidak diketahui. Untuk menangani jurang ini, kajian ini bertujuan untuk menentukan kesan metabolik supplemen C. caudatus di kalangan pesakit T2DM. Kajian ini dimulakan dengan mengenal pasti cara terbaik untuk supplemen C. caudatus. Matlamat pertama adalah untuk menentukan kapasiti antioksidan daun ekstrak C. caudatus dan jus menggunakan pelarut pengekstrakan yang berbeza (100% methanol, 100% ethanol, 95% ethanol, 50% ethanol). Hasil kajian mendapati bahawa ekstrak C. caudatus mengandungi antioksidan yang lebih tinggi daripada jus C. caudatus. Lanjutan dari kajian pertama, kajian kedua iaitu klinikal terkawal secara rawak telah dijalankan untuk menentukan keberkesanan dan keselamatan supplemen C. caudatus di kalangan pesakit T2DM.

Seramai 101 pesakit T2DM (umur : 49.7 ± 9.1 tahun; min HbA1C: 8.8 ± 1.6 %; BMI: 29.8 ± 4.7 kg/m²; 56% lelaki) telah menyertai kajian ini. Peserta dibahagikan secara rawak kepada kumpulan diabetes-ulam atau kumpulan kawalan diabetes. Subjek dalam kumpulan diabetes-ulam mengambil 15g C. caudatus setiap hari selama lapan minggu manakala kumpulan kawalan diabetes telah dikecualikan daripada pengambilan C. caudatus. Kedua-dua kumpulan menerima nasihat gaya hidup yang sama. Perubahan dalam kawalan glisemik, faktor risiko kardiovaskular (antropometri, tekanan darah, profil lipid, kepekaan tinggi protein C-reaktit), profil buah pinggang dan fungsi hati diukur pada minggu 0, minggu 4, minggu 8 dan minggu 12 (kajian susulan).

Berbanding dengan kumpulan kawalan diabetes, pengambilan C. caudatus dapat mengurangkan serum insulin (−1.16 berbanding +3.91 µU/ml dalam kawalan), menurunkan penilaian model homeostasis rintangan insulin (HOMA-IR) (−1.09
berbanding +1.34 unit dalam kawalan), dan meningkatkan pengambilan kuantitatif indeks insulin sensitiviti (QUICKI) (+0.05 berbanding −0.03 unit dalam kawalan) dalam kumpulan diabetes-ulam. Pesakit dalam kumpulan diabetes-ulam menunjukkan penurunan yang lebih banyak dari segi tahap HbA1c (−0.76 %) berbanding dengan kumpulan kawalan diabetes (−0.37 %). Tambahan lagi, supplemen C. caudatus juga menyebabkan pengurangan penanda keradangan (hs-CRP) dan tekanan darah sistolik, menunjukkan C. caudatus mempunyai kesan yang baik dalam mengurangkan faktor risiko kardiovaskular. Pengambilan C. caudatus didapati selamat sepanjang tempoh kajian kerana tiada perbezaan yang signifikan dalam profil hati dan buah pinggang pada akhir kajian. Parameter lain tidak berubah secara signifikan antara kedua-dua kumpulan.

Di samping itu, pendekatan metabolomik menggunakan spektroskopi nuklear magnet resonans proton (1H NMR) telah dijalankan untuk menentukan perubahan metabolit selepas supplemen C. caudatus di kalangan pesakit T2DM. Sejumlah 39 individu yang sihat (umur: 38.7 ± 8.5 tahun; BMI: 22.0 ± 1.7 kg/m²; 44% lelaki) telah diambil sebagai kawalan, dan profil metabolik urin and darah mereka dibandingkan dengan kumpulan kawalan diabetes dan kumpulan diabetes-ulam. Berbanding dengan individu yang sihat, kepekatan laktat, asid amino rantai bercabang (BCAA, termasuk valine, leucine, dan isoleucin), alanin, lisin, glutamat, glutamin, dan piruvat dalam urin telah meningkat dengan ketara dalam pesakit T2DM, manakala kepekatan urea dalam urin telah menurun dengan ketara dalam pesakit T2DM. Di samping itu, kepekatan laktat, BCAA, alanin, lisin, glutamat dan N-acetylglutamate dalam serum darah meningkat dengan ketara dalam pesakit T2DM berbanding individu yang sihat. Penemuan ini adalah konsisten dengan kertas jurnal yang diterbitkan.

ACKNOWLEDGEMENTS

I would like to convey my deepest gratitude to the following remarkable individuals who helped in making my thesis possible. First and foremost, sincere thanks to my supervisor, Dr. Barakatun Nisak Mohd Yusof for her guidance and support throughout the research. I am grateful to Prof. Dr. Amin Ismail for his support and generosity in sharing with me his knowledge. I also thank Dr. Alfi Khatib for his helpful suggestions. In addition, I would like to express my gratitude to Dr. Joseph Anthony and Dr Ng Ooi Chuan for kindly reviewed the subjects throughout the study.

I am truly grateful to be the recipient of the Mybrain Myphd scholarship under Ministry of Higher Education Malaysia. I would like to acknowledge the grant from Agro-biotechnology Institute Malaysia for funding this research. In addition, I would like to extend my sincere gratitude to all the subjects who participated in this clinical trial for their time, support and co-operation. Special thanks to all the staffs in medical clinic Hospital Serdang for their kind assistance and support throughout the research.

My appreciation also goes to all my friends for their moral support and encouragement throughout the research journey. Last but not least, my sincere gratitude goes to my beloved family members who have always been my tower of strength and source of inspiration throughout my research.
I certify that a Thesis Examination Committee has met on 6th January 2017 to conduct the final examination of Cheng Shi Hui on her thesis entitled “Metabolic effects of Cosmos caudatus Kunth (Ulam Raja) supplementation in Type-2 Diabetes Mellitus patients” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Azrina Azlan, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Norhaizan Mohd Esa, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Loh Su Peng, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Manohar Garg, PhD
Professor
University of Newcastle
Australia
(External Examiner)

NOR AINI AB. SHUKOR, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 22 March 2017
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Barakatun Nisak Mohd Yusof, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairperson)

Amin Ismail, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Joseph Anthony, M.B.B.S
Senior Medical Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Alfi Khatib, PhD
Associate Professor
Faculty of Pharmacy
International Islamic University Malaysia
(Member)

__
ROBIAH BINTI YUNUS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia
Date:

vii
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ________________________ Date: __________________

Name and Matric No.: ___
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: __________________________
Name of Chairman of Supervisory Committee: Barakatun Nisak Mohd Yusof, PhD

Signature: __________________________
Name of Member of Supervisory Committee: Amin Ismail, PhD

Signature: __________________________
Name of Member of Supervisory Committee: Joseph Anthony, M.B.B.S

Signature: __________________________
Name of Member of Supervisory Committee: Alfi Khatib, PhD
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
<td></td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xviii</td>
<td></td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xix</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Research Background</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Statement of Problem</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>Significance of the study</td>
<td>3</td>
</tr>
<tr>
<td>1.4</td>
<td>General Objective</td>
<td>3</td>
</tr>
<tr>
<td>1.5</td>
<td>Specific Objectives</td>
<td>3</td>
</tr>
<tr>
<td>1.6</td>
<td>Research conceptual framework</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>LITERATURE REVIEW</td>
<td>6</td>
</tr>
<tr>
<td>2.1</td>
<td>Overview of diabetes mellitus</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Epidemiology of diabetes mellitus</td>
<td>6</td>
</tr>
<tr>
<td>2.3</td>
<td>Clinical pathophysiology of T1DM</td>
<td>7</td>
</tr>
<tr>
<td>2.4</td>
<td>Clinical pathophysiology of T2DM</td>
<td>7</td>
</tr>
<tr>
<td>2.5</td>
<td>Impact of T2DM</td>
<td>10</td>
</tr>
<tr>
<td>2.6</td>
<td>Diagnostic criteria for T2DM</td>
<td>10</td>
</tr>
<tr>
<td>2.7</td>
<td>Management of T2DM</td>
<td>11</td>
</tr>
<tr>
<td>2.8</td>
<td>Lifestyle intervention</td>
<td>12</td>
</tr>
<tr>
<td>2.9</td>
<td>Current drug treatment for T2DM</td>
<td>12</td>
</tr>
<tr>
<td>2.10</td>
<td>Therapeutic effect of Malaysian herbs</td>
<td>14</td>
</tr>
<tr>
<td>2.11</td>
<td>Cosmos caudatus (Ulam Raja)</td>
<td>16</td>
</tr>
<tr>
<td>2.11.1</td>
<td>Mechanism of action of C. caudatus on glucose metabolism</td>
<td>18</td>
</tr>
<tr>
<td>2.11.2</td>
<td>Safety of C. caudatus consumption</td>
<td>19</td>
</tr>
<tr>
<td>2.12</td>
<td>Health benefits of polyphenols</td>
<td>20</td>
</tr>
<tr>
<td>2.13</td>
<td>Antioxidant compounds and their effect on glucose metabolism</td>
<td>21</td>
</tr>
<tr>
<td>2.14</td>
<td>Metabolomics</td>
<td>23</td>
</tr>
<tr>
<td>2.14.1</td>
<td>Metabolomics application in T2DM</td>
<td>26</td>
</tr>
<tr>
<td>3</td>
<td>ANTIOXIDANT CAPACITY OF Cosmos caudatus EXTRACTED USING DIFFERENT SOLVENTS</td>
<td>29</td>
</tr>
</tbody>
</table>
3.1 Introduction 29
3.2 Materials and Methods 29
 3.2.1 Solvents and chemicals 29
 3.2.2 Plant material 30
 3.2.3 Preparation of C. caudatus extracts and juice 30
 3.2.4 Determination of total phenolic content 30
 3.2.5 Determination of total flavonoid content 30
 3.2.6 DPPH radical scavenging assay 31
 3.2.7 ABTS radical scavenging assay 31
 3.2.8 Ferric reducing antioxidant power (FRAP) assay 32
 3.2.9 HPLC determination of ascorbic acid 32
 3.2.10 Statistical analysis 32
3.3 Results 33
 3.3.1 Extraction yield 33
 3.3.2 Total phenolic content 33
 3.3.3 Total flavonoid content 34
 3.3.4 DPPH radical scavenging assay 34
 3.3.5 ABTS radical scavenging assay 35
 3.3.6 Ferric reducing antioxidant power (FRAP) assay 35
 3.3.7 Ascorbic acid equivalent antioxidant capacity (AEAC) 36
 3.3.8 HPLC determination of ascorbic acid content 37
 3.3.9 Correlation analysis 37
3.4 Discussion 38
3.5 Conclusion 39

4 EFFECT OF Cosmos caudatus (ULAM RAJA) SUPPLEMENTATION IN T2DM PATIENTS: A RANDOMIZED CONTROLLED TRIAL 40
4.1 Introduction 40
4.2 Materials and Methods 41
 4.2.1 Trial design 41
 4.2.2 Ethical approval and funding 41
 4.2.3 Sample size determination 41
 4.2.4 Screening and recruitment 42
 4.2.5 Inclusion criteria 42
 4.2.6 Exclusion criteria 42
 4.2.7 Randomization 42
 4.2.8 Intervention 43
 4.2.8.1 Diabetic-ulam group 43
 4.2.8.2 Diabetic controls 44
 4.2.9 Study visits 45
 4.2.10 Adherence 46
 4.2.11 Management of withdrawal and drop-out process 46
 4.2.12 Safety of C. caudatus consumption in T2DM patients 46
 4.2.13 Outcomes measurements 46
 4.2.14 Anthropometric measurements 47
 4.2.15 Blood pressure measurements 48
 4.2.16 Blood sampling 49
 4.2.17 Glycemic status assessments 49
4.2.18 Lipid profile and high sensitivity C-reactive protein assessment 50
4.2.19 Renal profile assessments 50
4.2.20 Liver profile assessments 50
4.2.21 Dietary intake assessments 50
4.2.22 Physical activity levels assessment 51
4.2.23 Statistical analysis 52
4.3 Results 53
4.3.1 Subject screening 53
4.3.2 Subject enrollment 54
4.3.3 Baseline characteristics 55
4.3.4 Socio-demographic of the subjects 55
4.3.5 Health status and lifestyle habits of the subjects 56
4.3.6 Anthropometry measurement of the subjects at baseline 58
4.3.7 Body mass index category of the subjects at baseline 59
4.3.8 Blood pressure measurement of the subjects at baseline 60
4.3.9 Metabolic control of the subjects at baseline 60
4.3.10 Dietary intake assessment of the subjects at baseline 63
4.3.11 Evaluation of energy intake using EI:BMR ratio at baseline 64
4.3.12 Physical activity levels of the subjects at baseline 64
4.3.13 Changes in glycemic control over 8 weeks 65
4.3.14 Changes in anthropometry measurements over 8 weeks 70
4.3.15 Changes in blood pressure over 8 weeks 70
4.3.16 Changes in high sensitivity C-reactive protein over 8 weeks 72
4.3.17 Changes in lipid profile over 8 weeks 73
4.3.18 Changes in renal profile over 8 weeks 73
4.3.19 Changes in liver profile over 8 weeks 73
4.3.20 Adverse effect of \textit{C. caudatus} consumption over 8 weeks 75
4.3.21 Changes in dietary intake and physical activity level over 8 weeks 75
4.3.22 Changes in glycemic control at week 12 77
4.3.23 Changes in metabolic parameters at week 12 77
4.3.24 Changes in renal profile and liver profile at week 12 79
4.3.25 Changes in dietary intake and physical activity at week 12 79
4.4 Discussion 82
4.5 Conclusion 87

5 \textbf{1H-NMR-BASED METABOLOMIC PROFILING FOLLOWING \textit{Cosmos caudatus} CONSUMPTION} 88
5.1 Introduction 88
5.2 Materials and Methods 89
5.2.1 Participant selection and study design 89
5.2.2 Blood and urine sampling 91
5.2.3 NMR metabolite profiling in serum 91
5.2.4 NMR metabolite profiling in urine
5.2.5 1H NMR spectral acquisition and preprocessing
5.2.6 Multivariate and univariate data analysis

5.3 Results

5.3.1 Socio-demographic characteristics of healthy individuals
5.3.2 Anthropometry and blood pressure measurements of the three groups
5.3.3 Glycemic status and hs-CRP measurements of the three groups
5.3.4 Lipid profile measurements of the three groups
5.3.5 Renal profile measurements of the three groups
5.3.6 Liver profile measurements of the three groups
5.3.7 Multivariate analysis of metabolic parameters between healthy individuals and diabetic-controls
5.3.8 Multivariate analysis of metabolic parameters between healthy individuals and diabetic-ulam group
5.3.9 Multivariate analysis of overall metabolic parameters in the three groups
5.3.10 Multivariate analysis of NMR urinary data between healthy individuals and diabetic-controls
5.3.11 Multivariate analysis of NMR urinary data between healthy individuals and diabetic-ulam group
5.3.12 Multivariate analysis of NMR urinary data in the three groups
5.3.13 Urinary NMR spectra and assignment of urinary metabolites
5.3.14 Relative concentration of metabolites in NMR urinary data
5.3.15 Multivariate analysis of blood serum NMR data between healthy individuals and diabetic-controls
5.3.16 Multivariate analysis of blood serum NMR data between healthy individuals and diabetic-ulam group
5.3.17 Multivariate analysis of overall blood serum NMR data in all three studied groups
5.3.18 Blood serum NMR spectra and assignment of blood serum metabolites
5.3.19 Relative concentration of metabolites in blood serum NMR data

5.4 Discussion
5.5 Conclusion

6 GENERAL DISCUSSION

7 CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH

7.1 Conclusion
7.2 Study strengths
7.3 Study limitations
7.4 Recommendations for future work
REFERENCES 137
APPENDICES 162
BIODATA OF STUDENT 204
LIST OF PUBLICATIONS 205
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Diagnostic criteria for T2DM based on OGTT</td>
</tr>
<tr>
<td>2.2</td>
<td>Mechanism of action and side effect of oral anti-diabetic drugs</td>
</tr>
<tr>
<td>2.3</td>
<td>Common medicinal plants used to treat T2DM</td>
</tr>
<tr>
<td>2.4</td>
<td>Summary of potential medicinal effect of C. caudatus</td>
</tr>
<tr>
<td>2.5</td>
<td>Biological active compounds in C. caudatus</td>
</tr>
<tr>
<td>2.6</td>
<td>Antioxidant compounds and their effect on glucose metabolism in humans</td>
</tr>
<tr>
<td>2.7</td>
<td>Examples of metabolomic applications on dietary intervention</td>
</tr>
<tr>
<td>3.1</td>
<td>Extraction yield of C. caudatus extracts</td>
</tr>
<tr>
<td>3.2</td>
<td>Total flavonoid content of C. caudatus extracts and juice</td>
</tr>
<tr>
<td>3.3</td>
<td>Antioxidant activities of C. caudatus extracts and juice</td>
</tr>
<tr>
<td>3.4</td>
<td>ABTS assay of C. caudatus leaf extracts and juice</td>
</tr>
<tr>
<td>3.5</td>
<td>AEAC of C. caudatus extracts and juice</td>
</tr>
<tr>
<td>3.6</td>
<td>Pearson correlation coefficient (r) between antioxidant compounds and antioxidant activity of C. caudatus leaf extracts and juice</td>
</tr>
<tr>
<td>4.1</td>
<td>Nutritional facts of C. caudatus (15g)</td>
</tr>
<tr>
<td>4.2</td>
<td>Standardized nutritional prescriptions for all subjects based on Malaysian Medical Nutrition Therapy for T2DM</td>
</tr>
<tr>
<td>4.3</td>
<td>Quick method factor used for energy requirement calculation</td>
</tr>
<tr>
<td>4.4</td>
<td>Timeline for outcome measurements</td>
</tr>
<tr>
<td>4.5</td>
<td>Classification of hypertension</td>
</tr>
<tr>
<td>4.6</td>
<td>Category of physical activity level</td>
</tr>
<tr>
<td>4.7</td>
<td>Demographic characteristic of the subjects by gender, age and ethnicity</td>
</tr>
<tr>
<td>4.8</td>
<td>Socio-demographic of the subjects</td>
</tr>
<tr>
<td>4.9</td>
<td>Health status of the subjects</td>
</tr>
<tr>
<td>4.10</td>
<td>Lifestyle habits of the subjects</td>
</tr>
<tr>
<td>4.11</td>
<td>Anthropometry measurement of the subjects at baseline</td>
</tr>
<tr>
<td>4.12</td>
<td>Blood pressure measurement of the subjects at baseline</td>
</tr>
<tr>
<td>4.13</td>
<td>Glycemic status, inflammatory marker and lipid profile of the subjects at baseline</td>
</tr>
<tr>
<td>4.14</td>
<td>Renal function test and liver function test of the subjects at baseline</td>
</tr>
<tr>
<td>4.15</td>
<td>Daily dietary intake of the subjects at baseline</td>
</tr>
<tr>
<td>4.16</td>
<td>Changes in glycemic status over 8 weeks</td>
</tr>
<tr>
<td>4.17</td>
<td>Changes in cardiovascular risk factors over 8 weeks</td>
</tr>
<tr>
<td>4.18</td>
<td>Changes in renal and liver profile over 8 weeks</td>
</tr>
<tr>
<td>4.19</td>
<td>Changes in dietary intake and physical activity level over 8 weeks</td>
</tr>
<tr>
<td>4.20</td>
<td>Changes in metabolic parameters in week 12</td>
</tr>
<tr>
<td>4.21</td>
<td>Changes in renal profile and liver profile at week 12</td>
</tr>
<tr>
<td>4.22</td>
<td>Changes in dietary intake and physical activity level at week 12</td>
</tr>
<tr>
<td>5.1</td>
<td>Socio-demographic characteristics of healthy individuals</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Conceptual framework of the study</td>
<td>5</td>
</tr>
<tr>
<td>2.1 Overview of glucose homeostasis</td>
<td>8</td>
</tr>
<tr>
<td>2.2 Management of T2DM over time (years)</td>
<td>11</td>
</tr>
<tr>
<td>2.3 Picture of C. caudatus</td>
<td>16</td>
</tr>
<tr>
<td>2.4 Polyphenol classification</td>
<td>21</td>
</tr>
<tr>
<td>2.5 Overview of metabolomics</td>
<td>23</td>
</tr>
<tr>
<td>2.6 Steps involved in an NMR-based metabolomic study</td>
<td>25</td>
</tr>
<tr>
<td>3.1 Total phenolic content of C. caudatus extracts and juice</td>
<td>33</td>
</tr>
<tr>
<td>3.2 FRAP assay of C. caudatus extracts and juice</td>
<td>36</td>
</tr>
<tr>
<td>3.3 Ascorbic acid content of C. caudatus extracts and juice</td>
<td>37</td>
</tr>
<tr>
<td>4.1 Flow chart of study protocol</td>
<td>45</td>
</tr>
<tr>
<td>4.2 Screening details of the subjects</td>
<td>53</td>
</tr>
<tr>
<td>4.3 Subjects enrollment and follow-up based on CONSORT statement</td>
<td>54</td>
</tr>
<tr>
<td>4.4 BMI category of the subjects at baseline</td>
<td>59</td>
</tr>
<tr>
<td>4.5 Evaluation of energy intake using EI:BMR at baseline</td>
<td>64</td>
</tr>
<tr>
<td>4.6 Physical activity levels of the subjects at baseline</td>
<td>65</td>
</tr>
<tr>
<td>4.7 Mean changes in HbA1C (%) from baseline</td>
<td>65</td>
</tr>
<tr>
<td>4.8 Mean changes in fasting blood glucose from baseline</td>
<td>67</td>
</tr>
<tr>
<td>4.9 Mean changes in fructosamine from baseline</td>
<td>68</td>
</tr>
<tr>
<td>4.10 Mean changes in serum insulin from baseline</td>
<td>68</td>
</tr>
<tr>
<td>4.11 Mean changes in HOMA-IR from baseline</td>
<td>69</td>
</tr>
<tr>
<td>4.12 Mean changes in QUICKI from baseline</td>
<td>70</td>
</tr>
<tr>
<td>4.13 Mean changes in systolic blood pressure from baseline</td>
<td>72</td>
</tr>
<tr>
<td>4.14 Mean changes in hs-CRP from baseline</td>
<td>72</td>
</tr>
<tr>
<td>5.1 Study design of metabolomics study</td>
<td>90</td>
</tr>
<tr>
<td>5.2 Sample preparations for metabolomic analysis</td>
<td>92</td>
</tr>
<tr>
<td>5.3 Procedure of NMR spectra processing and analysis</td>
<td>94</td>
</tr>
<tr>
<td>5.4 Anthropometry and blood pressure measurements of the three groups</td>
<td>97</td>
</tr>
<tr>
<td>5.5 Glycemic status and inflammatory marker measurements</td>
<td>98</td>
</tr>
<tr>
<td>5.6 Lipid profile measurements of the three groups</td>
<td>99</td>
</tr>
<tr>
<td>5.7 Renal profile measurements of the three groups</td>
<td>100</td>
</tr>
<tr>
<td>5.8 Liver profile measurements of the three groups</td>
<td>101</td>
</tr>
<tr>
<td>5.9 PLS-DA of metabolic parameters comparing healthy individuals and diabetic-controls</td>
<td>102</td>
</tr>
<tr>
<td>5.10 Satisfactory validation plot for PLS-DA model in Figure 5.9</td>
<td>103</td>
</tr>
<tr>
<td>5.11 PLS-DA of metabolic parameters comparing healthy individuals and diabetic-ulam group</td>
<td>104</td>
</tr>
<tr>
<td>5.12 Satisfactory validation plot for PLS-DA model in Figure 5.11</td>
<td>105</td>
</tr>
<tr>
<td>5.13 OPLS-DA of overall metabolic parameters in the three groups</td>
<td>106</td>
</tr>
<tr>
<td>5.14 Validation plot for OPLS-DA model in Figure 5.13</td>
<td>107</td>
</tr>
<tr>
<td>5.15 OPLS-DA of 1H-NMR urinary data between healthy individuals and diabetic controls</td>
<td>108</td>
</tr>
<tr>
<td>5.16 Validation plot for OPLS-DA model in Figure 5.15</td>
<td>109</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>5.17</td>
<td>OPLS-DA of 1H-NMR urinary data between healthy individuals and diabetic-ulam group</td>
</tr>
<tr>
<td>5.18</td>
<td>Validation plot for OPLS-DA model in Figure 5.17</td>
</tr>
<tr>
<td>5.19</td>
<td>OPLS-DA of overall 1H-NMR urinary data in the three groups</td>
</tr>
<tr>
<td>5.20</td>
<td>Validation plot for OPLS-DA model in Figure 5.19</td>
</tr>
<tr>
<td>5.21</td>
<td>Assignment of urinary metabolites in a representative urinary NMR spectrum</td>
</tr>
<tr>
<td>5.22</td>
<td>Relative concentrations of metabolites in NMR urinary data</td>
</tr>
<tr>
<td>5.23</td>
<td>OPLS-DA of blood serum 1H-NMR data between healthy individuals and diabetic-controls</td>
</tr>
<tr>
<td>5.24</td>
<td>Validation plot for OPLS-DA model in Figure 5.23</td>
</tr>
<tr>
<td>5.25</td>
<td>OPLS-DA of blood serum 1H-NMR data between healthy individuals and diabetic-ulam group</td>
</tr>
<tr>
<td>5.26</td>
<td>Validation plot for OPLS-DA model in Figure 5.25</td>
</tr>
<tr>
<td>5.27</td>
<td>OPLS-DA of overall blood serum 1H-NMR data in the three groups</td>
</tr>
<tr>
<td>5.28</td>
<td>Validation plot for OPLS-DA model in Figure 5.27</td>
</tr>
<tr>
<td>5.29</td>
<td>Assignment of blood serum metabolites in a representative blood serum NMR spectrum</td>
</tr>
<tr>
<td>5.30</td>
<td>Relative concentrations of metabolites in blood serum NMR data</td>
</tr>
<tr>
<td>5.31</td>
<td>Consumption and regeneration of NAD+</td>
</tr>
<tr>
<td>5.32</td>
<td>Metabolic pathway affected by C. caudatus consumption</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Approval letter from Ethics Committee for Research involving Human Subjects Universiti Putra Malaysia (JKEUPM)</td>
<td>162</td>
</tr>
<tr>
<td>B</td>
<td>Approval letter from Herbal Medicine Research Centre, Institute for Medical Research Malaysia</td>
<td>164</td>
</tr>
<tr>
<td>C</td>
<td>Approval letter from Medical Research and Ethics Committee Ministry of Health Malaysia</td>
<td>165</td>
</tr>
<tr>
<td>D</td>
<td>Informed consent form (English)</td>
<td>169</td>
</tr>
<tr>
<td></td>
<td>Informed consent form (Malay)</td>
<td>170</td>
</tr>
<tr>
<td>E</td>
<td>Respondent’s information sheet (English)</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td>Respondent’s information sheet (Malay)</td>
<td>179</td>
</tr>
<tr>
<td>F</td>
<td>Questionnaire (English/Malay)</td>
<td>186</td>
</tr>
<tr>
<td>G</td>
<td>International Physical Activity Questionnaire (English)</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>International Physical Activity Questionnaire (Malay)</td>
<td>202</td>
</tr>
</tbody>
</table>

xviii
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>Antioxidant activity</td>
</tr>
<tr>
<td>AACE</td>
<td>American Association of Clinical Endocrinologists</td>
</tr>
<tr>
<td>ABTS</td>
<td>2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate)</td>
</tr>
<tr>
<td>ACD</td>
<td>Advance Chemistry Department</td>
</tr>
<tr>
<td>ADA</td>
<td>American Diabetes Association</td>
</tr>
<tr>
<td>AEAC</td>
<td>Ascorbic acid equivalent antioxidant capacity</td>
</tr>
<tr>
<td>ALP</td>
<td>Alkaline phosphatase</td>
</tr>
<tr>
<td>ALT</td>
<td>Alanine aminotransferase</td>
</tr>
<tr>
<td>AR</td>
<td>Analytical reagent</td>
</tr>
<tr>
<td>AST</td>
<td>Aspartate aminotransferase</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine triphosphate</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>BMI</td>
<td>Body mass index</td>
</tr>
<tr>
<td>BCAA</td>
<td>Branched-chain amino acids</td>
</tr>
<tr>
<td>CHO</td>
<td>Carbohydrate</td>
</tr>
<tr>
<td>CI</td>
<td>Confidence interval</td>
</tr>
<tr>
<td>CONSORT</td>
<td>Consolidated standards of reporting trials</td>
</tr>
<tr>
<td>CPG</td>
<td>Clinical Practice Guidelines</td>
</tr>
<tr>
<td>CPMG</td>
<td>Carr-Putcell-Meiboom-Gill</td>
</tr>
<tr>
<td>DBP</td>
<td>Diastolic blood pressure</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>D₂O</td>
<td>Deuterium oxide</td>
</tr>
<tr>
<td>DPP-4</td>
<td>Dipeptidyl peptidase-4</td>
</tr>
<tr>
<td>DPPH</td>
<td>2,2-Diphenyl-1-picrylhydrazyl</td>
</tr>
<tr>
<td>DR</td>
<td>Degradation rate</td>
</tr>
<tr>
<td>DW</td>
<td>Dry weight</td>
</tr>
<tr>
<td>EC₅₀</td>
<td>Effective concentration (50%)</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>EI:BMR</td>
<td>Energy intake to basal metabolic rate</td>
</tr>
<tr>
<td>EtOH</td>
<td>Ethanol</td>
</tr>
<tr>
<td>FBG</td>
<td>Fasting blood glucose</td>
</tr>
<tr>
<td>FID</td>
<td>Free induction decays</td>
</tr>
<tr>
<td>FRAP</td>
<td>Ferric-reducing antioxidant power</td>
</tr>
<tr>
<td>FW</td>
<td>Fresh weight</td>
</tr>
<tr>
<td>GAE</td>
<td>Gallic acid equivalent</td>
</tr>
<tr>
<td>GC-MS</td>
<td>Gas Chromatography-Mass spectrometry</td>
</tr>
<tr>
<td>GLP-1</td>
<td>Glucagon-like peptide 1</td>
</tr>
<tr>
<td>GLUT4</td>
<td>Glucose transporter type 4</td>
</tr>
<tr>
<td>GGT</td>
<td>Gamma-glutamyl transpeptidase</td>
</tr>
<tr>
<td>'H</td>
<td>Proton</td>
</tr>
<tr>
<td>HbA1C</td>
<td>Glycated hemoglobin</td>
</tr>
<tr>
<td>HCl</td>
<td>Hydrochloric acid</td>
</tr>
<tr>
<td>HDL</td>
<td>High-density lipoprotein</td>
</tr>
<tr>
<td>HMDB</td>
<td>The Human Metabolome Database</td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>Homeostasis model of assessment for insulin resistance</td>
</tr>
<tr>
<td>HPLC</td>
<td>High-performance liquid chromatography</td>
</tr>
<tr>
<td>Hs-CRP</td>
<td>High sensitivity C-reactive protein</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>IPAQ</td>
<td>International physical activity questionnaire</td>
</tr>
<tr>
<td>ITT</td>
<td>Intention-to-treat</td>
</tr>
<tr>
<td>LC-MS</td>
<td>Liquid Chromatography-Mass spectrometry</td>
</tr>
<tr>
<td>LDL</td>
<td>Low-density lipoprotein</td>
</tr>
<tr>
<td>MDA</td>
<td>Malondialdehyde</td>
</tr>
<tr>
<td>MeOH</td>
<td>Methanol</td>
</tr>
<tr>
<td>MET</td>
<td>Metabolic equivalent of task</td>
</tr>
<tr>
<td>MS</td>
<td>Mass spectrometry</td>
</tr>
<tr>
<td>MTF</td>
<td>Metformin</td>
</tr>
<tr>
<td>NHMS</td>
<td>National Health and Morbidity Survey</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear magnetic resonance</td>
</tr>
<tr>
<td>NOESY</td>
<td>Nuclear overhauser effect spectroscopy</td>
</tr>
<tr>
<td>OPLS-DA</td>
<td>Orthogonal partial least squares-discriminant analysis</td>
</tr>
<tr>
<td>PBG</td>
<td>Postprandial blood glucose</td>
</tr>
<tr>
<td>PCA</td>
<td>Principal component analysis</td>
</tr>
<tr>
<td>PLS-DA</td>
<td>Partial least squares-discriminant analysis</td>
</tr>
<tr>
<td>PPAR-γ</td>
<td>Peroxisome proliferator-activated receptor gamma</td>
</tr>
<tr>
<td>ppm</td>
<td>Parts per million</td>
</tr>
<tr>
<td>QE</td>
<td>Quercetin equivalent</td>
</tr>
<tr>
<td>QUICKI</td>
<td>Quantitative insulin sensitivity check index</td>
</tr>
<tr>
<td>RE</td>
<td>Retinol equivalent</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>SBP</td>
<td>Systolic blood pressure</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>SIMCA</td>
<td>Soft independent modeling of class analogy</td>
</tr>
<tr>
<td>SOD</td>
<td>Superoxide dismutase</td>
</tr>
<tr>
<td>SPSS</td>
<td>Statistical package for the social science</td>
</tr>
<tr>
<td>SU</td>
<td>Sulphonylureas</td>
</tr>
<tr>
<td>T1DM</td>
<td>Type 1 diabetes mellitus</td>
</tr>
<tr>
<td>T2DM</td>
<td>Type 2 diabetes mellitus</td>
</tr>
<tr>
<td>TAS</td>
<td>Total antioxidant status</td>
</tr>
<tr>
<td>TC</td>
<td>Total cholesterol</td>
</tr>
<tr>
<td>TCA</td>
<td>Tricarboxylic acid</td>
</tr>
<tr>
<td>TG</td>
<td>Triglycerides</td>
</tr>
<tr>
<td>TEAC</td>
<td>Trolox equivalent antioxidant capacity</td>
</tr>
<tr>
<td>TFC</td>
<td>Total flavonoid content</td>
</tr>
<tr>
<td>TPC</td>
<td>Total phenolic content</td>
</tr>
<tr>
<td>TPTZ</td>
<td>2,4,6-tris(2-pyridyl)-s-triazine</td>
</tr>
<tr>
<td>TSP</td>
<td>Sodium 3-trimethylsilyl-(2,2,3,3-d_4)-1-propionate</td>
</tr>
<tr>
<td>WC</td>
<td>Waist circumference</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Research Background

Type 2 diabetes mellitus (T2DM) is a metabolic condition characterized by hyperglycemia resulting from insulin resistance and impaired insulin secretion (American Diabetes Association, 2015). T2DM is the most common form of diabetes which accounts for about 90-95% of all diabetes cases (American Diabetes Association, 2015). The prevalence of T2DM has been rising rapidly worldwide. In 2014, about 387 millions of people suffered from T2DM worldwide, and this number is projected to rise to 592 million people by 2035 (International Diabetes Federation, 2014).

Currently, management of T2DM involves multi-dimensional approach including the prescription of oral anti-diabetic drugs (such as metformin and sulphonylureas) and lifestyle interventions (Nauck et al., 2009). While the efficacy of sulphonylureas and metformin has been established, their use is associated with side effects such as increased weight gain and elevated risk of hypoglycemia and gastrointestinal disturbance (Inzucchi et al., 2012). In addition, researchers have shown that long-term treatment with oral anti-diabetic drugs is ineffective in protecting the declining function of the pancreatic beta cell (Ball et al., 2000; Van Raalte & Diamant, 2011). The deterioration of pancreatic beta-cell function has also been associated with the elevated oxidative stress in T2DM patients (Figueroa-Romero et al., 2008; Giacco & Brownlee, 2010). Despite the multi-approaches treatments in managing T2DM, poor glycemic control is still prevalent in T2DM patients (Ramachandran et al., 2010).

Medicinal plants have been used as an alternative treatment for treating T2DM (Surya et al., 2014). Cosmos caudatus, or known locally as Ulam Raja, is a medicinal herb that popularly consumed in South East Asia. It has been identified as one of the ten commonly used medicinal plants in Malaysia for the treatment of T2DM (Sekar et al., 2014). In addition, C. caudatus has been reported to contain a variety of bioactive compounds, including ascorbic acid, quercetin, proanthocyanidins, chlorogenic acid and catechin (Abas et al., 2003; Mustafá et al., 2010; Shui et al., 2005; Sukrasno et al., 2011). Notably, treatment with C. caudatus was found to confer beneficial effect in the animal model, but its effect in T2DM patients has not been established.

Previous studies showed that metabolomics applications in dietary interventions enable researchers to study the therapeutic mechanism effects of the dietary interventions (Martin et al., 2009; Moazzami et al., 2012; Van Dorsten et al., 2006). Metabolomics measures metabolites within a biological system at a given time (Zhang et al., 2014), and the profiling of these metabolites can provide detailed information on how the dietary intervention affects the metabolites in the biological system (Friedrich, 2012). In view of this, metabolomics approach can provide a clearer understanding on the effects of C. caudatus consumption in T2DM patients.
1.2 Statement of Problem

Today T2DM is a common chronic metabolic disease worldwide. One in twelve people worldwide has T2DM (International Diabetes Federation, 2014). The prevalence of T2DM in Malaysia showed the same worrying trend. The most recent NHMS IV has revealed that one in every five Malaysians age over 30 is having diabetes (Feisul, 2012). Despite the drug treatment, a majority (78%) of T2DM patients in Malaysia still have poor glycemic control with mean HbA1C of 8.7% (Mafauzy et al., 2011).

Medicinal plants played a crucial role in T2DM research (Surya et al., 2014). Indeed, the important role of plants as T2DM treatment was evidenced by the discovery of the metformin from *Galega officinalis* (Bailey et al., 2007). *C. caudatus* (*Ulam raja*) is widely consumed among the local Malays in Malaysia. It has been used since ancient times for its curative properties such as boosting blood circulation, strengthening the bone, and treating infectious disease (Bodeker, 2009). In addition, *C. caudatus* has been reported to have the highest antioxidant capacity as compared to other 25 plants using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity and ferric ion antioxidant potential (FRAP) assays (Wong et al., 2006). This result was in agreement with a recent study which reported that *C. caudatus* have the highest antioxidant activity when compared to four common ulams in Malaysia (including *pegaga*, *selom*, curry leaf and *petai*) (Reihani & Azhar, 2012). This high antioxidant content may suggest its potential in reducing oxidative stress in humans (Shui et al., 2005).

In addition to its beneficial effect on antioxidant, *C. caudatus* has been shown to exhibit anti-diabetic (Perumal et al., 2014), anti-hypertensive (Amalia et al., 2012) and anti-inflammatory effect (Ajaykumar et al., 2012) in animal studies. Recent study in rats demonstrated a significant improvement in fasting blood glucose and lipid profile after 4 weeks of *C. caudatus* supplementation (Perumal et al., 2014). However, its effect in T2DM patients remains unclear. To address this gap, therefore, the objective of this study is to investigate the effect of an eight weeks *C. caudatus* supplementation on glycemic status, cardiovascular risk factors and metabolic profile in T2DM patients.

Furthermore, there is a lack of knowledge on the potential mechanism of action of *C. caudatus* supplementation in T2DM patients. To date, no studies have been reported on the metabolite changes following the *C. caudatus* supplementation. Metabolomics is a powerful tool to study the altered metabolism, identify short-term changes in biological fluids and serve as biomarker detection (Friedrich, 2012). We hypothesized that the therapeutic effect of *C. caudatus* in T2DM patients would reflect as a change of metabolite profile in urine and blood serum. Therefore, we perform metabolomic analysis in an attempt to elucidate the altered metabolite concentration following *C. caudatus* supplementation in T2DM patients.
1.3 **Significance of the Study**

Herbs have received increasing interest among researchers because of its health benefits. To the best of knowledge, there is no study reported on the effect of *C. caudatus* in T2DM patients. Considering *C. caudatus* is widely consumed among the locals in South East Asian countries, the findings of this study will provide useful insight into effectiveness and safety of *C. caudatus* supplementation in T2DM patients. Results from this study will contribute to the knowledge on the potential use of *C. caudatus* as an adjuvant therapy in the management of T2DM.

Besides, metabolomics approach used in this study will fill in the gap and provide a better understanding of metabolite perturbation following the supplementation of *C. caudatus* in T2DM patients. Likewise, it can undoubtedly enhance the knowledge on the potential anti-diabetic mechanism of *C. caudatus* supplementation.

1.4 **General Objective**

To investigate the metabolic effect of *C. caudatus* supplementation in T2DM patients.

1.5 **Specific Objectives**

1. To determine the antioxidant capacity of *C. caudatus* extracted by different solvents.
2. To determine the effect of *C. caudatus* supplementation on glycemic status (fasting glucose, insulin, HbA1C, fructosamine) in T2DM patients
3. To determine the effect of *C. caudatus* supplementation on cardiovascular risk factors (including blood pressure, lipid profile and high sensitivity C-reactive protein) in T2DM patients.
4. To determine the safety of *C. caudatus* supplementation on liver and renal profile in T2DM patients.
5. To determine and compare the metabolomic profiles of urine and blood serum between diabetic-ulam group, diabetic controls and healthy individuals.
1.6 Research conceptual framework

The conceptual framework of this study is presented in Figure 1.1. T2DM patients are usually advised to make lifestyle modifications which include dietary intervention and physical activity recommendations. In addition, medications including insulin therapy, anti-diabetic, anti-hypertensive and lipid-lowering drugs are used to achieve the targeted blood glucose and reduced cardiovascular risk factors in T2DM patients. Hence, the confounding factors in this study namely dietary intake, physical activity and medications were controlled throughout the study.

Oxidative stress plays a significant role in the development of insulin resistant (Styskal et al., 2012). Hyperglycemia and hyperlipidemia increase mitochondrial reactive oxygen species production and lead to oxidative stress (Evans et al., 2002). Oxidative stress affects insulin secretion and action, subsequently leads to beta cell dysfunction and insulin resistance (Bonnard et al., 2008; Lowell & Shulman, 2005).

It was hypothesized that *C. caudatus* used as a dietary antioxidant in this trial may reduce the oxidative stress, subsequently reduce the insulin resistance and improve the outcomes measurements (including glycemic status, cardiovascular risk factors, inflammation) in T2DM patients. In order to measure the altered metabolite in the urine and blood serum following *C. caudatus* supplementation in T2DM patients, a metabolomic approach is used in this study.
Figure 1.1: Conceptual framework of the study

Confounding factors
- Dietary intake
- Physical activity
- Medications

Non-Modifiable risks
- Family history
- Genetic susceptibility

Free fatty acid
Blood glucose level

Dietary antioxidant
(C. caudatus)

Oxidative stress

Dietary antioxidant
(C. caudatus)

Insulin resistance
Beta cell dysfunction

Metabolic control
- Glycemic status
- Cardiovascular risk factors
- Renal profile
- Liver profile
- Inflammation
- Metabolite changes
REFERENCES

Diabetes Care, 33, S11–S61.

52(1), 97–105.

Deurenberg, P., Deurenberg-Yap, M., & Guricci, S. (2002). Asians are different from Caucasians and from each other in their body mass index/body fat per cent relationship. Obesity Reviews, 3(3), 141–146.

Huang, M.-C., Hsu, C.-C., Huang-Sen, W., & Shyi-Jang, S. (2010). Prospective randomized controlled trial to evaluate effectiveness of registered dietitian–led diabetes management on glycemic and diet control in a primary care setting in Taiwan. *Diabetes Care, 33*(2), 233–239.

Ma, Z. A., Zhao, Z., & Turk, J. (2012). Mitochondrial dysfunction and β-cell failure in

(liraglutide effect and action in diabetes)- 2 study. Diabetes Care, 32, 84–90.

Agriculture, 76(2), 270–276.

Stella, C., Beckwith-Hall, B., Cloarec, O., Holmes, E., Lindon, J. C., Powell, J., …

antioxidant activity from guava fruit extracts. *Journal of Food Composition and Analysis, 19*(6-7), 669–675.

