ROLE OF VITAMIN D AND E IN MODULATING GLUCOSE UPTAKE AND INSULIN SENSITIVITY IN INSULIN-RESISTANT NEURONAL CELLS

AMIRAH SALWANI BINTI ZAULKIFFALI

FPSK(M) 2017 70
ROLE OF VITAMIN D AND E IN MODULATING GLUCOSE UPTAKE AND INSULIN SENSITIVITY IN INSULIN-RESISTANT NEURONAL CELLS

By

AMIRAH SALWANI BINTI ZAULKIFALI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Master of Science

September 2017
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any of the material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
ROLE OF VITAMIN D AND E IN MODULATING GLUCOSE UPTAKE AND INSULIN SENSITIVITY IN INSULIN-RESISTANT NEURONAL CELLS

By

AMIRAH SALWANI BINTI ZAULKFFALI

September 2017

Chairman : Mohd Sokhini Bin Abd Mutalib, PhD
Faculty : Medicine and Health Sciences

Alzheimer Disease (AD) has been recognized as a metabolic disease with considerable progressive derangements in brain glucose utilization and responsiveness to insulin. Altered expression of multiple players of insulin signal transduction cascade has led to the qualification of AD as a brain-specific form of diabetes. The aims of this study were to develop an insulin-resistant cell culture model in SK-N-SH neuronal cell line by prolonged exposure to insulin in serum-free medium and to determine the effect of vitamin D and E on insulin signaling. Insulin resistant model is developed via prolonged exposure with 100nM, 150nM, 200nM and 250nM of insulin in serum-free medium. The mRNA expression of insulin signaling markers that involved in glucose transport and Alzheimer’s markers were measured to validate the development of cellular insulin resistance using real-time PCR while AKT phosphorylation was evaluated using ELISA. Insulin treatment significantly reduced the IR, PI3K, GLUT4 and GLUT 3 markers while reduction in AKT phosphorylation and activation of GSK3β were impaired. Further validation on the cellular insulin resistance via glucose uptake assay demonstrated a 15% reduction of insulin resistant upon treatment with 250nM insulin. Determination of vitamin D (10ng/mL and 20ng/mL) and E (200ng/mL) or with both vitamins that involved in alteration of insulin signaling markers and glucose uptake in insulin resistance model were done by measuring the similar markers again. Improvement in insulin signaling pathway was observed upon treatment with vitamin D alone with significant increase in the level of IR, PI3K, GLUT4, GLUT3, glucose uptake as well as AKT phosphorylation while GSK3β and TAU decreased significantly. Meanwhile treatment with vitamin E and combination of both vitamins showed no significant changes in all insulin signaling pathway and Alzheimer’s markers. Contrarily, significant increase in glucose uptake was recorded. Further analysis on the oxidative stress showed vitamin D and E displayed a positive effect in reducing
the ROS level. The potential of vitamin E in reducing oxidative stress is postulated to improve signaling pathway leading to improvement of glucose uptake. In conclusion, overall findings indicate that insulin resistance can be developed in SK-N-SH neuronal cell line. Vitamin D and E may demonstrate as an agent that slows the progression of Alzheimer disease caused by insulin resistance in the brain.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia Sebagai memenuhi keperluan untuk ijazah Sarjana Sains

PERANAN VITAMIN D DAN E DALAM MODULASI PEGAMBILAN GLUKOSA DAN KESENSITIFAN INSULIN DI DALAM RINTANGAN INSULIN SEL NEURON

Oleh

AMIRAH SALWANI BINTI ZAUULKFFALI

September 2017

Pengerusi : Mohd Sokhini Bin Abd Mutalib, PhD
Fakulti : Perubatan dan Sains Kesihatan

Penyakit Alzheimer (AD) telah dikenali sebagai suatu penyakit metabolik yang mempunyai gangguan progresif terhadap penggunaan glukosa dan tindak balas insulin di dalam otak. Pengubahan terhadap ekspresi insulin signal transduksi telah menyebabkan Alzheimer dikenali juga sebagai penyakit diabetik spesifik di dalam otak. Tujuan kajian ini adalah untuk menjadikan sel neuron sebagai model rintangan insulin. Model rintangan insulin di dalam sel neuron dibuat dengan mendedahkan sel kepada kepekatan insulin yang berbeza di dalam media bebas serum. Sel didedahkan kepada kepedatan insulin sebanyak 100nM, 150nM, 200nM dan 250nM. Ekspresi penanda isyarat insulin mRNA yang terlibat di dalam pengangkutan glukosa (IR, PI3K, GLUT 3 dan GLUT 4) dan penanda Alzheimer (GSK3β) telah dikaji menggunakan kaedah ‘Real-Time PCR’ untuk melihat kejayaan model rintangan insulin di dalam sel dan fosforilasi AKT diukur menggunakan teknik ELISA. Keputusan menunjukkan pengurangan ekspresi IR, PI3K, GLUT 4 dan GLUT 3 manakala penurunan didalam aktiviti fosforilasi AKT dan peningkatan di dalam GSK3β ekspresi. Mengukur kadar pengambilan gula di dalam sel juga telah dibuat bagi mengesahkan berlaku rintangan insulin dan gangguan terhadap pengambilan gula di dalam sel dan penurunan sebanyak 15% dicatatkan. Dalam kajian ini, kesan vitamin D (10ng/mL dan 20ng/mL) dan E (200ng/mL) atau kedua-duanya terhadap pengubahan penanda isyarat insulin dan pengambilan glukosa di dalam sel telah diajukan dengan mengukur semula semua penanda isyarat yang terlibat. Keputusan menunjukkan peningkatan penanda isyarat insulin iaitu IR, PI3K, GLUT 4, GLUT 3, peningkatan didalam AKT fosforilasi dan pengurangan gen GSK3β dan TAU apabila dirawat dengan vitamin D. Sementara itu, kesan rawatan oleh vitamin E dan kedua-dua vitamin menunjukkan tiada perubahan didalam penanda isyarat insulin dan penanda alzheimers. Sebaliknya, peningkatan didalam pengambilan gula telah dicatat. Pengukuran menggunakan spesies reaktif oxygen (ROS) telah dilakukan.
dan vitamin D dan E menunjukkan kesan positif terhadap pengurangan kepekatan ROS. Potensi pengurangan tekanan oksidatif melalui perangkap radikal bebas oleh vitamin E berkemungkinan membaiki isyarat insulin dan membaiki pengambilan glukosa. Kesimpulannya, semua hasil dapatan menunjukkan bukti yang mengaitkan pembentukan model rintangan insulin dengan menggunakan sel neuron. Vitamin D dan E menunjukkan kesan rawatan yang memperlambat perkembangan penyakit Alzheimer yang disebabkan oleh rintangan insulin di dalam otak.
ACKNOWLEDGEMENTS

Alhamdulillah first and foremost praise to Allah the Almighty, the Most Merciful, the Most Compassionate because of His permission I am able to complete my Master Study successfully. I am thankful for His blessing in giving me the opportunity, health and strength to learn and gain many precious experiences in this research field. I would like to take this opportunity to express my gratitude for those who helped me directly or indirectly throughout my master study.

I would like to pay my humble gratitude to my Supervisor, Associate Prof. Dr. Mohd. Sokhini, who supported me throughout this journey with his patience and knowledge. Without his constant support, the master research would not have been accomplished successfully. His sacrifices and contribution will be forever appreciated and remembered. May Allah bless his family with happiness and health. Amin. Also, I would like to express my deepest gratitude to my co-supervisor, Dr. Sharifah Sakinah Syed Alwi for her encouragement and insightful comments. I would like to thank the rest of my beloved lecturer, Dr. Huzwah Khaza’ai, Dr. Abdah Md Akim, Dr. Hasiah Hamid and Dr. Siti Farah for the support and encouragements.

A genuine appreciation to Faculty of Medicine and Health Science, Universiti Putra Malaysia for giving me the opportunity and facilities to amass the essential practical skills and the keen in fulfilling the research. Not to forget, my appreciation to all staffs of the Nutritions and Dietetics Department, Biochemistry, Cell Signalling, and Nutrition Laboratory of this faculty for their helpful assistance.

Countless thanks to my fellow labmates: Afifah, Aminah, Najwa, Henna, Asma, Aisha, Hui Fang, Nabilah for the stimulating discussion, the sleepless nights spent working together, and for all the fun we had in the last two years. I would also like to extend my sincere gratitude to Syed Izmir, Amielia, Zawanah, Sarah, Fatin, Farizatul, Ana Masara, Baizura, Nehlah for always being there for me in good and difficult times, and for the motivations and support.

Last but not least, heartfelt thanks to my family: My parents Mr. Zaulkffali bin Abdullah and Mrs. Husliza Wahab, my brothers Ikhwan and Asyraf for supporting me spiritually throughout my life.

Thank very much. I truly appreciate all of the kindness that had been given to me. May Allah grant all your wishes.
I certify that a Thesis Examination Committee has met on 19 September 2017 to conduct the final examination of Amirah Salwani bt Zulkiffali on her thesis entitled "Role of Vitamin D and E in Modulating Glucose Uptake and Insulin Sensitivity in Insulin-Resistant Neuronal Cells" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Loh Su Peng, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Norhaizan binti Mohd Esa, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Dayang Fredalina Basri, PhD
Associate Professor
Universiti Kebangsaan Malaysia
Malaysia
(External Examiner)

NOR AINI AB. SHUKOR, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 30 November 2017
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree Master of Science. The members of the Supervisory Committee were as follows:

Mohd Sokhini bin Abd Mutalib, PhD
Associate Professor,
Faculty Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Sharifah Sakinah Syed Alwi, PhD
Senior Lecturer,
Faculty Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

ROBIAH BINTI YUNUS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:
• this thesis is my original work;
• quotations, illustrations and citations have been duly referenced;
• this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
• intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
• written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
• there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: _______________________ Date: __________________

Name and Matric No.: Amirah Salwani Binti Zaulkffali, GS41512
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature:
Name of Chairman of Supervisory Committee:
Associate Professor Dr. Sokhini Abd Mutalib

Signature:
Name of Member of Supervisory Committee:
Dr Sharifah Sakinah Syed Alwi
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xviii</td>
</tr>
</tbody>
</table>

CHAPTER

1. INTRODUCTION
 1.1 Background of study
 1.2 Problem Statement
 1.3 Justification of Study
 1.4 Objectives
 1.4.1 General Objective
 1.4.2 Specific Objectives
 1.5 Hypothesis

2. LITERATURE REVIEW
 2.1 Alzheimer’s Disease (AD) and Brain Glucose Metabolism
 2.2 Insulin and Insulin Signaling Pathway
 2.2.1 Insulin
 2.2.2 Insulin Receptors and Insulin Signalling
 2.2.3 PI3K-AKT Pathway
 2.3 Central Effects of Insulin
 2.3.1 Insulin in the Brain
 2.3.2 Insulin Receptor in the Brain
 2.3.3 Insulin signalling and Glucose Uptake in the Brain
 2.3.4 Insulin Signalling Impairment and Function of the Brain
 2.4 Insulin Resistance
 2.4.1 Insulin Resistance and Cognitive Disorder
 2.4.2 TAU Pathology, Insulin Resistance and Alzheimer Disease
 2.4.3 Insulin resistance, Oxidative stress and Metabolic Dysfunction
 2.4.4 Insulin Resistance and Hyperinsulinemia
 2.5 Influence of Vitamin D and E in Insulin Resistance
 2.5.1 Synthesis and Metabolism of Vitamin D
 2.5.2 Vitamin D and Insulin Resistance
 2.5.3 Chemical Structure and Properties of Vitamin E
 2.5.4 Oxidative, Diabetes and the role of Vitamin E
 2.6 Human Neuroblastoma Cell Line (SK-N-SH)
3 DEVELOPMENT OF IN-VITRO MODEL OF INSULIN RESISTANCE IN SK-N-SH CELL LINE

3.1 Introduction 18
3.2 Materials 18
 3.2.1 Cell culture 18
 3.2.2 MTT Assay 19
 3.2.3 Genes Expression Assay 19
 3.2.4 Phospho-AKT Immunoassay 19
 3.2.5 Glucose Uptake Assay 19
3.3 Methods 19
 3.3.1 Culturing of neuronal cells 19
 3.3.1.1 Cell thawing and Initial Culturing 19
 3.3.1.2 Changing the media 20
 3.3.1.3 Cell Sub-culturing 20
 3.3.1.4 Excess cell cryopreservation 20
 3.3.1.5 Cell seeding (cell plating) 21
 3.3.2 Induction with Insulin (Development of insulin resistance) 21
 3.3.3 MTT Viability Assay 22
 3.3.4 Genes Expression Study 23
 3.3.4.1 Insulin Signaling (IR, GLUT4, GLUT3, PI3K) and Alzheimer’s Markers (GSK3β) expression studies. 23
 3.3.4.2 RNA Extraction and Quantification 23
 3.3.4.3 RNA Integrity Assessment 24
 3.3.4.4 RNA-cDNA Conversion 25
 3.3.4.5 cDNA Quantification 25
 3.3.4.6 RT-PCR Optimization 26
 3.3.4.7 Real Time Polymerase Chain Reaction (RT-PCR) 27
 3.3.4.8 Construction of RT-PCR standard curve 28
 3.3.4.9 Real-time Data Analysis 28
 3.3.5 Phosphorylation of AKT 29
 3.3.6 Glucose Uptake Assay 29
 3.3.7 Statistical Analysis 30
3.4 Results 30
 3.4.1 Insulin Resistance Development Study 30
 3.4.1.1 Effect of Prolonged Insulin Treatment on Cell Viability 30
 3.4.1.2 Effects of Prolonged Insulin Treatment on Insulin Signaling 32
 3.4.1.3 Effects on Phosphorylation of AKT upon Insulin Treatment 38
 3.4.1.4 Effects of Prolonged Insulin Resistance on Glucose Uptake Assay 39
3.5 Discussion 40
3.6 Conclusion 42
4 EFFECTS OF TREATMENT OF VITAMIN D AND E IN INSULIN RESISTANCE SK-N-SH CELL LINE

4.1 Introduction 43
4.2 Materials 43
4.3 Method 44
4.3.1 Treatment of Vitamin D and E in Insulin Resistance Model 44
4.3.1.1 Preparation of Vitamin D 45
4.3.1.2 Preparation of Vitamin E 45
4.3.2 Treatment with Vitamin D and E on expression of insulin signaling markers and Alzheimer’s markers 46
4.3.3 Treatment with Vitamin D and E on the level of AKT-Phosphorylation 46
4.3.4 Treatment with Vitamin D and E on 2-DG Uptake 46
4.3.5 ROS Assay 46
4.3.5.1 DCF Standard Curve 47
4.3.6 Statistical Analysis 47
4.4 Results 48
4.4.1 Effects of Vitamin D and E treatments on the Expression of Insulin Signaling Markers in the Insulin Resistance Model 48
4.4.1.1 Effect of Vitamin D and E on Insulin Receptors Expression 48
4.4.1.2 Effect of Vitamin D and E on PI3K expression 50
4.4.1.3 Effects of Vitamin D and E on Phosphorylation of AKT in Insulin Resistance 52
4.4.1.4 Effect of Vitamin D and E on GLUT 4 Expression 54
4.4.1.5 Effect of Vitamin D and E on GLUT3 Expression 56
4.4.2 Effects of Vitamin D and E on Glucose Uptake 58
4.4.3 Effects of Vitamin D and E on ROS Measurements Assay 60
4.4.4 Effect of Vitamin D and E on Alzheimer’s Makers GSK3β and TAU 62
4.4.4.1 Effect of Vitamin D and E on GSK3β expression 62
4.4.4.2 Effect of Vitamin D and E on TAU expression 64
4.5 Discussion 66
4.5.1 Effects of Vitamin D and E treatments on the expression of insulin signaling markers 66
4.5.2 Effects of Vitamin D and E on ROS Measurement Assay 68
4.5.3 Effects of Vitamin D and E on the Alzheimer’s Markers GSK3β and TAU 69
4.6 Conclusions 70

5 GENERAL DISCUSSION, CONCLUSION, AND RECOMMENDATION FOR FUTURE RESEARCH 71
5.1 General discussion and conclusion 71
5.2 Recommendation for Future Research 75
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Experimental design of the development cellular insulin resistance model.</td>
</tr>
<tr>
<td>3.2</td>
<td>Assays used for validation of insulin resistance.</td>
</tr>
<tr>
<td>3.3</td>
<td>Amount of Master Mix for 1 reaction of cDNA conversion</td>
</tr>
<tr>
<td>3.4</td>
<td>Gradient PCR protocol settings</td>
</tr>
<tr>
<td>3.5</td>
<td>Amount of Master Mix for 1 reaction of Real Time PCR</td>
</tr>
<tr>
<td>3.6</td>
<td>Real Time PCR protocol settings</td>
</tr>
<tr>
<td>4.1</td>
<td>Experimental design of the effects of vitamin D and E under insulin resistance cell.</td>
</tr>
<tr>
<td>4.2</td>
<td>Assay used for determine the effects of vitamin D and E under insulin resistance condition.</td>
</tr>
<tr>
<td>4.3</td>
<td>Preparation of DCF standard. The DCF standard was prepared in 1:10 dilution series</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Schematic illustration of PI3K- AKT pathway</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Roles of brain insulin deficiency and brain insulin resistance in TAU pathology</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>Diabetes Mellitus Type 2 (T2DM), brain insulin resistance, and AD have been linked in a number of different epidemiological, clinical, and animal studies</td>
<td>13</td>
</tr>
<tr>
<td>2.4</td>
<td>Synthesis and Metabolism of Vitamin D</td>
<td>14</td>
</tr>
<tr>
<td>2.5</td>
<td>Schematic of the effect of oxidative stress on insulin signaling pathway</td>
<td>17</td>
</tr>
<tr>
<td>3.1</td>
<td>Effect of insulin on cell viability</td>
<td>31</td>
</tr>
<tr>
<td>3.2</td>
<td>Effects of prolonged Insulin treatment on Insulin receptor (IR) expression level</td>
<td>31</td>
</tr>
<tr>
<td>3.3</td>
<td>Effects of prolonged Insulin treatment on PI3K gene expression level</td>
<td>33</td>
</tr>
<tr>
<td>3.4</td>
<td>Effects of prolonged insulin treatment on GLUT 4 gene expression</td>
<td>34</td>
</tr>
<tr>
<td>3.5</td>
<td>Effects of prolonged Insulin treatment on GLUT 3 gene expression level</td>
<td>35</td>
</tr>
<tr>
<td>3.6</td>
<td>Effects of prolonged insulin treatment on GSK3β gene expression level</td>
<td>36</td>
</tr>
<tr>
<td>3.7</td>
<td>Effects of prolonged insulin pre-treatment on AKT phosphorylation</td>
<td>37</td>
</tr>
<tr>
<td>3.8</td>
<td>Effects of insulin exposure on 2-DG uptake at 16 hours and 24 hours incubation</td>
<td>38</td>
</tr>
<tr>
<td>4.1</td>
<td>IR expression level in insulin resistance cells upon treatment with various concentration of vitamin D and E</td>
<td>49</td>
</tr>
<tr>
<td>4.2</td>
<td>PI3K expression level in insulin resistance cells upon treatment with various concentrations of Vitamin D and E</td>
<td>51</td>
</tr>
<tr>
<td>4.3</td>
<td>Phosphorylation of AKT level in insulin resistance cells upon treatment with various concentration of Vitamin D and E</td>
<td>53</td>
</tr>
<tr>
<td>4.4</td>
<td>GLUT4 expression level in insulin resistance cells upon treatment with various concentration of Vitamin D and E</td>
<td>55</td>
</tr>
</tbody>
</table>
4.5 GLUT 3 expression level in insulin resistance cells upon treatment with various concentrations of Vitamin D and E 57
4.6 2-DG uptake level in insulin resistance cells upon treatment with various concentrations of Vitamin D and E 59
4.7 ROS production level in insulin resistance model in determination of antioxidant potential 61
4.8 GSK3β expression level in insulin resistance cells upon treatment with various concentrations of Vitamin D and E 63
4.9 TAU expression level in insulin resistance cells upon treatment with various concentrations of vitamin D and E 65
4.10 Transcriptional mechanism 67
5.1 Schematic presentation of processes involved in SK-N-SH neuronal insulin-resistance 73
5.2 Schematic presentation of role of vitamin D and E in improving insulin sensitivity 74
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>List of primer sequence used in RT-PCR</td>
<td>90</td>
</tr>
<tr>
<td>B</td>
<td>Amount of Master Mix for 1 reaction of RT-PCR</td>
<td>92</td>
</tr>
<tr>
<td>C</td>
<td>Gel electrophoresis image of RNA Integrity assessment</td>
<td>93</td>
</tr>
<tr>
<td>D</td>
<td>Gel electrophoresis images for gradient PCR</td>
<td>94</td>
</tr>
<tr>
<td>E</td>
<td>Real-Time PCR supplementary data</td>
<td>98</td>
</tr>
<tr>
<td>F</td>
<td>Standard curves of ROS Assay</td>
<td>105</td>
</tr>
<tr>
<td>G</td>
<td>Cell Culture Protocol</td>
<td>105</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>Percentage</td>
<td></td>
</tr>
<tr>
<td>±</td>
<td>More or less</td>
<td></td>
</tr>
<tr>
<td>µg</td>
<td>Microgram</td>
<td></td>
</tr>
<tr>
<td>µl</td>
<td>Microlitre</td>
<td></td>
</tr>
<tr>
<td>2-DG</td>
<td>2-deoxyglucose</td>
<td></td>
</tr>
<tr>
<td>AD</td>
<td>Alzheimer’s disease</td>
<td></td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
<td></td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine Triphosphate</td>
<td></td>
</tr>
<tr>
<td>Aβ</td>
<td>beta-amyloid</td>
<td></td>
</tr>
<tr>
<td>AβPP</td>
<td>amyloid- beta precursor protein</td>
<td></td>
</tr>
<tr>
<td>cDNA</td>
<td>complementary DNA</td>
<td></td>
</tr>
<tr>
<td>CNS</td>
<td>Central Nervous System</td>
<td></td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon Dioxide</td>
<td></td>
</tr>
<tr>
<td>CSF</td>
<td>Cerebrospinal fluid</td>
<td></td>
</tr>
<tr>
<td>DCF</td>
<td>Dichlorodihydrofluorescein</td>
<td></td>
</tr>
<tr>
<td>DCFH-DA</td>
<td>Dichlorodihydrofluorescin diacetate</td>
<td></td>
</tr>
<tr>
<td>DEPC</td>
<td>Diethyl pyrocarbonate</td>
<td></td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
<td></td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
<td></td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
<td></td>
</tr>
<tr>
<td>ER</td>
<td>Endoplasmic Reticulum</td>
<td></td>
</tr>
<tr>
<td>ERK/MAPK</td>
<td>Extracellular signal–related kinase/mitogen-activated protein kinase</td>
<td></td>
</tr>
<tr>
<td>FASD</td>
<td>Fetal alcohol spectrum disorder</td>
<td></td>
</tr>
<tr>
<td>FBS</td>
<td>Fetal Bovine serum</td>
<td></td>
</tr>
<tr>
<td>GAPDH</td>
<td>Glyceraldehyde 3-phosphate dehydrogenase</td>
<td></td>
</tr>
<tr>
<td>GLUT 3</td>
<td>Glucose transporter Type 3</td>
<td></td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>GLUT 4</td>
<td>Glucose Transporter Type 4</td>
<td></td>
</tr>
<tr>
<td>GSK3β</td>
<td>Glycogen synthase kinase 3 beta</td>
<td></td>
</tr>
<tr>
<td>IGF</td>
<td>insulin-like growth factor</td>
<td></td>
</tr>
<tr>
<td>iNOS</td>
<td>inducible nitric oxide synthase</td>
<td></td>
</tr>
<tr>
<td>IR</td>
<td>Insulin Receptor</td>
<td></td>
</tr>
<tr>
<td>IRS 2</td>
<td>Insulin receptor substrate 2</td>
<td></td>
</tr>
<tr>
<td>kDA</td>
<td>kiloDalton</td>
<td></td>
</tr>
<tr>
<td>KRPH</td>
<td>Krebs-Ringer-Phosphate-HEPES</td>
<td></td>
</tr>
<tr>
<td>MEM</td>
<td>Minimal Essential medium</td>
<td></td>
</tr>
<tr>
<td>mL</td>
<td>Milliliter</td>
<td></td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger Ribonucleic acid</td>
<td></td>
</tr>
<tr>
<td>MTT</td>
<td>3-(4,5-dimethylthiazol-2-yl)-diphenyltetrazolium bromide</td>
<td></td>
</tr>
<tr>
<td>NFT</td>
<td>neurofibrillary tangles</td>
<td></td>
</tr>
<tr>
<td>Ng</td>
<td>Nanogram</td>
<td></td>
</tr>
<tr>
<td>NIRKO</td>
<td>neuronal specific insulin receptor knockout</td>
<td></td>
</tr>
<tr>
<td>nM</td>
<td>nanoMolar</td>
<td></td>
</tr>
<tr>
<td>NTC</td>
<td>No template control</td>
<td></td>
</tr>
<tr>
<td>ºC</td>
<td>Degree Celsius</td>
<td></td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate-buffered saline</td>
<td></td>
</tr>
<tr>
<td>PI3K</td>
<td>Phosphatidylinositol-4,5-bisphosphate 3-kinase</td>
<td></td>
</tr>
<tr>
<td>PKC</td>
<td>Protein kinase C</td>
<td></td>
</tr>
<tr>
<td>RFU</td>
<td>Relative fluorescence units</td>
<td></td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
<td></td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
<td></td>
</tr>
<tr>
<td>Rpm</td>
<td>Revolutions per minutes</td>
<td></td>
</tr>
<tr>
<td>RT-PCR</td>
<td>Reverse Transcription-polymerase chain reaction</td>
<td></td>
</tr>
<tr>
<td>SiRNA</td>
<td>Small interfering RNA</td>
<td></td>
</tr>
<tr>
<td>SKNSH</td>
<td>Human Neuroblastoma Cell line (ATCC HTB-II)</td>
<td></td>
</tr>
</tbody>
</table>

xix
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ssDNA</td>
<td>Single-stranded deoxyribonucleic acid</td>
</tr>
<tr>
<td>T1DM</td>
<td>Type I Diabetes Mellitus</td>
</tr>
<tr>
<td>T2DM</td>
<td>Type II Diabetes Mellitus</td>
</tr>
<tr>
<td>TAE</td>
<td>Tris-acetate-EDTA</td>
</tr>
<tr>
<td>TBE</td>
<td>Tris-borate-EDTA</td>
</tr>
<tr>
<td>TRF</td>
<td>Tocotrienol Rich Fraction</td>
</tr>
<tr>
<td>UVB</td>
<td>Ultraviolet B</td>
</tr>
<tr>
<td>VDR</td>
<td>Vitamin D Receptor</td>
</tr>
<tr>
<td>VDR-RXR</td>
<td>Vitamin D receptor-retinoic acid x-receptor complex</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of study

About 3.5 million (17.5%) percent of Malaysian citizens aged 18 years and above have Diabetes (National Health and Morbidity Survey 2015). It has been discovered that a decrease in insulin level is not the only causal factor of diabetes. On the other hand, cell insensitivity to insulin occurred even more common in relevance to diabetes, hence advocating the concept of insulin resistance among the scientist and medical experts (Himsworth, 1939).

Insulin resistance and defective insulin signaling have been firmly established as the fundamental characteristics of Type II Diabetes Mellitus (T2DM). Interestingly, these characteristics also happen to appear in chronic neurodegenerative disorder Alzheimer’s disease (AD) (de la Monte and Wands, 2008). Postmortem brain studies revealed that molecular, biochemical, and signal transduction abnormalities in AD are virtually identical to those that occur in T1DM and T2DM (de la Monte & Wands, 2008; de la Monte, 2012). Earlier, a study has observed lower cerebrospinal fluid (CSF) insulin levels and reduced insulin-mediated glucose disposal in AD patients when compared with healthy control subjects (Craft et al., 1998).

A cascade of reactions initiated with reduced cell’s sensitivity to insulin may explain the lower insulin level in the brain of AD patients. Reduced sensitivity to insulin can result in hyperinsulinemia, which consequently down-regulate the insulin receptors at the blood-brain barrier, impair insulin signaling and reduce the uptake of insulin by the brain. These events later manifest brain inflammation, oxidative stress, alterations in beta-amyloid (Aβ) levels, and cell death (Talbot et al., 2012). Since insulin resistance can be part of the pathogenesis, it appears as a potent accelerator of AD. Despite these facts, the molecular mechanism of insulin resistance in neurons remains largely unknown contrary to that in peripheral tissues like skeletal muscle, liver, and adipose. There are numerous etiologies for insulin resistance, including lipotoxicity, inflammation, endoplasmic reticulum (ER) stress, oxidative stress and hyperinsulinemia (Kaneto et al., 2006). Hyperinsulinemia contributes to insulin resistance and its effects on peripheral tissues have been demonstrated (Kahn et al., 2000). The involvement of neurons in the brain insulin resistance is relatively unclear, since little is known about its molecular mechanism.

Although there were many factors that lead to the development of AD, this study only focuses on insulin resistance as the causal that mimics AD in neuronal cells. It is anticipated that with this new findings, the understanding will enable better identification of suitable remedies that can reverse the condition of insulin resistance in AD.
The role of vitamin D in the pathogenesis and prevention of diabetes has generated good scientific interest. Numerous studies have shown a relationship between vitamin D status and the risk of diabetes or glucose intolerance. It has been shown that the prevalence of hypovitaminosis D was higher in diabetic patients than in non-diabetic people (Cigolini et al., 2006).

Vitamin D plays an important role in improving insulin resistance and the T2DM by affecting either insulin sensitivity or β-cell function or both (Chiu et al., 2004). Vitamin D can stimulate the expression of the insulin receptor, and hence improving insulin responsiveness for glucose transport into the cells (Maestro et al., 2000). Vitamin E may also boost insulin sensitivity and decrease diabetes risk by reducing oxidative stress to the cell (Manning et al., 2004). Through in vitro and in animal models of diabetes, it was found that antioxidants, improve insulin sensitivity (Scott et al., 2004). As vitamin E exhibits anti-oxidant property, it has been shown to improve the insulin sensitivity both in in- vitro and animal models of diabetes (Houstis et al., 2000).

Overall, this study is aimed to clarify the involvement of vitamin D and E in improving insulin resistance that potentially interferes in insulin signaling cascade at gene expression level.

1.2 Problem Statement

Neurodegenerative diseases are considered as one of the major problems in our aging society. Indeed, it can be serious and life-threatening. Prevalence of these diseases is growing yearly; however, there is a lack of effective therapies or specific drug to treat this disease. Current medication only alleviates symptoms, relieves pain and helps to improve patients’ quality of life. Insulin resistance and defective insulin signaling have been firmly established as the fundamental characteristics to appear in chronic neurodegenerative disorder Alzheimer’s disease (AD) (de la Monte and Wands, 2008). Furthermore, alteration of insulin pathway may provide an oxidative environment which in turn implicates the onset and the progression of Alzheimer’s disease. Vitamin D may modulate insulin sensitivity as a functional vitamin D receptor (VDR) element have been identified in the promoter region of insulin receptor, suggesting that vitamin D may play a role in the regulation of insulin resistance. Free radical scavenger compound such as vitamin E in the form of TRF is of great interest knowing its protective properties are well documented against oxidative stress. Therefore, this study was designed to evaluate the potency of both Vitamin D and E in improving insulin resistance that potentially interferes in insulin signaling pathway that lead to reduce the incidence of Alzheimer’s disease.
1.3 Justification of Study

To identify compounds with potential insulin resistance reverting properties and optimizing vitro model that could mimic the state of insulin resistance and reflect the pathophysiological progression of the AD condition. Thus the present study was designed to develop an in-vitro model mimicking insulin resistance using SK-N-SH neuronal cell line and to exploit it for the identification of Vitamin D and E potency as an insulin resistance reverting properties.

1.4 Objectives

1.4.1 General Objective

To investigates the role of vitamin D and E towards insulin resistance in neuronal cells (SK-N-SH) in relation with PI3K-AKT signaling pathway.

1.4.2 Specific Objectives

- To determine cell viability using MTT Assay upon induction with insulin.
- To develop cellular insulin resistance model using SK-N-SH neuroblastoma cell line.
- To validate the cellular insulin resistance model by evaluating the gene expression level on insulin signaling markers involve in glucose transport (Insulin Receptor (IR), PI3K, AKT, GLUT3 and GLUT4), glucose uptake and Alzheimer’s markers (GSK3β, TAU).
- To determine the gene expression level of insulin signaling markers, and Alzheimer’s markers upon treatment with vitamin D and E under insulin resistance condition.
- To determine the glucose uptake and oxidative stress level upon treatment with vitamin D and E under insulin resistance condition.

1.5 Hypothesis

1. Hyperinsulinemia induces insulin resistance in neuronal cells.
2. Vitamin D and E improve insulin signaling pathway under the condition of insulin resistance leading to improvement of glucose uptake in the brain.
REFERENCES

induced renal damage in rats. *Journal of Toxicologic Pathology*, 26(2), 111-118

Neurodegeneration. Alcoholism: Clinical and Experimental Research, 32(9), 1630-1644.

Mayer, C. M., & Belsham, D. D. (2010). Central insulin signaling is attenuated by long-term insulin exposure via insulin receptor substrate-1 serine...
phosphorylation, proteasomal degradation, and lysosomal insulin receptor degradation. *Endocrinology, 151*(1), 75-84.

Evidences for involvement of cholesterol transporters. *Molecular Nutrition & Food Research, 55*(5), 691–702

expression and signaling mechanisms in Alzheimer's disease—is this type 3 diabetes?. *Journal of Alzheimer's Disease*, 7(1), 63-80.

