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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment 

of the requirement for the Degree of Master of Science 
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By 
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May 2017 

Chairman : Huzwah Binti Khaza’ai, PhD 

Faculty : Medicine and Health Sciences 

Abnormal lipid metabolism is strongly related to the pathogenesis of Alzheimer’s 

disease (AD). Apolipoprotein E (APO E) is the major apolipoprotein in the CNS that 

has a role in cholesterol transport. Oxidative stress brain has reduced capacity for 

neuronal delivery of cholesterol suggesting a defect in cholesterol delivery for 

neuronal repair mechanism contribute to AD progression. Glutamate is the main 

excitatory neurotransmitter in the CNS, which can be excitotoxic at high 

concentration. Vitamin E has been shown to possess potent antioxidant and 

neuroprotection activities. It has two potent antioxidant isomers which are tocopherol 

and tocotrienol. In this present study, the effects of Tocotrienol Rich Fraction (TRF) 

from palm oil and alpha-Tocopherol (α-TCP) in modulating lipidomic markers in 

oxidative stress neural-derived embryonic stem (ES) cell cultures were elucidated. 

Transgenic mouse ES cell line (46C) was differentiated into neural lineage by 

induction with retinoic acid in vitro.  The cells were then exposed to oxidative stress 

by a significantly high concentration of glutamate. Reactive oxygen species (ROS) 

measurement was done upon glutamate excitotoxicity and recovery processes by 

vitamin E were determined. Gene expression of glutamate receptors (NMDA and 

Kainate receptors), neuron-specific enolase (NSE), lipidomic markers including APO 

E, low density related protein (LRP) and 3-hydroxy-3-methylglutaryl-coenzyme A 

reductase (HMGCR) were elucidated using real-time PCR. The result reveals 

downregulation of NMDA, Kainate receptor, NSE  and  HMGCR upon posttreatment 

with different concentration of TRF and α-TCP in oxidative stress neural-derived 46C 

cells, a sign of neurorecovery process. Treatment of vitamin E also reduced the 

concentration of ROS to 33.05%  and 57.2%  upon 300ng/mL of TRF and α-TCP 

treatment respectively, in glutamate-induced oxidative stress neural cells which 

indicated that vitamin E is one of the potent antioxidants. In conclusion, TRF and α-

TCP have protective and antioxidant properties against glutamate toxicity in neural-
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derived ES cell and have the possibility to develop into potential treatment agents for 

AD. 
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Metabolisma lipid yang tidak normal adalah sangat berkaitan dengan patogenesis 

penyakit Alzheimer (AD). APO E adalah apolipoprotein utama dalam CNS yang 

berperanan dalam pengangkutan kolesterol. Tekanan oksidatif di dalam otak telah 

mengurangkan kapasiti penghantaran kolesterol kepada neuron dimana kerosakan 

dalam mekanisme penghantaran kolesterol untuk pembaikan neuron menyumbang 

kepada perkembangan AD. Glutamat adalah neurotransmiter yang merupakan 

perangsang utama dalam CNS dan boleh menjadi toksik  pada kepekatan yang tinggi. 

Vitamin E telah terbukti mempunyai aktiviti antioksidan dan pelindung neuron yang 

berkesan. Ia mempunyai dua isomer antioksida iaitu tokoferol  dan tokotrienol. Dalam 

kajian ini, kesan fraksi kaya tokotrienol (TRF) di ekstrak daripada kelapa sawit dan α-

Tokoferol (α-TCP) dikaji dalam modulasi penanda lipidomik pada tekanan oksidatif 

neural yang telah diferensiasi daripada sel ES. Tikus transgenik embrionik sel stem 

(46C) telah diferensiasi kepada sel neural dengan pengaruh asid retinoik in- vitro .Sel-

sel ini kemudiannya didedahkan kepada tekanan oksidatif dengan kepekatan 

glutamate yang agak tinggi. Pengukuran spesies reaktif oksigen (ROS) telah dilakukan 

sebaik proses eksitotoxisiti glutamat dan pemulihan dengan vitamin E telah 

ditentukan. Ekpresi gen reseptor glutamat (reseptor NMDA and Kainate), “neuron-

specific enolase” (NSE) dan penanda lipidomik termasuk APO E, “low density related 

protein” (LRP) dan “3-hydroxy-3-methylglutaryl-coenzyme A reductase” (HMGCR) 

telah dijelaskan menggunakan Real time-PCR. Hasil ujikaji mendedahkan penurunan 

ekpresi NMDA, Kainate reseptor, NSE dan HMGCR dengan pasca-rawatan TRF dan 

α- TCP dengan kepekatan yang berbeza dalam tekanan oksidatif sel neural, yang 

menandakan proses neuroperlindungan sedang berlaku. Rawatan vitamin E juga 

mengurangkan kepekatan ROS kepada 33.05% dan 57.2% setiap satu setelah dirawat 

dengan 300ng/ml TRF dan α-TCP, dalam sel neural dibawah tekanan oksidatif 

glutamat yang menunjukkan vitamin E adalah salah satu antioksidan yang kuat. 
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Kesimpulannya, TRF dan α-TCP mempunyai sifat pelindung dan antioksidan terhadap 

ketoksikan glutamat dalam sel-sel neural yang diperolehi daripada ES sel. Ini 

menunjukan vitamin E berpotensi  menjadi ejen rawatan untuk AD.  
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    CHAPTER 1 

1 INTRODUCTION 

1.1 Background of the study 

Vitamin E is a fat-soluble compound with antioxidant properties that exist in eight 

forms in nature (alpha-, beta-, gamma- and delta-tocopherol and alpha-, beta-, gamma- 

and delta- tocotrienol) each with its own biological properties (Sen et al., 2006). The 

difference between tocopherol and tocotrienol is that they have different number and 

position of methyl groups attached to the aromatic ring (Osakada et al., 2004). In short, 

tocopherols are saturated forms of vitamin E, whereas tocotrienol is unsaturated and 

possess an isoprenoid side chain. This variant of vitamin E only occurs at very low 

levels in nature, with the highest concentration found in palm oil. Currently, there is 

an increase in interest on Tocotrienol Rich Fraction (TRF) from palm oil. TRF consist 

of 25% of alpha-tocopherol (α-TCP) and 75% of tocotrienol. TRF of palm oil has been 

shown to possess potent antioxidant, anticancer, and cholesterol-lowering activities 

(Khor et al., 2016; Osakada et al., 2004;). 

At normal concentrations, glutamate plays a role as a major neurotransmitter in the 

brain, important for cognition, memory, and learning. However, elevated levels of 

glutamate can cause overstimulation of glutamate receptor including NMDA, AMPA 

and kainate receptors that cause an influx of calcium ions in the postsynaptic 

membrane. High energy in the form of ATP is needed to rectify back to the normal 

concentrations influx of intracellular calcium ion. The high requirement of energy will 

cause the mitochondrion to generate more reactive oxygen species (ROS) as a natural 

byproduct. ROS is a chemically reactive species containing oxygen including 

peroxides, superoxide, hydroxyl radical and singlet oxygen (Dayem et al., 2010). 

Generally, it is a byproduct of DNA, amino acid, and lipid oxidation which can cause 

significant damage to cells. Oxidative stress is term for a condition where the 

production of ROS is greater than the capacity of the body to reduce oxidation.  

Apolipoprotein E (APO E) is the major apolipoprotein in the CNS that has a role in 

cholesterol transport. Cholesterol is needed by neurons to build up their cellular 

membranes such as cell membrane of the axons, dendrites, and synapses (Poirier et 

al.,1993). This current study postulates that in an oxidative stressed brain, cholesterol 

recycling is unable to be performed accurately due to the deterioration of cholesterol 

delivery mechanism in injured neuronal cells. The understanding of the cholesterol 

metabolism and it’s delivery in the brain and its role in neurodegenerative diseases 

therefore warrant further investigation.  Thus, factors such as APO E, LRP receptor, 

HMGCR  are the lipidomic markers involved in cholesterol homeostasis which 

became the main interest in this study.  
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This study aims to elucidate the protective role of vitamin E against glutamate toxicity 

and to understand how vitamin E is involved in modulating lipidomic markers, 

antioxidant activity and neurons-specific enolase expression in accomplishing the 

neurorecovery. It is expected that both forms of vitamin E (TRF and α-TCP) would 

have a neuroprotective effect against oxidative stress in the brain.  

1.2 Problem statement 

Neurodegenerative diseases are considered one of the major problems in our aging 

society as it can be serious and life-threatening. Prevalence of these diseases is 

increasing yearly; however, there is a lack of effective therapies or specific drug to 

treat this disease. Current medication only alleviates symptoms, relieves pain and 

helps to improve patients’ quality of life. A high concentration of glutamate that 

contributes to oxidative stress in CNS is believed to reduce the capacity of cholesterol 

delivery to neuronal cells. Failure of the repair mechanism may be one of the factors 

contributing to the progression of neurodegenerative diseases such as AD. Thus, free 

radical scavenger compounds such as vitamin E in the form of TRF and α-TCP are the 

great interest knowing its protective properties is well documented against oxidative 

stress. Therefore, this study was designed to evaluate the potency of both isomers of 

vitamin E in protecting neural-derived embryonic stem (ES) cells from glutamate 

induced oxidative stress and modulating lipidomic markers for repair mechanism of 

the cells.    

1.3 Research objective 

1.3.1 General objective 

To elucidate modulation of lipidomic markers in oxidative stress neural- derived ES 

cell upon supplementation of vitamin E.  

1.3.2 Specific objective 

 To differentiate transgenic mouse embryonic stem (ES) cell line (46C) into neural 

commitment and confirmation with immunocytochemistry. 

 To determine the dose response and time course of glutamate toxicity in neural- 

derived 46C cells by using MTT assay. 

 To develop in-vitro oxidative stress model by using glutamate in neural- derived 

46C cells. 

 To determine the ROS activity as a neural oxidative stress marker upon glutamate 

toxicity and the role of TRF and α-TCP as an antioxidant. 

 To assess the gene expression of glutamate receptors (NMDA and kainate 

receptor), NSE and lipidomic markers (APO E, HMGCR, and LRP-1) upon 

glutamate toxicity and the recovery process after supplementation with TRF and 

α-TCP.  
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1.4 Hypothesis 

TRF and α-TCP are able to overcome oxidative stress hence, modulating lipidomic 

markers in in-vitro oxidative stress model.  
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