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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in 
fulfilment of the requirement for the degree of Master of Science 

 

THREE-POINT DIAGONALLY IMPLICIT BLOCK METHODS FOR SOLVING 
ORDINARY AND FUZZY DIFFERENTIAL EQUATIONS 

 

By 

 

NURZEEHAN BINTI ISMAIL 

December 2014 

 

 

Chairman: Zarina Bibi binti Ibrahim, PhD 

Faculty: Science 

 

The focus of this thesis is on the derivations of Diagonally Implicit Block 
Backward Differentiation Formulas (DBBDF) of constant step size. The first part 
of the thesis discusses on the modification of Fully Implicit Block Backward 
Differentiation Formulas (FBBDF) to solve first order fuzzy differential equations 
(FDEs). The subsequent part of the thesis focuses on the derivations of 
Diagonally Implicit Three-point BBDF of order two and three (DBBDF (3, 2) and 
DBBDF (3, 3)) for solving first order ordinary differential equations (ODEs) and 
FDEs. 

 

The convergence properties for DBBDF methods and the adequate stability 
regions for the proposed methods are presented to show that the methods are 
capable of solving stiff ODEs. The derived methods are then implemented using 
Newton iteration which is normally used since the methods derived are implicit in 
nature. 

 

Numerical results are presented to verify the efficiency of DBBDF methods for 
ODEs. The derived methods are then compared with Diagonally Implicit Two-
point BBDF of order two, three and four (DBBDF (2, 2), DBBDF (2, 3) and 
DBBDF (2, 4)). The accuracy of the proposed methods outperformed DBBDF (2, 
3) and DBBDF (2, 4) as the step size gets smaller while the computational time 
of the proposed methods are smaller than the existing methods. 
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Since there are very few block methods used to solve fuzzy differential 
equations, the derived methods are extended to solve first order fuzzy initial 
value problems (FIVPs). The fuzzification of DBBDF methods is proposed and 
the convergence of the corresponding methods when applied to FDEs is also 
proven. Numerical results of DBBDF methods when solving FDEs are provided 
and compared with the existing methods. On the whole, this study reveals that 
the FBBDF and DBBDF methods are capable and efficient for solving first order 
ordinary and fuzzy differential equations. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 
memenuhi keperluan untuk ijazah Master Sains 

 

FORMULA BLOK TERSIRAT PEPENJURU TIGA MATA UNTUK 
MENYELESAIKAN PERSAMAAN PEMBEZAAN BIASA DAN KABUR 

 

Oleh 

 

NURZEEHAN BINTI ISMAIL 

Disember 2014 

 

 

Pengerusi: Zarina Bibi binti Ibrahim, PhD 

Fakulti: Sains 

 

Fokus tesis ini adalah penerbitan Formula Blok Beza Ke Belakang Tersirat 
Pepenjuru (FBBBTPP) menggunakan saiz langkah yang berterusan. Bahagian 
pertama tesis membincangkan pengubahsuaian Formula Blok Beza Ke Belakang 
Tersirat Penuh (FBBBTP) untuk menyelesaikan persamaan pembezaan kabur 
(PPK) peringkat pertama. Bahagian seterusnya member tumpuan kepada 
penerbitan FFBBTPP tiga mata (3FBBBTPP) untuk menyelesaikan persamaan 
pembezaan kaku biasa (PPB) peringkat pertama dan PPK. 

 

Sifat-sifat penumpuan untuk 3FBBBTPP dibentangkan di dalam bab yang 
berikutnya. Rantau kestabilan yang mencukupi untuk 3FBBBTPP digunakan 
untuk menunjukkan bahawa kaedah ini mampu menyelesaikan PPB. 3FBBBTPP 
kemudiannya dilaksanakan menggunakan lelaran Newton yang biasanya 
digunakan memandangkan 3FBBBTPP adalah tersirat secara semulajadi. 

 

Keputusan berangka dikemukakan untuk mengesahkan kecekapan 3FBBBTPP 
untuk PPB. 3FBBBTPP kemudiannya dibandingkan dengan FBBBTPP dua mata 
(2FBBBTPP). Ketepatan 3FBBBTPP mengatasi 2FBBBTPP apabila saiz langkah 
semakin kecil dan masa komputasi bagi 3FBBBTPP lebih kecil daripada kaedah 
yang sedia ada. 
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Disebabkan terlalu sedikit penyelidikan dilakukan dalam menyelesaikan 
persamaan pembezaan kabur menggunakan kaedah blok, 3FBBBTPP 
diperluaskan untuk menyelesaikan masalah nilai awal persamaan pembezaan 
kabur (NAPPK). Pengkaburan 3FBBBTPP dicadangkan dan penumpuan 
3FBBBTPP apabila menyelesaikan masalah PPK juga terbukti. Keputusan 
berangka bagi 3FBBBTPP dalam menyelesaikan PPK disediakan dan 
dibandingkan dengan kaedah yang sedia ada. Pada keseluruhannya, kajian ini 
menunjukkan bahawa kaedah FBBBTP dan FBBBTPP berkebolehan dan cekap 
untuk menyelesaikan masalah persamaan pembezaan biasa dan kabur 
peringkat pertama. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Introduction 

 

The study of differential equations are commonly applied in many fields, 
especially in pure and applied mathematics, physics, biology, geology, 
economics and many branch of engineering. Differential equations play an 
important role in modelling natural phenomena and engineering systems; from 
measuring population growth and radioactive decay to measuring height of falling 
objects, solving problems in electrical circuit and many more. Although these real 
life problems cannot be directly solvable, numerical methods that are commonly 
used in applied mathematics are suitable to find approximate solutions for those 
problems. 

 

Ordinary Differential Equation (ODE) is one of the most commonly used 
differential equations in real life problems, which describes changes 
mathematically, i.e. rate of change and gradients of quantities. Numerical 
methods are used not only to find approximate solutions of ODEs but also to help 
in understanding the behavior of the solutions. 

 

Another type of differential equation that is usually arise in engineering field and 
real life applications is Fuzzy Differential Equation (FDE). FDEs are used to 
model uncertain, vague, imprecise, partially true range of computing problems. A 
solution in finding the range of quantities of nuclei in a radioactive model is one of 
the applications of FDEs. Similarly to ODEs, variety numerical methods are used 
in approximating the solutions of FDEs. 

 

1.2 Objective of the Thesis 

The ideas of Block Backward Differentiation Formulas given by Ibrahim et al. 
(2007) are the center of the studies and extensions have been made based on 
these ideas. The objective of the thesis are: 
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i) to derive second and third order Diagonally Implicit Three-point Block 
Backward Differentiation Formulas suitable for solving first order stiff 
ODEs. 

ii) to extend and modify the Fully Implicit Block Backward Differentiation 
Formulas for solving first order FDEs. 

iii) to construct the stability region for the derived methods and determine the 
step size restriction. 

iv) to develop a code to implement methods as in i) and ii) using fixed step 
sizes capable for solving FDEs and stiff ODEs. 

 

1.3 Scope of the Thesis 

In this study we aim to formulate the Diagonally Implicit Three-point Block 
Backward Differentiation Formulas for solving first-order ordinary and fuzzy 
differential equations. The advantages of these methods are they require less 
computational time and produced more accurate solutions, hence, these 
methods are able to be alternative solvers for ordinary and fuzzy differential 
equations. 

 

1.4 Outline of the Thesis 

Chapter 1 provides a brief introduction of differential equations and the 
applications of numerical methods in finding solutions to differential equations. 

 

Chapter 2 consists of literature review that are related to the background of this 
study. In this chapter, some definitions and theorem on numerical methods are 
also included. 

 

In Chapter 3, an overview of the derivation of Fully Implicit Three-point Block 
Backward Differentiation Formulas as well as the modification of the 
corresponding method in order to solve first-order fuzzy differential equations is 
given. 

 

Chapter 4 focuses on the derivation of Diagonally Implicit Three-point Block 
Backward Differentiation Formulas to solve first-order ordinary differential 
equations. The order of both methods are determined and the implementation of 
Newton iteration is discussed. The methods are then used to solve first-order stiff 



© C
OPYRIG

HT U
PM

3 
 

ordinary differential equations and their performance are compared with the 
existing methods. 

 

In Chapter 5, convergence properties for the derived methods are discussed, i.e. 
consistency and stability of the methods. The restriction of step size of the 
methods are also studied.  

 

Chapter 6 focuses on the modification of the derived methods, and the 
convergence properties of both methods are discussed. In this chapter, first-
order fuzzy initial value problems are tested using these methods and then the 
results are compared with Diagonally Implicit Two-point Block Backward 
Differentiation Formulas of order two, three and four and Fully Implicit Three-
point Block Backward Differentiation Formulas. 

 

Finally, the summary of the whole thesis, conclusion and future research are 
presented in Chapter 7. 
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