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In this work, the microwave-assisted hydrothermal method was used to synthesize 

ZnxCd1-xS ternary quantum dots. In order to study the effect of different 

stoichiometries on ZnxCd1-xS properties, the molar ratio of Zn/Cd was chosen as 

0.1/0.9, 0.3/0.7, 0.5/0.5, 0.7/0.3, and 0.9/0.1, and to use semiconductor quantumdots 

in technology, the stability of these materials is very important and can achieve by 

capping the particles with either organic or inorganic materials like polymers. Zinc 

chloride (ZnCl2), cadmium chloride (CdCl2), and sodium sulfide (Na2S) were used 

as Zn, Cd, and S sources respectively, and polyvinylpyrrolidone (PVP) and 

thioglycolic acid (TGA) were used as capping agent and stabilizer to control 

particle’s growth and distill water as a solvent. The solution was heated in a 

microwave oven with 100% power for 4 minutes and the resulting precipitation was 

centriguged, washed, and dried at 100 ºC for 24 hours. By increasing the value of x 

from 0.1 to x=0.9, the powder color changed from dark yellow to white as verified 

by X-ray diffraction (XRD). The average particle sizes of ZnxCd1-xS nanoparticles 

as deduced from Sherrer’s equation by XRD peaks and from the images of 

transmission electron microscopy (TEM) were found to vary within range 3-5 nm 

with x values. The optical band gap energy in the range of 2.3 to 2.93 ev was 

calculated by Tauc plot of the UV-visible spectra. The band gap has increased with 

increasing the value of x due to a decrease in particle size. 

The synthesized Zn0.9Cd0.1S quantum dots capped by TGA and PVP have band gaps 

between 2.93 to 3.43, and 2.91 to 2.98 respectively. PL spectra for ZnxCd1-xS have 

three emission peaks related to sulfur, zinc, and cadmium vacancies respectively. 

The emission peaks II that are belong to zinc vacancies are observed at 484, 483, 

483, 481, and 478 that are shifted to the lower wavelengths by increasing the value 

of x, and correspond to 2.56, 2.57, 2.57, 2.58, and 2.6 (eV). This significant 

continuous shift is an evidence for the formation of the ternary ZnxCd1-xS quantum 

dot, rather than forming separate CdS, ZnS, or core-shell nanoparticle structure.
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Fakulti: Sains 

Dalam karya ini, kaedah hidroterma dibantu ketuhar gelombang mikro  telah 
digunakan untuk mensintesis titik kuantum, nanopatikel ternary  ZnxCd1-xS, (x = 
0.1, 0.3, 0.5, 0.7 dan 0.9). Zink klorida (ZnCl2), kadmium klorida (CdCl2) dan 
natrium sulfida (Na2S) telah digunakan sebagai sumber, Zn, Cd dan S masing-
masing dan polyvinylpyrrolidone (PVP) dan asid thioglycolic (TGA) digunakan 
sebagai ejen menutup dan penstabil kepada pertumbuhan nanopartikel secara 
terkawal dan air suling sebagai  pelarut. Larutan dipanaskan di dalam ketuhar 
gelombang mikro dengan kuasa 100% selama 4 minit dan mendakan yang terhasil 
mengalami emparan, dibasuh dan dikeringkan pada 100 ° c selama 24 jam.  Dengan 
meningkatkan nilai x daripada 0.1 untuk x = 0.9, warna serbuk bertukar daripada 
kuning gelap kepada putih dan keristiliti zarah ditukar daripada struktur hexagon 
kepada struktur kubus  seperti yang disahkan oleh belauan sinar-x (XRD). Saiz 
purata nanopartikel  ZnxCd1-xS seperti yang ditentukan dari persamaan  Sherrer oleh 
puncak XRD dan imej-imej transmisi elektron microscopy (Julai) didapati berada 
dalam julat 3-5 nm dengan pertambahan  nilai x. Jurang jalur tenaga optik telah 
dikira dengan plot Tauc untuk cahaya UV-tampak . Jurang tenaga telah meningkat
dengan peningkatan nilai x  antara 2.75 dan 3.02 (eV).  Sintensis ZnxCd1-xS dengan 
TGA dan  PVP mendapati  jurang tenaga antara 2.98 hingga 3.04 eV dan 2.90 
hingga 3.21 masing-masing. Spektrum PL untuk ZnxCd1-xS mempunyai tiga 
puncak penyinaran yang berkaitan dengan sulfur, zink dan kadmium masing-masing. 
Puncak penyinaran  II dipunyai untuk zink yang dapat dilihat di 484, 483, 483, 481, 
dan 478 yang akan berpindah ke gelombang lebih rendah dengan meningkatkan nilai 
x, dan sesuai dengan nilai  2.56, 2.57, 2.57, 2.58 dan 2.6 (eV) masing-masing.
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CHAPTER 1 

INTRODUCTION 

1.1 Background of study  
 
Nanoscience is a wide study area pertaining to diverse methods of synthesis and 
characterization of nanomaterials such as metal nanoparticles and semiconductor 
quantum dots- which is a type of nanocrystal made of semiconductor materials that 
are small enough to exhibit quantum mechanical properties- leading to their high 
potential applications in medicine, cancer therapy, optical devices, catalysis, and 
solar cell. Because of their particle size varies in range 1- 100 nm, their electronic 
parameters are size dependent such that they are promising candidates for optical 
devices. These types of materials have different electronic and optical properties 
compared to their bulk material counterparts. Their expanded surface leads to a new 
atomic arrangement which has an effect on optical properties of nanoparticles. The 
high surface to volume ratio can cause an increase in surface specific active sites for 
chemical reactions and photon absorption to enhance reaction and absorption 
efficiency, and an increase in the surface states, which changes the activity of 
electrons and holes and affects the chemical reaction dynamics. By decreasing the 
size of particles, the confinement charge carriers and the quantum size effect can 
occur, both conduction and valence band can split into discrete electronic states, and 
the band gap and optical and electronic properties become size dependence.  

Ternary chalcogenide-based semiconductor quantum dots have unique size-tunable, 
optical, and electronic properties. These semiconducting materials have a broad 
range of applications in photovoltaic devices and solar cells. The Zinc Cadmium 
Sulfide (ZnCdS) ternary quantum dot is promising candidate as blue emitter and 
wide bandgap window material in photoconductive devices and heterojunction solar 
cells.  

Among the expand range of nanomaterials, the ZnxCd1-xS semiconductor quantum 
dots (QDs) are the best wide band gap window materials due to its tunable size, 
shape, and emitting color. To control the shape and size of corresponding QDs many 
different synthesis methods are presented such as gas-phase process, microwave-
assisted hydrothermal method, co-precipitation method, chemical bath deposition, 
and solvothermal method. The hydrothermal method is useful for the growth of 
crystals with the ability of good control of their composition. Methods of synthesis 
the nanoparticles are expected to modify the nanoparticle’s surface and properties 

and form them with narrow size distribution. 

1.2 Problem statement 

Semiconductor nanoparticles have an important role in new world due to their wide 
range of applications such as optical devices. In order to use them in technology, 
their particle size, size distribution, morphology, and optical properties are necessary 
to be controlled. Recent studies improve the way of synthesis nanoparticles and 
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introduce some solution to control their properties during the formation process. The 
optical properties of semiconductor quantum dots are affected by their size 
distribution and surface that should be controlled to achieve desired optical 
characters. Some of the synthesis methods cause the large size and unstable particles 
or require longer hours to complete. Furthermore the products may result in 
amorphous phase, poor dispersion and with impurities. The microwave-assisted 
method and capping the nanoparticles with some materials as stabilizer can 
overcome these problems and give the semiconductor quantum dots with desired 
properties. In order to use semiconductor nanoparticles in technology, the stability 
of these materials is very important and can achieve by capping the particles with 
either organic or inorganic materials like polymers. The utilization of capping agents 
in nanoparticles synthesis is a way to provide chemical passivation, and improve the 
surface state that has a significant effect on the optical and electronic properties of 
nanoparticles. They prevent agglomeration of the nanoparticles and boost their 
optical properties and stability. 

1.3 Study objective 
 
In the terms of knowledge creation, this work includes fundamental research of 
semiconductor QDs synthesis process, effect of precursor’s concentration, and also 

capping agents on physical and optical properties of nanoparticles. In details, in this 
project the high quality ZnxCd1-xS semiconductor ternary QDs were synthesized via 
microwave irradiation with x values of 0.1, 0.3, 0.5, 0.7, and 0.9, and two types of 
capping agents with concentration from 1% to 5% and characterized to find their 
properties. To activate successful achievement of these, the thesis research is 
divided into the following particular objectives: 

1- To synthesize high purity and quality ZnCdS semiconductor ternary QDs by 
hydrothermal microwave-assisted synthesis process in deionized water as solvent. 

2- To study the effect of variation of x (x= 0.1 to 0.9) of ZnxCd1-xS quantum dot in 
particle size, size distribution, morphology, and optical properties. 

3- To investigate the influence of capping agents on synthesis and the growth 
process of Zn0.9Cd0.1S semiconductor nanoparticles, and their physical and optical 
properties. 

1.4 Scope of study 

This work will deal with the important understanding of the synthetic conditions and 
the surface modification process relation of chalcogenide-based semiconductors. In 
particular, this thesis prepares and characterizes the ZnxCd1-xS semiconductor QDs 
to examine their interesting properties and potential for extensive research. The 
microwave-assisted synthesis method is used to make the semiconductor QDs. 
Microwave irradiation of precursors decreases the time of reaction from days to 
minutes and produces smaller particles with a narrow particle size distribution and 
high purity. With a knowledge of nucleation and growth process, the tunning the 
size and controlling the shape, structure, and optical properties can be studied. The 
prοduction of the best quality materials is carried out thrοugh selectively isοlating 
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the materials that actively cοntribute to the mοst nucleation events fοllowed by 
efficient grοwth of the nanοparticles thrοugh the use of micrοwave irradiation. The 
experimental cοndition such as cοncentration οf precursοrs, and the type and 
concentration of capping agents has also influence in quality of nanoparticles.  This 
thesis is divided into two sections. In the first section the ZnxCd1-xS with different 
values of x (0.1, 0.3, 0.5, 0.7, and 0.9) was synthesized through the reaction of zinc 
chloride, cadmium chloride, and sodium sulfide in deionized water as solvent with 
the aid of microwave radiation as a heating source in order to study the effect of 
concentration of precursors on the size distribution, optical properties, and 
morphology of nanoparticles. Second section provides a synthesis process of PVP 
and TGA capped Zn0.9Cd0.1S with different concentration of stabilizer from 1% to 
5% to monitor the effect of capping agents  on the  synthesis process, particle size, 
and size distribution of semiconductor QDs.  

1.5 Thesis outline 

This thesis presents a microwave-assisted hydrothermal synthesis rout and 

characterization of ZnCdS semiconductor ternary QDs with variable concentrations 

of Zn as one of the precursors,and  PVP, and TGA as capping agents. The outline of 

this thesis comes as follow:  

Chapter 1 presents an introduction of this research, including the background of 

study , problem statement, scope, and objective of the study. Chapter 2 deals with a 

history of Nanoscience, quantum dot, and chalcogenide ZnxCd1-xS semiconductor 

nanoparticles and related literature in view of the synthesis process of nanoparticles. 

Chapter 3 is focused on a theory of electronic states of semiconductors and QDs, 

growth and nucleation process in the synthesis of nanoparticles, and microwave

irradiation and  its effect on  materials. Chapter 4 provides the methodology of this 

work containing materials, experiment section, and characterization of 

semiconductor nanoparticles and the related methodes. The major part of this thesis 

has come in Chapter 5 which describes the experimental results and related analysis. 

The summery and suggestions for future work has presented in last chapter (Chapter 

6).
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