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One of the properties of embryonic stem (ES) cells is their differentiation potential 

including the capacity to form specific regional neural cells identity. However, 

limitation in getting homogenous neuronal specific subtype population from ES cells 

has resulted in the formation of teratoma upon transplantation, thus has hindered their 

use in clinical applications. Hence, understanding the key regulators during 

differentiation of ES cells is essential. Among the regulators, Wnt5a signalling 

molecule has been shown to play important role in neural differentiation process of 

mouse ES cells in a stage-dependent manner. Therefore, a system that allows for a 

tight regulation of Wnt5a expression in undifferentiated ES cells and also upon 

differentiation is indispensable in order to evaluate the stage-dependency effect of 

Wnt5a during the process. This study aims to generate and characterize Wnt5a 

transgenic cell line that carries the inducible Wnt5a transgene construct through a 

binary Cre/loxP system and to preliminarily evaluate its application in understanding 

the stage dependency effect of Wnt5a during the neural differentiation process. Two 

clones of Wnt5a transgenic line were successfully generated by transfecting the

pCAG-floxed-neopA-Wnt5a plasmid into a Cre expressing cell line, R26CT2S. Stable 

transfected cells were screened by dual antibiotic selections before and after exposure 

to 4’-hydroxytamoxifen (4’-OHT). The cell line was found to maintain its 

pluripotency.  The expression of Wnt5a transgene was observed to be temporally 

controlled upon exposure to a non-detrimental dosage of 4’-OHT. High level of 

transgene expression was observed in clones induced with 4’-OHT both in ES cells 

and the embryoid bodies (EBs), clearly indicating the stability and inducibility of the 

Wnt5a construct. The generated inducible Wnt5a transgenic ES cell line was then 

applied to preliminarily understand the effects of Wnt5a activity at specific time points 

during neural differentiation process. The formation of multicellular aggregates, 

embryoid bodies (EBs) and the addition of retinoic acid in the presence of serum was 

chosen to differentiate ES cells into neural lineage. The expression of Wnt5a transgene 

was induced at three different time points: 1) early and 2) late stages of neural 

differentiation process and 3) constitutive expression (since the undifferentiated 

stage). The expression of selected specific neural markers for the formation of post-
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mitotic, mature and dopaminergic (DA) neurons and astroglial cells was qualitatively 

and quantitatively analysed. The effects of stimulating Wnt5a signalling pathway at

the specific time points were analysed at three different stages of the neural 

differentiation process; day 2, day 8 and day 16 post-plating neural culture. 

Interestingly without influence of any standard patterning factors, high and early 

detection of TH positive neuron, Class III β-tubulin and Map2 markers was observed 

when Wnt5a was induced at early stage of neural differentiation process. A dynamic 

expression pattern of the neural proteins generated, indicates the complex roles of 

Wnt5a during the process. This study, highlights the application of the conditional ES

cell system in elucidating stage-dependency effect of Wnt5a during neural 

differentiation process and exposes the potential role of this molecule in generating ES

cells-derived neural cells that are suitable for cell-based therapy for neurodegenerative 

diseases. 
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Salah satu ciri unik sel stem embrionik (ES) adalah potensi pembezaannya 

termasuklah kemampannya membentuk identiti neuron yang spesifik. Namun begitu, 

terdapat batasan dalam mendapatkan subjenis populasi neuron yang sekata daripada 

sel stem embrionik yang mana menyebabkan pembentukan teratoma selepas 

implantasi lalu membataskan penggunaan sel stem embrionik dalam aplikasi klinikal. 

Oleh itu, pemahaman mengenai molekul yang mengawal pembezaan sel stem 

embrionik adalah sangat penting. Molekul isyarat Wnt5a telah dibuktikan memainkan 

peranan yang penting dalam proses pembezaan neuron daripada sel embrionik tikus, 

secara kesandaran peringkat. Oleh yang demikian, satu sistem yang dapat mengawal 

ketat regulasi ekspresi Wnt5a oleh sel stem embrionik sebelum dan selepas pembezaan 

neuron perlu diwujudkan bagi mengukur kesan kesandaran peringkat Wnt5a sewaktu 

proses tersebut. Kajian ini dijalankan bagi menghasilkan dan memperinci sel 

transgenik Wnt5a yang membawa konstruk transgen teraruh Wnt5a melalui sistem 

binari Cre/loxP serta mengkaji aplikasi sistem tersebut bagi memahami kesan 

kesandaran peringkat Wnt5a sewaktu proses pembezaan neuron. Dua klon sel 

transgenik Wnt5a telah berjaya dihasilkan melalui kaedah transfeksi plasmid pCAG-

floxed-neopA-Wnt5a ke dalam titisan sel yang mengekspreskan Cre, R26CT2S. Sel 

terinfeksi yang stabil disaring melalui seleksi berperingkat oleh dual antibiotik 

sebelum dan selepas pendedahan dengan 4’-hydroxytamoxifen (4’-OHT). Titisan sel 

tersebut didapati dapat mengekalkan ciri pluripotent sel. Expresi transgen Wnt5a 

didapati dikawal secara temporal selepas pendedahan kepada dos selamat 4-OHT. 

Ekspresi transgen yang tinggi turut dikesan pada klon yang diaruh dengan 4’-OHT 

dalam kedua-dua sel stem embrionik dan jasad embrio, menunjukkan kestabilan dan 

keboleharuhan konstruk Wnt5a tersebut. Titisan sel embrionik ini kemudiannya 

digunakan bagi mengkaji kesan aktiviti Wnt5a pada sela masa spesifik sewaktu proses 

pembezaan neuron. Kaedah, jasad embrio dan penambahan asid retinoik dengan 

kehadiran serum digunakan bagi membeza sel stem embrionik kepada nasab neural. 

Ekspresi transgen Wnt5a diaruh pada tiga masa berbeza: 1) awal 2) lewat proses 

pembezaan dan 3) ekpresi konstitutif (ekpresi Wnt5a sebelum pembezaan sel stem). 

Ekspresi penanda neural yang spesifik bagi neuron pasca mitotik, matang, dan 

dopaminergik serta sel astroglial dianalisa secara kualitatif dan kuantitatif. Kesan 
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stimulasi laluan penanda Wnt5a pada sela masa spesifik dianalisa pada 3 fasa berbeza 

dalam proses pembezaan neuron; hari ke 2, hari ke 8 dan hari ke16 pasca penyemaian 

kultur neural. Menariknya tanpa penambahan sebarang faktor pencorakan, neuron 

tirosin hydroxylase, kelas III β-tubulin dan Map2 positif dapat dikesan awal dan pada 

kadar yang tinggi, apabila Wnt5a diaruh di awal proses pembezaan neuron. Pola 

ekspresi penanda protein neural, menandakan peranan Wnt5a yang kompleks sewaktu 

proses tersebut. Kajian ini menunjukkan aplikasi sistem sel embrionik kondisional 

dalam menguraikan kesan kesandaran peringkat Wnt5a seterusnya membuktikan 

potensi molekul ini dalam usaha menghasilkan sel neuron daripada sel stem embrionik. 

Sel neuron daripada sel stem ini pula sesuai digunakan dalam terapi berasaskan sel 

terutama dalam merawat penyakit neurodegeneratif. 
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      CHAPTER 1 

            INTRODUCTION 

The embryonic stem cells were first isolated by Evans and Kaufman in 1981. This cell 

was isolated from the inner cell mass of the mouse blastocyst around embryonic day 

(E) 3.5- 4.5. Embryonic stem (ES) cells acquire two main characteristics; the ability to 

maintain self-renewal capacity upon prolonged culture under appropriate condition 

and also the capability to differentiate into the three primary germ layers-derived cells 

in vitro. These two characteristics have made ES cells as a potential tool in 

understanding various processes during neural development, drugs discovery and most 

importantly, in regenerative medicine targeting particularly degenerative disease. In 

neurodegenerative diseases such as Parkinson’s disease (PD), L-Dopa is a drug that is 

commonly prescribed for Parkinson’s patient. Despite its efficacy in improving 

symptoms of Parkinsonian patients, this drug particularly works but with 

neuropsychiatric side effects (Morizane et al., 2008).  Previous study on clinical trials 

of embryonic ventral mesencephalic tissue transplantation demonstrated symptomatic 

recovery and the grafted cells showed extensive re-innervation into the host tissue 

(Annet et al., 1994). However ethical concerns have limited embryonic ventral 

mesencephalic tissue supply. Alternatively, generation of cells or tissues from 

unlimited supply would be an attractive solution.  The capacity of ES cell to generate 

neurons in culture to restore the damaged neurons, may serve as a potential alternative 

source of transplantable neurons for neurodegenerative diseases.  

Currently, a number of group have established ES cell-derived functional defined 

neurons as a model for neurodegenerative diseases such as Alzheimer’s disease and 

spinal cord injury (Ying et al,. 2003; Abranches et al,. 2009; Zhu et al,. 2016). One of 

the approaches in ES cell-based therapies is to generate highly homogenous population 

of neurons in culture and transplant them into the brain region to replace the neuronal 

loss. Previous study showed neurons derived from ES cells were successfully survived 

and established connections with the host cells (Andersson et al., 2013; Steinbeck et 

al., 2012), confirming the potential of ES cells as the source of cells for transplantation. 

However the current results were too preliminary to be taken into clinical practice. 

Among the major issues in ES cell-based therapies are the low survival rate of 

transplanted neurons and poor availability of homogeneous pure neurons in culture 

which will cause teratoma formation upon transplantation in a host. These are the main 

hindrance for their usage in clinical settings (Kooreman & Wu, 2010). Therefore, 

proper understanding of the underlying mechanisms that govern neural differentiation 

process is necessary in order to generate highly homogenous population of defined 

neuronal subtype. 

There are many key regulators governing the neurogenesis process during 

development of the central nervous system (CNS). These factors which are required 

in neural patterning are attractive candidates in directing ES cells towards specific 

neural lineages. Wnt is among the members of related proteins that plays a critical role 

in the CNS development, besides sonic hedgehog (Shh) (Balaskas et al., 2012), bone 
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morphogenetic protein (BMP) (Ille et al., 2007) and retinoic acid (RA) (Wobus et al., 

1997). To date 19 members of Wnt have been discovered in mammals, which are 

grouped into canonical (β-catenin pathway) and non-canonical pathways (β-catenin 

independent pathway). Wnt signalling has been shown to be involved in regulating the 

stem cell proliferation, anterior and posterior patterning of the embryo and also in the 

developmental processes of the CNS (Liu et al., 2008; Wan et al., 2014).  Several in 
vivo and in vitro analyses showed the expression of Wnt signalling proteins are stage 

and regional dependent (Lange et al., 2006). The activity of Wnt is highly dependent 

on the type and developmental stage of the target cell, the same Wnt might regulate 

multiple roles at different cell context (Kunke et al., 2009).

Wnt5a belongs to Wnt signalling molecule which is categorized under the β-catenin 

independent pathway. The binding of Wnt5a on transmembrane receptor Frizzled (Fz) 

and co-receptor will generally transduce Wnt/Calcium and Wnt/Planar polarity 

pathways. Wnt5a was found to regulate body segmentation and polarity during 

embryonic stage (Bodmer et al., 2009; Yamaguchi et al., 1999).  In addition, Wnt5a 

was also found in regulating the convergent extension process of Xenopus embryo 

(Sato et al.,  2009).  Further, the role of Wnt5a was discovered in axon morphogenesis 

(Blakely et al., 2013; Clark et al., 2014) and also synaptogenesis (Bodmer et al., 2009; 

Davis et al., 2008). In addition, stimulation of Wnt5a was found to promote 

differentiation of neural precursor cells (NPC), rather than maintaining the NPC 

population, showing that Wnt5a promotes cell specification of NPC (Nordin et al., 

2008; Yu et al., 2006). An in vivo study conducted revealed deletion of Wnt5a in E10.5 

mouse has increased progenitor proliferation in the midbrain floor plate (Andersson et 

al., 2008). These studies provided prove of the important roles of Wnt5a signalling in 

segmentation and also in neurogenesis.  

To date limited studies have been carried out to understand the roles of Wnt5a during 

neural differentiation process of mouse ES cells. In an effort to investigate the 

efficiency of neural differentiation process of pluripotent cells, Kwon and colleagues 

(2014) have conducted microarray analysis. The finding showed, Wnt5a is one of the 

major regulatory genes that was upregulated during neural differentiation process of 

induced pluripotent stem cells and embryonic stem cells. Previous study has shown  

treatment of Wnt5a and Fgf2 at later stage of ES cell promoted the neural 

differentiation process in vitro which then upon transplanted into animal model 

enhanced the survival of functional neuron in vivo (Sanchez-Pernaute et al., 2008).
This observation clearly suggest the stage dependency of Wnt5a in regulating 

neurogenesis. Supporting the finding, a study conducted by Nordin et al (2008) on 

neural differentiation from mouse ES cells by  4-/4+ protocol, has shown a dynamic 

expression of Wnt5a transcript where its activity is believed to be stage dependent. 

The stage dependency effect of Wnt5a was further tested by Anderson et al (2013) by 

sequential stimulation of Wnt3a and Wnt5a where a significant increase of tyrosine

hydroxylase (TH) positive cells was observed, indicating the stage-specific activity of 

Wnt is required to control different stages of midbrain DA neurons. All these findings 

suggest the involvement of Wnt5a in regulating neural differentiation in vivo and in
vitro in stage dependent manner. 
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The Wnt5a activity is complex and its expression during neural differentiation process 

has been poorly understood. The used of purified Wnt5a protein to observe the effect 

of Wnt5a during the differentiation process has been reported. However, direct protein 

treatment might hinder the comprehensive quantitative biochemical analysis due to 

dilution of its concentration by the medium and other external factors [review in (Van 

Amerongen & Nusse 2009)]. In order to evaluate the stage-dependency effect of 

Wnt5a during the process, a system that allows us to tightly regulate its expression not 

only in undifferentiated ES cells but also upon differentiation in a closed environment, 

within the cells is highly needed.  

In this study Cre-loxP based ES cell expression system is utilized to establish inducible 

Wnt5a transgenic ES cell line. The transgenic line would be useful in stimulating 

Wnt5a signalling at specific time points during neural differentiation of ES cells. 

Hence, the system is allowing the evaluation of the stage-dependant effect of Wnt5a 

during the process to be carried out. The key questions of this study are; 1) Can stable 

and inducible Wnt5a transgenic cell line be established? 2) Can Wnt5a transgenic cell 

line be used in assessing the stage dependency effect of Wnt5a during neural 

differentiation process at different time point?  

Hypothesis  

A stable and inducible Wnt5a transgenic ES cell line was successfully established, and 

it has high potential to unravel the stage dependency effect of Wnt5a during neural 

differentiation process of mouse ES cell. 

General objectives 

To establish inducible Wnt5a transgenic line and to preliminarily unravel the stage-

dependent role of Wnt5a during neural differentiation process of mouse ES cells. 

Specific aims: 

1) To validate the inducible Wnt5a construct plasmid  

2) To establish and characterize conditional Wnt5a transgenic mouse ES cell line. 

3) To preliminarily analyse the effect of inducing Wnt5a transgene at three different 

time points during neural differentiation process on the expression of selected neural 

protein markers for post-mitotic, mature and dopaminergic neurons, and astroglial cell. 
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