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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in 

fulfillment of the requirement for the degree of Master of Science 

SOLVING PARTIAL AND FRACTIONAL PARTIAL DIFFERENTIAL 
EQUATIONS USING CORRECTED FOURIER SERIES METHOD 

By

NOR HAFIZAH BINTI ZAINAL 

November 2014 

Chair: Professor Adem Kilicman, PhD 
Faculty: Science 

Partial differential equations (PDE) are often used to construct models of the most basic 

theories in physics and engineering. Our goal here is to solve the PDEs problem by 

using Fourier series method that always been used. However, the truncated Fourier 

series will cause the Gibbs phenomenon. To eliminate this phenomenon, the corrected 

Fourier series which consists of a uniformly convergent Fourier series and a correction 

function will be used. The correction function here is referred to the algebraic 

polynomials and Heaviside step functions.  The Fourier series remains uniformly 

convergent until its -th derivative without Gibbs oscillation if the order of polynomial 

in correction functions not exceed -th order which the Gibbs oscillation of the 

Fourier series will be terminated until its -th derivative. 

In this study, we use the corrected Fourier series to solve partial differential equations 

and fractional partial differential equations. The theory of derivatives and integrals of 

fractional (non-integer) order was started over 300 years ago. In recent years, fractional 

calculus have been attract in various research due to its extensive application in 

engineering and science. We solve this problem by using corrected Fourier series 

method with modified Riemann-Liouville derivatives. The fractional derivatives are 

described in Riemann-Liouville sense. 

For the case PDEs, we compared the result with classical Fourier series method and 

exact solution. There is some case that classical Fourier series method cannot solve at a 

certain point. Meanwhile, corrected Fourier series method gives the solution at that 

point. For the case that cannot solve by using classical Fourier series method, we can 
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solve by using corrected Fourier series method. For the fractional PDEs, there is no 

exact solution for order �  as a non-integer number. Thus, we compared the result with 

others method which is variational iteration method (VIM) and homotopy method. The 

Maple software is used for all calculation in this study. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 

sebagai memenuhi keperluan untuk ijazah Master Sains 

MENYELESAIKAN PERSAMAAN PEMBEZAAN SEPARA DAN PECAHAN 
DENGAN MENGGUNAKAN KAEDAH SIRI TEPAT FOURIER 

Oleh

NOR HAFIZAH BINTI ZAINAL 

November 2014 

Pengerusi: Professor Adem Kilicman, PhD 
Fakulti: Sains 

Persamaan pembezaan separa (PPS) sering digunakan untuk membina model teori-teori 

yang paling asas dalam bidang fizik dan kejuruteraan. Matlamat kami di sini adalah 

untuk menyelesaikan masalah PPS dengan menggunakan kaedah siri Fourier yang biasa 

digunakan. Walau bagaimanapun, siri Fourier yang dipenggal akan menyebabkan 

fenomena Gibbs. Untuk menghapuskan fenomena ini, siri tepat Fourier yang terdiri 

daripada satu siri Fourier yang menumpu secara seragam dan fungsi pembetulan akan 

digunakan. Fungsi pembetulan di sini merujuk kepada polinomial algebra dan langkah 

fungsi Heaviside. Siri Fourier kekal menumpu secara seragam sehingga terbitan ke-

tanpa Gibbs ayunan jika peringkat polinomial dalam fungsi pembetulan tidak melebihi 

peringkat  yang ayunan Gibbs daripada siri Fourier akan ditamatkan sehingga 

terbitan ke- . 

Dalam kajian ini, kami menggunakan siri tepat Fourier  bagi menyelesaikan persamaan 

pembezaan separa dan pecahan persamaan pembezaan separa. Teori terbitan dan 

kamiran daripada pecahan (bukan integer) peringkat itu telah bermula lebih 300 tahun 

yang lalu. Dalam tahun-tahun kebelakangan ini, kalkulus pecahan telah menarik dalam 

pelbagai penyelidikan disebabkan oleh penggunaan yang luas dalam bidang kejuruteraan 

dan sains. Kami menyelesaikan masalah ini dengan menggunakan kaedah siri tepat 

Fourier dengan diubahsuai terbitan Riemann-Liouville. Terbitan dalam pecahan 

dinyatakan dalam erti kata Riemann-Liouville. 

Bagi PDE kes, kita membandingkan keputusan dengan kaedah siri Fourier klasik dan 

penyelesaian yang tepat. Terdapat beberapa kes kaedah siri Fourier klasik tidak boleh 

menyelesaikan masalah pada titik tertentu. Sementara itu, kaedah siri tepat Fourier 

memberikan penyelesaian pada ketika itu. Bagi kes yang tidak dapat diselesaikan 
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dengan menggunakan kaedah siri Fourier klasik, kita dapat menyelesaikan dengan 

menggunakan kaedah siri tepat Fourier. Bagi PDE pecahan, tidak ada penyelesaian yang 

tepat untuk terbitan �  sebagai nombor bukan integer. Oleh itu, kita berbanding 

keputusan dengan kaedah lain yang merupakan kaedah variasi lelaran (KVL) dan kaedah 

homotopi. Perisian Maple digunakan untuk semua pengiraan dalam kajian ini. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

It is well known that differential equations are the most important mathematical tools in 

the real-world problems. In differential equation (DE), the quantity that being 

differentiated is called the dependent variable and the quantity with respect to that 

dependent variable are called independent variable. In physics, we often encounter 

equations containing second, third and higher order derivatives with respect to the 

independent variable. These are called second order DEs, third order DEs, and so on, 

where the order of the equations is refer to the order of the highest order of its derivative 

with the independent variable that appeared explicitly. 

The DE that involves one independent variable is called ordinary differential equation 

(ODE). ODE is an equation containing a function of one independent variable and its 

derivative. An ODE is said to be order n , if n  is the higher order derivative occurring in 

the equation. Meanwhile, a partial differential equation (PDE) is an equation containing 

two or more independent variables and its partial derivatives. In this study, we are 

focusing on solving PDEs in two independent variables case. As we know, partial 

differential equations are more difficult to solve than ordinary differential equations. 

Many phenomena in sciences and engineering are depends on more than one 

independent variable. PDEs are used to characterize engineering systems where the

behavior of a physical quantity is expressed in terms of its rate of change with respect to 

two or more independent variables. For example is the heated plate. The boundaries of 

the plate are held at different temperatures. Because the heat flows from regions of high 

to low temperature, the boundary conditions set up a potential that leads to heat flow 

from the hot to cool boundaries. In sufficient time elapse, such a system will eventually 

reach the stable or steady-state distribution of temperature. Then to determine this 

contribution, the Laplace equation, along with appropriate boundary conditions is 

provided (Chapra and Canale, 2006). We expressed the equation in the form
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In the Laplace equation (1.1), this is indicated by the absence of a time derivative. For 

the case where there are source distributions, the equation is represented as 
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      (1.2) 

where ),( yxf  is a function describes a heat source distribution and it is called the 

Poisson equation. 

In addition, other examples of PDEs of two independent variables are 
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      (1.4) 

(1.3) is called the heat equation that can be used to describe the heat transfer process 

along a thin rod, where the coefficient c  being determined by the thermal conductivity, 

the specific heat and the density. Meanwhile, (1.4) is called the wave equation that can 

be used to model the vibration of a string, with the coefficient 
2c  depending on the 

string tension and density. The quantity c  can be interpreted as the speed of wave 

propagation, (Atkinson and Han, 2004). PDEs can be classified into elliptic, parabolic, 

and hyperbolic equations. The Poisson equations is in the class of elliptic equation, the 

heat equations is in the class of parabolic equation and the wave equations is in the class 

of hyperbolic equation. 

Furthermore, we also interested in solving the fractional partial differential equations. 

There has been a growing interest in the field of fractional derivatives. Fractional 

derivatives are generalization of the derivative to a non-integer order. Nowadays, 

phenomena in life such as advancement of calculus of variations and optimal control to 

fractional dynamic systems, analytic and numerical tools and techniques, bioengineering 

and biomedical applications have been modeled by fractional partial differential 

equations. 



© C
O

UPM

3 
 

The fractional derivative of order �  of function )(tf  with respect to t  is written as 

)(tfDt
�

 or can also be written as �

�

dt
tfd )(

 where �  is non-integer. Meanwhile, for 

fractional partial derivative of function ),( txu  of order �  with respect to t  is written as

�

�

t
txu

�
� ),(

. To be more cleared, let we recalled the derivative of a function f with respect 

to x and it is defined as 
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For n  to be non-integer values, we use the Euler’s Gamma function, �  property, which 

is )1(! ��� nn . 

Thus,
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Let say, we have polynomial function
mxxf �)( , if we differentiate )(xf  with respect 

to x for n times, when �n , then we get 
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Example 1: Find first, second and third derivatives of polynomial function 3)( xxf �
with respect to x .

Solution: 
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Example 2: Find fourth derivative of polynomial function 10

5

1
)( xxf �  with respect 

to x by using (1.7). 

Solution: By using (1.7), we have 
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10085040
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Now, we check the answer whether it is correct or not. 

6derivative4th 7derivative 3rd8derivative 2nd9derivative1st 10 1008144182
5

1 xxxxx ���� 	����� 	����� 	����� 	�
�
�

�
�
�

We can see here, it gives the same answer when we use (1.7).  

For �n , we use the Euler’s Gamma function, � property. Thus we have 


 � nmm
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x
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)1(
 where �nm, .               (1.8) 

Example 3: Find fractional derivative of polynomial function 3)( xxf �  with respect 

to x with order 
2

1
and

5

1
.

Solution: By using (1.8), we have 
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When we go back more than three centuries, in 1695 the derivative of order 
2

1
��  was 

described by Leibniz, where in a letter to L’Hopital, Leibniz discussed the 

differentiation of product functions to differentiation of order
2

1
, (as cited in Miller and 

Ross, 1993).  After that, there a few different forms of fractional operator have been 

introduced such as Riemann-Liouville, and Caputo. In Riemann-Liouville fractional 

derivative, we take the fractional integral of order �  first then take a first derivative, 


 �)()( tfJ
dt
dtfDt

�� � . Meanwhile, in Caputo fractional derivative, we take first 

derivative and then follow up with fractional integral of order � ,


�
�

�
�
�� )()( tf

dt
dJtfDt

��
.

In our study, we are going to use the corrected Fourier series (CFS) that have been 

introduced by Zhang, Chen, and Qu in 2005. Galerkin method with corrected Fourier

series as its basis functions will be proposed. Gibbs oscillation or spurious oscillation is 

oscillation that occurs when using the truncated Fourier series. It always appeared near 

the discontinuities and aperiodic endpoints. In this research, for th order PDEs, the 

linearly independent solutions are uniformly convergent until their derivatives, no Gibbs 

oscillations in the solution themselves and in their derivatives until th order over the 

PDEs entire interval. Since the corrected Fourier series is uniformly convergent, we will 

apply it to solve the problems of linear PDEs. Corrected Fourier series is a combination 

of uniformly convergent Fourier series and a correction function which consists of 

algebraic polynomials and Heaviside step functions. 

                

 � 
 ���� �
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n xxH
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�     (1.9) 

The first part of (1.9) is an th uniformly convergent Fourier series, the second part is a 

polynomial no-more-than th order, and the last part is an th integral of the 

Heaviside-step function at the discontinuities.  
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Definition 1 The Fourier projection of any function )(x�  on the basis function 

 �xi ne �

 in 

the interval ],0[ 0x is defined as 


 �� �� 0

0
0

1 )(
1

)(
x xi

n
dxex

x
xF n��� ,

0

2

x
n

n
�� � .

In the next chapter, we will discuss the literature review in the process of learning the 

field of study. A brief introduction on the Fourier and Corrected Fourier series also will 

be discussed in this chapter. 

1.2 The objective of the Thesis 

The main objectives of this thesis can be summarized as follows: 

i. To solve partial differential equations by using corrected Fourier series. 

ii. To solve fractional partial differential equations by using corrected Fourier series 

with modified Riemann-Liouville derivatives. 

1.3 Outline of the Thesis 

In Chapter 1, a basic theory of differential equations and a theory of fractional derivative 

were discussed. A brief introduction on the corrected Fourier series was also discussed 

in chapter 1. In this study, we are focusing in solving second order partial differential 

equation and fractional partial differential equations with non-integer order. In Chapter 

2, we put some literature review in the process of learning the field of study.  

In Chapter 3, we derived corrected Fourier series method for solving partial differential 

equations. We divided the derivation in three cases which is Heat problem, Wave 

Problem and Poisson Problem. In Chapter 4, we discussed a theory of Fractional partial 

differential equations. We introduced some definitions of fractional differential 
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equations. Here, we derived corrected Fourier series method for solving fractional 

differential equation. We choose the alpha as between 0 to 1 and 1 to 2.  

In Chapter 5, we test the problem related to the case by using corrected Fourier series 

method. For PDEs case, we compared the results with exact solution and classical 

Fourier method. For the case fractional PDEs, we don’t have exact solution when the 
order alpha,  is non-integer. Thus, we compared the result with other approximation 

method which is Variational iteration method (VIM) and Homotopy method. Finally, in 

the last chapter, the summary of the whole thesis, conclusions are given. 
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