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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of 
the requirement for the degree of Master of Science

RELATIONSHIP BETWEEN NECK MUSCLE ACTIVATION AND HEAD-
NECK RESPONSE IN LOW VELOCITY FRONTAL COLLISION

By

KAK D-WING

January 2016

Chair: Wong Shaw Voon, PhD
Faculty: Engineering

Neck injury is not a rare occasion in car crash accident. Occurrence of neck injuries due 
to car crash accident has increased 11 times within 20 years in Netherlands. Road Safety 
Research Center (RSRC) of UPM reported that 60% of all neck injuries resulted to
fatality of motorcyclist in road collision at Malaysia. High expenses are spent on medical, 
insurance and hospitality on neck injury related to car crash annually. Proper 
countermeasure has to be taken to mitigate the occurrence of neck injury in crash. 
Previous study has proven that neck active muscle is capable to generate force to reduce 
30-35% of head rotations and head angular velocities in rear-end collision. Thus, it is 
critical to understand the behavior of neck muscle responses before a biofidelity head-
neck mathematical model can be designed. Nevertheless, the behavior of neck active 
muscle response under static and dynamic loading is still yet to be established. This study 
aims to establish relationship between neck muscle response and head-neck response in 
low speed collision through experimental test. In this study, there are two main 
experimental test which are static neck muscle strength test and low velocity frontal 
collision test. Neck muscle sternocleidomastoid and semispinalis capitis which are 
primary neck flexor and extensor are selected to be studied in this study. In static neck 
strength test, the measured maximum neck muscle strength is 64.5 N and 96.7 N for 
flexion and extension. This study has established models to relate neck muscle EMG 
activity and neck muscle force for neck flexor and extensor muscles. This model can 
explain 82.9%-85.4% of the data variables with a negative quadratic relationship. The 
neck muscle force generated at the same activation level is different between static and 
dynamic loading condition. In low velocity collision test, the peak linear head 
accelerations are 4.61G and 7.35G relative to torso for impact speed of 2.17 m/s and 2.47 
m/s respectively. An empirical model has established to relate neck muscle activation 
level based on head linear acceleration and angular acceleration where R2= 0.934. Neck 
extensor, semispinalis capitis are the dominant muscle with high level of activation level 
in low velocity frontal collision test. On the hand, neck flexor, sternocleidomastoid only 
activated at about 30-40% in the collision tests. The established empirical models can be 
applied to relate neck muscle activation level and muscle force in low velocity frontal 
collision. This can further enhance accuracy and precision of current head-neck 
simulation model in simulating kinematic response of human head in crash.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia Sebagai 
memenuhi keperluan untuk ijazah Master Sains 

HUBUNGAN ANTARA PENGAKTIFAN OTOT LEHER DAN TINDAK BALAS 
KEPALA-LEHER DALAM PELANGGARAN DEPAN PADA HALAJU 

RENDAH

Oleh

KAK D-WING

Januari 2016

Pengerusi: Wong Shaw Voon, PhD
Fakulti: Kejuruteraan

Kecederaan leher bukan perkara yang jarang dalam kemalangan jalan raya. Kecederaan 
leher disebabkan kemalangan jalan raya meningkat sebanyak 11 kali ganda dalam 
tempoh masa 20 tahun di Netherlands. Pusat Penyelidikan Keselamatan Jalan Raya UPM 
juga melaporkan bahawa 60% daripada kecederaan leher melibabtkan kematian bagi 
penunggang motosikal yang terlibat dalam kemalangan jalan raya di Malaysia. 
Pembelanjaan tinggi diperlukan bagi perubatan, insurans dan servis hospital untuk
masalah tersebut. Maka, langkah penambahbaik diperlukan untuk mengurangkan 
masalah tersebut. Kajian sebelum ini telah membuktikan bahawa otot leher berupaya 
untuk menghasilkan daya bagi mengurangkan putaran kepala sebanyak 30-35% dalam
pelanggaran dari belakang. Usaha dalam memahami tinkah laku otot leher adalah kritikal 
sebelum matematik model kepala-leher yang biofidelity dapat diwujudkan. Namun 
begitu, model yang boleh menjelaskan aktiviti otot leher pada keadaan statik dan dinamik 
masih belum dibina. Kajian ini bertujuan untuk mewujudkan satu model untuk 
menjelaskan hubungan antara tindak balas otot leher dan tindak balas pergerakan kepala-
leher bagi kemalangan kelajuan rendah melalui eksperimen. Terdapat dua eksperimen 
utama dalam kajian ini, iaitu ujian kekuatan otot leher dan ujian perlanggaran depan 
kelajuan rendah. Otot leher sternocleidomastoid dan semispinalis capitis sebagai flexor 
dan extensor utama telah dipilih untuk dikaji. Melalui ujian tersebut, kekuatan otot leher 
adalah 64.5 N dan 96.7 N untuk flexion dan extension. Kajian ini telah menghasilkan
model berkaitan hubungan antara aktiviti EMG dan kekuatan otot leher. Model ini dapat 
menjelaskan lebih daripada 80% pembolehubah. Kekuatan otot leher adalah berbeza 
antara keadaan statik dan dinamik. Dalam ujian pelanggaran halaju rendah, pecutan 
linear kepala relatif dengan badan adalah 4.61G dan 7.35G bagi kelajuan impak 2.17 m/s 
dan 2.47 m/s. Satu model telah dihasilkan untuk menganggarkan tahap pengaktifan otot 
leher berdasarkan pecutan linear dan putaran kepala. Sebagai extensor leher, semispinalis 
capitis diaktifkan dengan tahap yang tinggi dalam perlanggaran hadapan pada kelajuan 
rendah. Sebaliknya, otot flexor, sternocleidomastoid hanya diaktifkan pada tahap 30-40% 
sahaja. Semua empirikal model ini dapat digunakan untuk menganggarkan tahap 
pengaktifan otot dan daya yang dihasilkan pada perlanggaran kelajuan rendah. Ini adalah 
penting untuk meningkatkan ketepatan model simulasi kepala-leher.
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CHAPTER 1                                                                                       

INTRODUCTION

1.1 Background

The injury thresholds of human neck structure under different impact directions and 
loading conditions are determined for the purpose to predict neck injury in various 
situation of car crash accident. The neck injury criterions such as NIC (neck injury 
criterion), Nij (Normalized neck injury criterion for frontal impact), and IV-NIC 
(Intervertebral neck injury criterion) were developed according to head and neck 
kinematic and dynamic motion during impact. The maximum permissible kinematic 
parameters such as head acceleration, axial force, shear force, moments and displacement 
are thoroughly being studied and tested to predict neck injury risks accurately. In order 
to do so, crash test using human subject is essential to obtain the kinematic parameters 
in verifying human head neck biomechanical responses. Nevertheless, this method is
only limited to allowable physiological range of motion of human head-neck segment to 
prevent any unwanted injury to the human subjects. Beyond this point, crash test human 
dummy and post mortem human subject (PMHS) is used to predict human head-neck 
biomechanical response at more extreme collision condition. Nonetheless, the effect of 
neck muscle activation on human head neck response cannot be assessed and studied
when crash test was conducted using human dummy or PMHS.

The study of neck muscle strength is essential to understand the biomechanics and 
dynamics of head-neck segment in crash. In low-speed motor vehicle collision, neck 
muscle is capable to produce forces in resisting against impact force which results in
reduction of head/neck kinematic motion in frontal, lateral and rear impact (Horst, 2002).
The responsible neck muscle groups have activated within 13.2 ms after the initial 
rotation of head (Magnusson et al., 1999). Furthermore, neck muscle activation level 
found to be increased with the increasing impact acceleration in frontal and rear-end 
collision (Kumar, Narayan, & Amell, 2002, 2003a). Thus, neck active muscle can 
provide certain level of protection to head-neck segment in injury reduction and 
prevention.

Neck active muscle is crucial to generate forces for head-neck motion and to maintain
head-neck posture. The active component of skeletal muscle is responsible to generate 
such forces. The magnitude of force is dependent on muscle length, muscle contraction 
velocity, joint angle and muscle activation level. Furthermore, the intensity of neck 
muscle force is associated with the numbers of motor units action potential (MUAPs) 
being recruited and the firing rate of MUAPs. Electromyography (EMG) is a method to 
measure and evaluate the electrical activity in skeletal muscle as the result of recruitment 
of MUAPs. The frequency and amplitude of the electric current is the main indicator to 
determine the activation level and pattern of neck active muscle. 

Maximum isometric neck muscle strength of a human being can be measured through 
exerting maximal effort on external loading applied to the head while sitting at upright 
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neutral posture. It has been reported that neck muscle strength of male is significantly 
greater than female in both flexion and extension direction which indicated that physical 
properties of neck structure are difference between genders (Chiu, Lam, & Hedley, 2002;
Jordan, Mehlsen, Bülow, Østergaard, & Danneskiold-Samsøe, 1999; Kumar, Narayan, 
& Amell, 2001a; Suryanarayana & Kumar, 2005; Valkeinen, Ylinen, Mälkiä, Alen, & 
Häkkinen, 2002; Vasavada, Li, & Delp, 2001).

1.2 Problem statement

Neck injury is not a rare occasion in car crash accident. Half of the car to car accident 
may result to neck injuries according to a study in Japan (Ono, Kaneoka, Wittek, & 
Kajzer, 1997). In addition, occurrence of neck injuries due to car crash accident has 
increased 11 times within 20 years in Netherlands (Stovner, 1996). Road Safety Research 
Center (RSRC) of UPM reported that 60% of all neck injuries resulted to fatality of
motorcyclist in road collision at Malaysia (Yen et al., 1999). As a prevalence issue, high 
expenses are spent on medical, insurance and hospitality on neck injury related to car 
crash annually. Whiplash injury or soft tissue cervical injury is being reported frequently 
in car accident which is due to inertial effect by relative motion between head and thorax. 
In Europe, low velocity car crash, ranging from 10 to 15 km/h, leads to 65% of whiplash 
injury which requires insurance companies to pay $10-20 billion every year (Castro et 
al., 1996). As high as $2.7 billion has been spent for AIS 1 (Abbreviated Injury Scale) 
yearly in USA (Kleinberger, 1993). In Sweden, the Swedish Society of Medicine 
announced that the total cost of whiplash injury is approximately 500 million euros
(Commission, 2011). Thus, proper countermeasure has to be taken to mitigate the 
occurrence of neck injury in vehicle crash to reduce any adverse impact to the society in 
term of monetary and human life. 

Previous study has proven that the activation of neck muscles can produce force which 
can significantly reduce head neck motion in low velocity car crash accident. In rear-end
collision, under the acceleration level of 0.7g, neck active muscle is capable to generate 
force to reduce 30-35% of head rotations and head angular velocities (Kingma et al., 
2002). Thus, in order to study the neck injury mechanism in low speed collision, the 
contribution of neck active muscle to overall head-neck kinematic motion has to be taken 
into consideration. 

Changing in posture and position of head-neck segment may result in differences in force 
generation behavior since force output of neck muscle is depend on length of muscle and 
angle of joint. Previous study have found that isometric maximal neck strength is 
strongly correlated to rotation angles of head in flexion and extensions (Jordan et al., 
1999; Suryanarayana & Kumar, 2005). It was found that neck muscle produced 
maximum level of force when the head-neck segment was staying at upright neutral 
posture. On the other hand, neck muscle force decreased when the rotation angles of head 
has increased. These findings suggested that the capability of neck active muscle in 
exerting force output may be different when head-neck segment was loaded under static 
and dynamic conditions. Nevertheless, the behavior of neck active muscle response 
under static and dynamic loading is still yet to be established. 
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Since neck muscle can be influential to the kinematic response of head-neck segment in 
low speed collision, it is critical to understand the behavior of neck muscle EMG 
responses before a biofidelity head-neck mathematical model can be designed. Thus, 
establishment of relationship between neck muscle response and head-neck response is 
vital to accurately predict potential neck injury in crash. 

1.3 Scope of study

This study aims to determine the relationship between neck muscle activation and human 
head-neck kinematic response. To establish, the behavior of neck active muscle activity
under three different conditions is studied. These conditions are as follows:

a) Static loading
Head-neck segment resisted against external force without making displacement 
from upright neutral position.

b) Dynamic loading
Head-neck segment displaced from upright neutral position to maximal range of 
motion while lifting an external load.

c) Low-speed frontal collision 
Head-neck segment displaced from upright neutral position when subjected to low-
speed frontal collision.

This study aims to determine the association of human neck muscle response between 
force exertion directions (for extension and flexion) and loading levels under the 
abovementioned loading conditions. In addition, this study also intends to determine the 
maximal neck muscle strength of human subjects. 

1.4 Justification

Using PMHS in laboratory crash test is great to understand head-neck kinematic response 
in crash especially at higher velocity crash test. Nevertheless, neck active response 
cannot be studied in PMHS crash test. Thus, human neck muscle activation properties
can only be studied through conducting low speed crash test involving human subjects.

This study aims to determine the neck muscle activation behavior in generating muscle 
force to resist against external forces applied to head-neck segment during low speed 
collision in frontal impact. It could be beneficial in providing information related to 
further enhance the current mathematical head-neck segment model.

To achieve this mission, human subjects are subjected to different loading conditions 
which are static loading, dynamic loading and low velocity crash test to determine the 
neck muscle activity and head neck kinematic motion in each of these loading conditions.



© C
OPYRIG

HT U
PM

4

1.5 Objectives

The general objectives of the study are to determine neck muscle activation level and 
total neck muscle force produced under static loading, dynamic loading and low velocity 
collision. The specific objectives of the study are as followed:

a) To determine the capacity of neck muscle force under static and dynamic 
loading condition

b) To develop empirical models to relate generation of neck muscle force with 
neck muscle activation level as predictor in head flexion and extension. 

c) To develop empirical model to relate neck muscle activation level with head 
displacement, velocity and acceleration in low velocity frontal collision. 
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