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By
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June 2016

Chair: Fazirulhisyam Hashim, PhD
Faculty: Engineering

Next-generation cellular networks and beyond are expected to adopt a frequency
reuse factor of one to support high spectral efficiency. Consequently, Inter-Cell
Interference (ICI) represents a serious issue among neighboring cells, especially for
cell-edge users. In addressing this, Joint Transmission (JT) represents one of the
most sophisticated techniques for mitigating ICI stemming from implementing a
frequency reuse factor of one. Moreover, JT also converts the interfering signals
into useful signals to improve the spectral efficiency of the system. However, JT
produces enormous overhead on both the feedback and backhaul interfaces; thus,
partial JT was proposed as a trade off between signaling demand and increased
spectral efficiency. Maintaining an equivalent Beamforming (BF) matrix based
on a sparse aggregated channel matrix is a challenging issue with regard to lin-
ear BF schemes such as Zero-Forcing (ZF). This is mainly because ZF can only
invert a well-conditioned matrix. Therefore, a Multi-Start Particle Swarm Opti-
mization Algorithm (MSPSOA) is included in this thesis and used to present an
efficient beamformer that achieves equivalent backhaul reduction and high spec-
tral efficiency. Moreover, addressing the lack-of-diversity issue in Basic Particle
Swarm Optimization Algorithm (BPSOA) is a primary concern of this work. As
a contribution of this thesis, diversity loss can be solved by replacing the inactive
particles adaptively based on the difference between local best and global best
optimization criterion. In this study, the performance of ZF, BPSOA and the
proposed MSPSOA BF are evaluated by using different metrics like acquired sum
rate, level of actual interference and transmitting power along with total utility
of three different internet applications. The beamformer obtained with the ob-
jective function of sum rate maximization achieves a spectral efficiency of 15.3%
compared to BPSO BF in some of the conducted scenarios.
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PEMBENTUK ALUR BERKESAN DAN PEMAKSIMUMAN
KECEKAPAN SPEKTRUM DALAM PENHANTARAN BERSAMA

SISTEM LTE-A

Oleh

ALI RAED FAISAL

Jun 2016

Pengerusi: Fazirulhisyam Hashim, PhD
Fakulti: Kejuruteraan

Rangkaian selular generasi akan datang dijangka akan menerima pakai faktor
frekuensi guna semula yang bernilai satu untuk mewujudkan kecekapan spektrum
yang tinggi. Oleh itu, Gangguan Inter-Sel (ICI) merupakan satu isu yang serius
antara sel-sel berdekatan, terutamanya bagi pengguna telefon bimbit di pinggi-
ran sel. Untuk menanganinya, Penghantaran Bersama (JT) merupakan salah
satu teknik yang paling canggih untuk mengurangkan ICI yang berpunca dari-
pada pelaksanaan faktor frekuensi guna semula yang bernilai satu. Tambahan
pula, JT juga menukarkan isyarat pengganggu kepada isyarat yang berguna un-
tuk meningkatkan kecekapan spektrum sistem. Walau bagaimanapun, JT meng-
hasilkan overhed yang banyak pada kedua-dua antara muka maklum balas dan
angkut balik; dengan itu, JT separa telah dicadangkan sebagai tukar ganti antara
permintaan pengisyaratan dan peningkatan kecekapan spektrum. Mengekalkan
matriks penbentuk alur (BF) setara berdasarkan matriks saluran agregat jarang
adalah isu yang mencabarkan dengan mengambil kira skim BF linear seperti
Sifar-Memaksa (ZF). Ini adalah kerana ZF hanya boleh terbalikkan matriks yang
berkeadaan baik. Oleh itu, Algoritma Pengoptimuman Kerumunan Zakar Mula
Berbilang (MSPSOA) telah dicadang dalam karya ini dan digunakan untuk menge-
mukakan penbentuk alur berkesan yang mencapai pengurangan angkut balik
setara dan kecekapan spektrum yang tinggi. Selain itu, bagi menangani isu
kekurangan kepelbagaian dalam Algoritma Pengoptimuman Kerumunan Zakar
Asas (BPSPA) adalah perhatian utama kerja ini. Sebagai sumbangan tesis ini,
kekurangan kepelbagaian boleh diselesaikan dengan menggantikan zarah tak ak-
tif secara adaptif berdasarkan perbezaan di antara pengoptimuman kriteria ter-
baik tempatan dan terbaik global. Dalam kajian ini, prestasi ZF, BPSOA dan
MSPSOA BF yang dicadangkan telah dinilai dengan menggunakan metrik yang
berbeza seperti kadar jumlah yang diperolehi, tahap gangguan yang sebenar
dan kuasa hantaran selaras dengan jumlah utiliti daripada tiga aplikasi internet
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yang berbeza. Penbentuk alur diperolehi dengan objektif untuk memaksimumkan
kadar jumlah dapat mencapai kecekapan spektrum 15.3% berbanding BPSO BF
dalam beberapa senario yang dijalankan.
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CHAPTER 1

INTRODUCTION

1.1 Background

Cellular communication has emerged as a powerful platform for humans’ daily
use communications. Mobile networks technologies have passed through several
generations as a result of evolution, started with first generation (1G) and all the
way to 2G, 3G and 4G in which represented by LTE-A. Recently, several studies
have been carried out on defining the framework and the specifications of 5G.

1.1.1 Mobile Cellular Communication Evolution

The first generation (1G) wireless hand-held communication mobile network was
introduced in the early 1980s. There were different standards depending on the
countries. For instance, in United States, the term Advanced Mobile Phone Ser-
vice (AMPS) was deployed by using analog frequency modulation for transmission
and each user equipment (UE) is given a specific frequency slot in a Frequency
Division Multiple Access (FDMA) fashion. In the United Kingdom, Total Ac-
cess Control/Communications System (TACS) had used frequency shift keying in
FDMA [1]. Nordic Mobile Telephone (NMT) was the 1G form in Nordic coun-
tries. Allocated different frequency band to each user leads to low co-channel
interference. This influences the use of frequency reuse, by dividing the whole
frequency band among the adjacent cells and reusing a particular frequency af-
ter some distance in order to alleviate the co-channel interference. However, this
comes on the account of insufficient frequency resources because the spectrum
that assigned to a network is not fully utilized in each cell.

The first digital communication introduced in 1991 under the category of second
generation (2G), namely, Global System for Mobile (GSM) communications [2].
At that time GSM was considered to be as a milestone mobile technology, since
it introduces the idea of scheduling users in a given time-slot as Time Division
Multiple Access (TDMA). Moreover, CDMA-One was introduced in the United
States with a coding separation mechanism, in other words each user has a unique
code to distinguish itself from others by implementing a Code Division Multiple
Access (CDMA). The issue of insufficient spectrum in GSM is similar to 1G in a
way that assigning a part of the frequency band to each cell in the cluster. The
use of resources, time and frequency, in CDMA has to be implemented at the same
time and unique codes are used to differentiate users. The effect of interference
in CDMA is a serious issue and that is due to the non-orthogonal codes that can
give rise to intra-cell interference, whereas inter-cell interference is still existed
because the codes have been reused in other cells. An optimized code planning
may reduces the effect of inter-cell and intra-cell interference.

In 2001, third generation (3G) cellular network was presented on the basis of
Wideband Code Division Multiple Access (WCDMA). In that scenes, all the fre-
quencies are utilized in every cell, likewise CDMA, and UEs are differentiated
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100 Mbps

Figure 1.1: Data rate requirements of mobile cellular communications.

by codes. To reduce the inter-cell interference and non-orthogonality that causes
intra-cell interference, gold codes are implemented as a scrambling code. The
radio technology enhancement owes to using 5 MHz bandwidth and GSM/EDGE
Radio Access Network (GERAN) [3]. Meanwhile, along with WCDMA develop-
ment, High-Speed Packet Access (HSPA) was introduced by 3GPP in 2006 [4].
Multiple Input Multiple Output (MIMO) antenna technology as well as advanced
coding and modulation schemes such as (16 QAM, and 64 QAM) collaborated
with latest HSPA technology to produce HSPA+.

Long-Term Evolution (LTE) is the first step to emerge toward forth generation
(4G) cellular network. In 2004, 3GPP revealed the specifications of LTE technol-
ogy with a promising high spectral efficiency, high data rate and low latency [5].
LTE suppose to support various services and applications by its Internet Protocol
(IP) and and flat architecture, such as Voice over IP (VoIP), data transfer and
video calling. There are other broadband wireless mobile technologies besides
LTE, like Wireless Microwave Access (WiMAX) and Wireless Fidelity (WiFi).
Based on IEEE802.16e standards, WiMAX brings better performance, capacity
and mobility. Moreover, WiMAX facilitates Orthogonal Frequency Division Mul-
tiple Access (OFDMA), and that enables high data rate by eliminating intra-cell
interference and also supports the necessary features for vehicular mobile users [6].
The features of mobile WiMAX are listed as Hybrid Automatic Repeated Request
(HARQ), Adaptive Modulation and Coding (AMC), efficient handover and fast
scheduling. Figure 1.1 illustrates the evolution of mobile cellular communications
in terms of provided data rate.

A key aspect of 4G is the frequency reuse of one as well as the employment of
OFDMA and utilizing all the frequency-time resources in one cell. In this con-
text, the neighboring cells may also reuse the same frequency, thus the spectrum
resources is going to be used efficiently. Although the use of full frequency may
relax the constraints on the available frequency band, a severe Inter-Cell Inter-
ference (ICI) comes up, especially for cell-edge users. To tackle this problem,
Coordinated Multipoint (CoMP) Transmission and Reception is proposed in [7].

2
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1.1.2 Coordinated Multipoint (CoMP) Transmission and Reception

CoMP is a major area of interest within the field of cooperative communica-
tions [8]. In the downlink, multiple collaborating eNBs transmit user’s data si-
multaneously to the UEs, and thus the interfering signal is treated as a desired
one. In [9], this technique was proposed as network coordination. CoMP may be
divided into two main categories namely, Coordinated Scheduling/Coordinated
Beamforming (CS/CB) and Joint Processing (JP) [7]. JP may also be classified
into Joint Transmission and Dynamic Point Selection, (to be discussed in Sec-
tion 2.3.2.2). CoMP may be classified on the basis of architecture into centralized
and decentralized coordination [10]. In centralized coordination, the UE feeds
back the Channel State Information (CSI) through the feedback overhead to the
cooperative eNBs, and then the CSI is accumulated in the Central Coordination
Node (CCN) to create an aggregated channel matrix [11, 12]. In decentralized
coordination, the CSI is available at all the eNBs, but the Beamforming (BF) and
the power allocation are performed on each eNB. Therefore, a special schedul-
ing algorithm is necessary to assign an eNB to each UE [13]. Depending on the
aggregated channel matrix, the CCN generates the BF matrix after power allo-
cation. The CCN can be combined with one of the eNBs in the cluster. The
BF matrix and the user data have to be available at the cooperative eNBs in
order to eliminate ICI by sending exact user data to a specific UE [14]. CoMP
network overhead can be classified into two types. The first is feedback overhead,
which is the signaling of CSI from the UEs to eNBs, and the second is backhaul
overhead, which represents the signaling of BF elements between the cooperative
eNBs. Thus, the feedback and backhaul overhead give a tremendous load on both
frequency resources as well as the interface between the cooperative eNBs [12, 15].

One of the greatest challenges of JP is reducing the complexity by arranging eNB
into clusters. The clustering approach can be static, which means the collaborat-
ing eNBs have not changed with time, whereas dynamic clustering changes with
time to deploy the fairness among UEs. Moreover, clustering topology may be
classified according to whether the clustering decision is made into a user-centric
or network-centric decision, taking into account the channel conditions [14]. Re-
gardless the high performance of JP, it comes with high demand on both frequency
resources and backhaul requirements. When a multiple collaborating eNBs trans-
mitting user’s data simultaneously that leads to burden the assigned frequency
band and degrade the performance of UEs. JP, however, requires high backhaul-
ing speed and requirements in order to perform the cooperation and thus fiber
optics is one of the possible solutions to provide high speed backhauling. Thereby,
to cope with the current backhauling technologies a considerable amount of lit-
erature has been published on reducing the backhauling requirements such as
in [13, 14, 16, 17, 18, 19, 20]. A variety of schemes were presented to relax the
burdens on backhaul and frequency resources and presenting a trade off between
the performance and required infrastructure. One such technique is a threshold-
based window algorithm Partial Joint Processing (PJP), where a subset of eNBs
is considered for cooperation on the basis of the channel conditions of UEs in a
defined cluster, and form a sparse aggregated channel matrix [13, 16, 17]. Conse-
quently, the load on both feedback and backhaul overload is reduced.

3
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Returning to the subject of PJP, when linear Zero-Forcing (ZF) BF is performed
by the CCN depending on the sparse aggregated channel matrix, that may not nec-
essarily reflect on the BF matrix, in other words, it does not reduce the backhaul
demand. In the case of ZF linear properties with respect to a sparse aggregated
channel matrix, some of the inactive links may be mapped to active BF elements
and that give rise to unnecessary load, since those links are already indicated
as inactive. So far, equivalent backhaul reduction can not be done by using lin-
ear beamforming techniques on the basis of limited CSI feedback, unless special
scheduling constraints are applied. Therefore, a stochastic Multi-Start Particle
Swarm Optimization Algorithm is proposed in this thesis to achieve equivalent
backhaul reduction based on the physical layer approach and without any schedul-
ing constraints.

1.2 Problem Statement

The major drawback of JP approach is that it requires a massive frequency and
backhaul resources. Therefore, PJP has been proposed in [13, 16, 17] to reduce
the frequency and backhaul overhead. However, the main weakness of the PJP
is the failure of the linear BF techniques, such as ZF BF and partial ZF BF, to
achieve an equivalent backhaul reduction unless a special scheduling constraints
are applied [18, 20]. Moreover, linear approaches can only invert well-conditioned
matrices, such as diagonal or block-diagonal matrices.

Based on physical layer approach, the issues of backhaul equivalence, failure of
inversion and lack of maintaining the scalability are still existed in [13, 16, 17]
with the deployment of linear ZF BF. Therefore, a stochastic Basic Particle Swarm
Optimization Algorithm (BPSOA) BF was presented in [14, 19] to address those
issues. However, the main drawback of BPSOA is its lack-of-diversity, which
means it does not guarantee global optimization [21, pp. 171–172]. Specifically,
it is stuck to local optimization and shrinks searching space. Thus, a Multi-
Start Particle Swarm Optimization Algorithm (MSPSOA) is proposed in this
study to achieve equivalent backhaul reduction, maintaining the scalability and
to overcome the lack-of-diversity in BPSOA by replacing the inactive particles
adaptively based on the difference between local best and global best optimization
criterion. Chapter 2 and 3 present an overview on swarm optimization to justify
the proposed MSPSOA.

1.3 Aims and Objectives

The aim of this work is to design a stochastic MSPSOA BF that achieves equiv-
alent backhaul reduction and high spectral efficiency by addressing the lack-of-
diversity of BPSOA BF in a Joint Transmission (JT) system, as a main subcat-
egory of JP. Maintaining the scalability compared to linear BF mechanisms is a
primary concern of this study, where the main focus is on cell-edge users in a
cooperative system. To achieve those aims, fulfillment of the following objectives
are the crucial part of this thesis:
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• To attain an equivalent backhaul reduction with a limited channel feedback
in a Partial Joint Transmission (PJT) system.

• To propose a MSPSOA BF that achieves high spectral efficiency by address-
ing the lack-of-diversity in BPSOA BF along with maintaining the scalability
of the system compared to linear ZF BF technique.

• To evaluate the performance of PJT and FJT schemes based on different
metrics such as level of actual interference, transmitting power and total
utility of three different internet applications such as hard real-time, adap-
tive real-time and elastic applications.

1.4 Scope of the Thesis

In this thesis, JT has been considered as a significant subcategory of JP. JT has
been evaluated with respect to the level of cooperation, full cooperation with
an intensive focus on partial cooperation. The system was implemented in a
centralized architecture with a frequency selective channel utilizing WINNER II
channel model. OFDM has been performed to exploit the frequency selectivity of
the channel. In this model the users are scheduled in every Resource Block (RB),
in order to represent the worst case scenario. The system model is implemented
in a Frequency Division Duplex (FDD) manner for each RB.

The main focus of this thesis is on developing a diverse beamforming algorithm
that can achieve equivalent backhaul reduction with respect to sparse aggregated
channel matrix and can obtain the BF matrix even when the CSI matrix is not
well-conditioned (not diagonal or block-diagonal). Moreover, the key aspect of the
proposed MSPSOA BF is to ensure global optimization and maximize the spectral
efficiency of the cell-edge users in LTE-A cellular network. In this context, two
BF techniques, linear ZF and BPSOA have been modeled and compared to the
proposed MSPSOA BF. The performance evaluation has been done on the basis
of backhaul requirements, spectral efficiency and level of interference along with
transmitting power and utility of three traffic type such as hard real-time, adaptive
real-time and elastic applications.

1.5 Study Module

The summary of chosen approach in this thesis is presented in Figure 1.2, where
the shaded boxes with solid lines denote the followed direction to attain deter-
mined goals and the white boxes with dashed lines show the other research areas
within the interference mitigation domain which have not been investigated in
this research.

1.6 Thesis Organization

The overall structure of the study takes the form of five chapters as follows:
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Interference Avoidance Schemes

Frequency Reuse 
Based Schemes

Coordination 
Based Scheme

CB/CS JP

DPS JT

Distributed Centralized

ZF BF BPSOA BF
Proposed 

MSPSOA BF

Figure 1.2: Study module.

In Chapter 1, the road-map of the research conducted is delineated in details. It
consists of problem statement, research objectives, scope of research and study
module.

Chapter 2 establishes the necessity of this research through its background and
previous works.

In Chapter 3, the system model is defined in details. This chapter gives a de-
scription of different schemes under study, which primarily consist of the PJT and
FJT algorithms being applied to the WINNER II channel model. The proposed
stochastic beamforming algorithm is also defined. The layout of the assumed
scenario, including the cluster area together with the generation of the channel
matrix, antennas for both of eNBs and UEs are discussed under the section named
WINNER II channel model.

Chapter 4 includes a brief explanation of simulation setup and presentation of
results through comparison of different scenarios.

Finally, the conclusions, thesis contributions and recommended future research
works are discussed in Chapter 5.
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