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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in 

fulfillment of the requirement for the Degree of Master of Science 

 

 

THE EFFECT OF THERMO-OXIDATIVE AGING ON PROPERTIES OF E-

GLASS FIBER-REINFORCED EPOXY COMPOSITES 

 

By 

 

AMIN KHAJEH 

 

May 2016 

 

 

Chairman : Faizal Bin Mustapha, PhD, PEng  

Faculty : Engineering 

 

 

The present study aims to investigate the effect of thermo-oxidative aging on the 

mechanical, chemical, physical properties of EHG250-68-37 E-glass fiber-

reinforced epoxy preimpregnated. 

 

 

To achieve the proposed research objectives, laminates of EHG-68-37 

fiberglass/epoxy prepreg were exposed 800 h in isothermal condition and air-

circulating oven at 82 °C. It is noteworthy that, before aging, specimens were dried 

to constant weight under vacuum at 70 °C in accordance with ASTM D 5229/D 

5229M due to hydrophilic matrix. The variations of mechanical properties (the 

elastic moduli, tensile strength, strain break, and toughness) were quantified by 

conducting tensile tests on both aged and un-aged specimens based on ASTM 

D3039. Chemical changes in composites due to thermo-oxidative aging were 

analyzed by, Dynamic mechanical analysis (DMA), Differential Scanning 

Calorimetry (DSC), and Fourier Transform Infrared spectroscopy (FTIR). Physical 

degradation mechanisms resulting from sub-Tg aging were monitored by weight 

loss measurements as a function of time and Scanning Electron Microscope (SEM) 

to investigate superficial resin, cross sectional, and the cryofractured surface 

morphology. 

 

 

The showed the toughness, tensile strength and modulus of the composites were 

increased after pronounced aging conditions, 3.7%, 48%, and 59%, respectively. 

Whereas a decrease (0.22%) was observed in the strain break. DMA results 

revealed that the glass transition temperature and rubbery state modulus were 

increased as a result of the matrix densification. FTIR spectroscopy demonstrated 

the formation of carbonyl compounds around IR band 1735 cm -1 due to oxidation 

of the chemical structure of the aromatic ethers. SEM observations indicated the 

existence of minor superficial cracking, growth in size and number of voids, and 

poor fiber-matrix adhesion after aging. In addition, a minor mass change was 

observed from mass loss monitoring methods. The overall findings suggest that 

post-curing and oxidation enhanced the brittleness of the resin, leading to a 

significant decline in the useful structural life of the thin-skinned composite. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk Ijazah Master Sains 

 

 

KESAN PENUAAN TERMO-OKSIDATIF TERHADAP SIFAT-SIFAT 

KOMPOSIT EPOKSI DIPERKUKUH GENTIAN KACA-E 

 

Oleh 

 

AMIN Khajeh 

 

Mei 2016 

 

 

Pengerusi : Faizal Bin Mustapha, PhD, PEng 

Fakulti : Kejuruteraan 

 

 

Kajian ini bertujuan untuk mengkaji kesan penuaan termal-oksidatif pada sifat 

mekanikal, kimia, fizikal EHG250-68-37 gentian kaca-E bertetulang pracampuran 

epoksi. Untuk mencapai objektif kajian yang dicadangkan, lamina daripada EHG-

68-37 gentian kaca / pracampuran epoksi didedahkan dalam keadaan isoterma dan 

ketuhar pada suhu 82°C selama 800jam. Perlu diperhatikan bahawa, sebelum 

penuaan, spesimen telah dikeringkan pada satu jisim kekal dibawah vakum pada 

suhu 70°C mengikut ASTM D 5229 / D 5229M kerana matriks bersifat hidrofilik. 

Kepelbagaian sifat mekanik (modulus elastik, kekuatan tegangan, titik putus 

terikan, dan keliatan) telah diukur dengan menjalankan ujian tegangan di kedua-

dua spesimen yang melalui proses penuaan dan tidak melalui proses penuaan 

berdasarkan ASTM D3039. Perubahan kimia dalam komposit disebabkan oleh 

penuaan termal-oksidatif dianalisis mengunakan Analisis Mekanikal Dinamik 

(DMA), Differential Scanning Calorimetry (DSC), dan Jelmaan Fourier 

Spektroskopi Inframerah (FTIR). Mekanisme kemusnahan fizikal yang disebabkan 

oleh Sub-Tg penuaan dipantau berdasarkan pengurangan berat terhadap masa dan 

Mikroskop Imbasan Elektron (SEM) untuk menganalisis keadaan permukaan resin, 

keratan rentas, dan permukaan morfologi cryofractured. Itu menunjukkan kekuatan, 

kekuatan tegangan dan modulus bagi komposit meningkat, masing-masing 

sebanyak 3.7%, 48%, dan 59%. Manakala penurunan (0.22%) diperhatikan pada 

titik putus terikan. Keputusan DMA mendedahkan bahawa suhu peralihan kaca dan 

modulus elastik telah meningkat akibat pemadatan matriks. FTIR spektroskop 

pembentukan sebatian karbonil sekitar band IR 1735cm -1 kerana pengoksidaan 

struktur kimia eter aromatik. Pemerhatian SEM menunjukkan adanya keretakan 

kecil pada permukaan, pertumbuhan saiz dan bilangan lubang, dan sedikit gentian-

matriks selepas penuaan. Di samping itu, melalui kaedah pemantauan kehilangan 

jisim, jisim mengalami sedikit perubahan. Hasil kajian menunjukkan bahawa 

pengawetan  dan pengoksidaan telah meningkatkan kerapuhan resin, yang 

membawa kepada penurunan yang ketara dalam kitaran penggunaan struktur 

komposit nipis  

.
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  CHAPTER 1

 

 

INTRODUCTION 

 

 

In the chapter, the background of the study, statement of the problem, research 

objectives, research scope and significance of the research study to the researcher 

and engineering community are covered. 

 

 

1.1 Research background 

 

There has been sustained interest on PMCs (Polymer Matrix Composites) from a 

wide range of specialists especially in recent decades. Initially, the application of 

composites in the military sparked their commercial usage that began after World 

War II. New landscape pressures couple with the energy crisis experienced in the 

1970s prompted military and commercial aircraft manufacturers to employ the 

lightweight composite structures. Furthermore, the advancements achieved in the 

composite area have permitted considerable decrements of weight in the structural 

design. In comparison to the metal alloys, composites are superior in regard to 

stiffness and strength to weight ratio, corrosion resistance and outstanding fatigue 

properties. 

 

 

Even though the exhibit desirable mechanical properties and low density, concerns 

arise over the overall and long-term durability that polymer matrix composites 

have, especially in relation to the load bearing to sustain performance under 

increased temperatures. Generally, elevated temperatures are likely to cause 

reversible changes, that is, physical aging, and the non-reversible changes, that is, 

chemical aging, to be experienced in PMCs. Particularly, combining elevated 

temperatures and oxygen-induced non-reversible changes is likely to result in 

considerable decrease in properties. Such non-reversible variances are commonly 

called „thermo-oxidative aging‟ and oxygen diffusion into the composite initiates 

them. 

 

 

Numerous research works have been revealed that thermal oxidative aging may 

change the chemical structure of polymer matrix composites. Alterations to the 

chemical structure during thermo-oxidative degradation include post-curing [1-11], 

loss of volatiles [12-17], dehydration [4, 18, 19], chain scission [15, 20-24], 

additional crosslinking [2, 4], and carbonyl growth [8, 19]. The initial chemical 

changes are accompanied by dehydration of secondary alcohols and the release low 

molecular weight gaseous species due to random chain scission. However, at 

moderate heat exposures (24  – 177 ), chain crosslinking is the dominant 

chemical change in the matrix compared to chain scission [25]. Indeed, the 

increase in the crosslink density of the cured matrix primarily occurs during the 

initial aging period and are caused by post-cure reactions [4, 6, 26, 27], which 

result in the excessive brittleness in the matrix [28]. As aging proceeds in the 

presence of oxygen, susceptible chemical structures in the resin are oxidized to 

various carbonyl containing groups. Therefore, matrix embrittlement increases 
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with the oxygen concentration and aging time [12, 29]. Extensive research efforts 

have revealed that the matrix embrittlement enhance bulk mechanical properties 

such as tensile strength and modulus [30-32] and toughness [33, 34]. However, 

some studies observed a reduction in toughness resulted from the brittleness in the 

matrix [35, 36]. According to Colin et al. [37], changes observed in the bulk 

characteristics of the polymer matrix are caused by the superficial oxidized layer 

forming as a result of liberated segments volatile being oxidized in the thermo-

oxidative aging phase [38-41]. On establishing this, numerous comprehensive 

research efforts were undertaken on polymer matrix material for investigating the 

brittle attributes that the matrix exhibit through the thickness. The findings of these 

studies showed that the matrix embrittlement is confined to the superficial layers 

and the core of the matrix remained intact [13, 38, 42, 43]. 

 

 

1.2 Problem Statement 

 

Oxidation takes place only in the superficial layers of composites due to their 

exposure to aging while core of the aged composites mostly remain intact. 

Considering the advent in applying thin-skinned composite of approximately 1-6 

mm in thickness in aeronautical structure, it becomes necessary to ask whether 

relying on specimen thickness in characterizing bulk attributes in evaluating 

durability would be an issue. Considering this, Tsotsis [44] remarked that using 

specimens that are too thick will delay the onset of observable changes in many 

properties because may be sufficient unchanged material to carry mechanical loads, 

such that loss or reduction in properties of a material‟s outer layers masks the 

degradation. Cinquin and Medda [45] studied the influence of laminate thickness 

on composite durability for long term. They conducted a durability evaluation on 

carbon/epoxy laminate with 5.15 mm and 26 mm thick over period of 30,000 h and 

at temperature of 150°C. The findings of the study indicated that the residual 

mechanical properties are more affected on thin composite than on thick 

composites.  

 

 

In the context of “durability”, there is an aspect of both physic-chemical and 

mechanical effects determining the life time of the considered composite materials 

[46]. Thus, it is necessary that the thin-skinned composites be characterized on the 

constitutional level to be able to understand their chemical, mechanical and 

physical responses caused by thermo-oxidative processes. Nevertheless, the 

investigation hereby undertaken to evaluate the durability of the thin-skinned 

composites focused on measuring weight loss and mechanical characterization. 

Furthermore, even though the usage of the woven fiberglass/epoxy prepreg 

composites that are thin-skinned has continued rising, the thin-skinned composite 

remain under-researched when it comes to its durability when subjected to thermo-

oxidative aging scenario. Therefore, the primary aim of conducting this thesis was 

to examine how thermo-oxidative aging affect the durability of the woven 

fiberglass/epoxy prepreg composites with a thin skin in relation to the physical, 

chemical and mechanical aspects and in establishing the origin of in-service failure 

that arise prematurely. 
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1.3 Research Objectives 

 

This study mainly seeks to examine the influence that thermo-oxidative aging has 

on the durability of the EHG250-68-37 woven fiberglass/epoxy prepreg as well as 

the resultant effect on the mechanical attributes, physical structures and chemical 

structures. It is possible to split the evaluation of durability into three objectives: 

 

1. To determine the mechanical degradation (e.g. toughness, tensile strength 

and modulus) of both un-aged and aged samples by tensile test. 

2. To evaluate chemical degradation in the matrix induced by thermo-

oxidative aging by dynamic mechanical analysis, differential scanning 

calorimetry, and Fourier transform infrared spectroscopy tests. 

3. To verify physical degradation in the both un-aged and aged composites 

resulting from pronounced aging by weight loss and micrographic 

observations of topmost, cross sectional, and cryofractured surface.   

 

 

1.4 Scopes of Work 

 

The thesis will evaluate the influence that thermo-oxidative degradation has on the 

durability of epoxy composite that is reinforced by fiberglass from chemical, 

mechanical and physical points of view. The current work aims at linking the 

premature alterations that take place in the thin-skinned composite panel with 

reduction in durability. The examination of thermal-oxidative degradation through 

principles-based dimension taking into account the thickness of the original 

composite assists in the assessment of the real toughness behavior applicable in 

use-condition through mechanical testing. Consequently, assessment of toughness 

value through the calculation of the area that is below the stress-strain curve 

approach was employed over the Charpy impact test because of the sub-size 

thickness of the available materials. Additionally, the thesis introduces a 

methodology on the basis of industrial interest, as the thermo-oxidative aging of 

the thin-skinned composites remains under-researched. Thus, the study is expected 

to add to the existing literature on the materials employed in manufacturing 

aircrafts particularly in regard to their durability in relation to the marked thermal -

oxidative degradation.  

 

 

1.5 Limitations 

 

The main challenge in conducting the research likely to have limited the extent that 

FTIR and thermal analyses would cover relates to the failure by the manufacturers 

to reveal the compositional data and chemical structure of the matrix.  

 

 

1.6 Research Contribution 
 
The finding of this research work will redound to add to the existing literature on the 
EHG250-68-37 woven fiberglass/epoxy prepreg employed in manufacturing aircrafts 
particularly in regard to their thermal-oxidative degradation. In addition, the 
introduced methodology in this study will determine that which one of the physical 
aging and chemical aging has major role in the matrix embrittlement at the initial 
stage of thermo-oxidative aging (post curing period).This in turn, assists thin-skinned 
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polymer matrix composite manufacturers to take into account a proper curing 
schedule for PMCs laminates to avoid premature in-service failures. 
 

 

1.7 Thesis Organization 

 

In this thesis, Chapter 2 will provide the literature review covering the relevant 

published articles on the isothermal thermo-oxidative aging on the polymer matrix 

composites as well as the consequent physical, mechanical and chemical 

variations. Whereas, Chapter 3 presents the experimental methodology employed 

in evaluating the durability of the thin-sinned composites. On its part, Chapter 4 

provides the results that the experimental tests and discussions obtained. 

Eventually, Chapter 5 provides the conclusions and recommendations that can be 

drawn from the undertaken research.  
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