GROWTH OF LETTUCE (Lactuca sativa L.) AFFECTED BY CADMIUM CONCENTRATIONS AND TOXICITY ALLEVIATION BY CALCIUM SUPPLEMENT

SANI AHMAD JIBRIL

FP 2017 51
GROWTH OF LETTUCE (Lactuca sativa L.) AFFECTED BY CADMIUM CONCENTRATIONS AND TOXICITY ALLEVIATION BY CALCIUM SUPPLEMENT

By

SANI AHMAD JIBRIL

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia in fulfilment of the requirements for the Degree of Doctor of Philosophy

July 2017
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs, and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
DEDICATION

To my beloved parents without whom I will not be where I am today, my loving wife and children for their patience, support and prayers.

"
Abstract of the thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

GROWTH OF LETTUCE (*Lactuca sativa* L.) AFFECTED BY CADMIUM CONCENTRATIONS AND TOXICITY ALLEVIATION BY CALCIUM SUPPLEMENT

By

SANI AHMAD JIBRIL

July 2017

Chairman : Associate Professor Siti Aishah bt Hassan, PhD
Faculty : Agriculture

Rapid urbanization and population growth contribute to shortage of fresh water globally. Farmers in many developing countries resort to the utilization of untreated urban wastewater in irrigation. This unconventional waters contains toxic elements from households and industries such as mercury, chromium, lead and cadmium (Cd) that can be toxic to both plants and animals. Lettuce (*Lactuca sativa* L.) is a good accumulator of these toxic elements, especially Cd in the leaves; and therefore was selected in this research to study the effect of Cd on morphological, physiological, biochemical and anatomical attributes of lettuce.

Seeds of five (5) lettuce varieties (Var. 163, Var. 168, Dankabo-D/Kabo, Italian lettuce-167 and Bombilasta-BBL) were germinated for varietal separation in a preliminary experiment. Two-weeks old seedlings were transplanted into a trough and supplied with the Cooper’s nutrient formulation solution (Cooper, 1979) containing (mg L\(^{-1}\)): 236 N, 60 P, 300 K, 185 Ca, 50 Mg, 68 S, 12 Fe (EDTA), 2.0 Mn, 0.1 Zn, 0.1 Cu,0.3 B and 0.2 Mo, using a nutrient film technique system. The pH was maintained at 6 and electrical conductivity (E.C.) of 1.5 – 2.5 dS m\(^{-1}\). Varieties BBL and Italian 167 were eventually selected and treated with CdCl\(_2\) concentrations of 0, 0.5, 1, 2, and 4 mg L\(^{-1}\) to determine morphological, anatomical and physiological changes due to Cd toxicity. However, no visible toxicity sign was observed throughout the growing period on both varieties. Higher Cd concentrations of 0, 3, 6, 9 and 12 mg L\(^{-1}\) was used to re-examine toxicity effect on the two varieties. Significant negative effects were recorded in morphological, physiological, biochemical and nutrient element contents in the varieties. Despite the level of Cd used, variety BBL was taller and recorded higher leaf area, fresh and dry root weights than Italian variety 167.
There was higher increase in antioxidant activity and vitamin C with increase in Cd concentrations compared with the control plants; but it was higher in variety 167 than BBL variety. The varieties displayed similar responses to Cd toxicity symptoms of chlorosis and stunted growth from 6 mg L\(^{-1}\) to 12 mg L\(^{-1}\) Cd level compared with the untreated plants. Macronutrient elements in the roots and shoots of lettuce were significantly decreased compared with the control plants at the highest Cd concentration of 12 mg L\(^{-1}\). Significant differences were found among the varieties of lettuce in the contents of micronutrients in the roots and shoots, however, variety 167 was found to absorb higher contents of Cd than variety BBL. Variety 167 had higher contents of Fe, Mn, Cu and Zn, implying synergistic effect of Cd and micronutrients in the roots and shoots of lettuce varieties.

Introduction of calcium supplement of 0, 6 and 9 mg L\(^{-1}\) to Cd polluted water significantly alleviated the negative effects imposed by Cd at 0, 6 and 9 mg L\(^{-1}\) on all the parameters of lettuce studied. Calcium improved morphological, phytochemical, anatomical and physiological attributes of lettuce. At the same time enhanced photosynthetic pigments efficiency, proline and flavonoids contents; increased mineral nutrient elements and yield and decrease in MDA. Addition of 6 mg L\(^{-1}\) and 9 mg L\(^{-1}\) of Ca into solution containing 6 mg L\(^{-1}\) Cd provided more significant results very close to the results of the control plants. This study indicated that application of Ca\(^{2+}\) had significant and antagonistic effect on Cd by improving plant growth and development. Italian 167 variety is not recommended for planting in Cd polluted environments as it absorbed more Cd than lettuce variety BBL. Calcium can therefore be recommended for utilization in heavy metal polluted environments, particularly Cd as a strategy to alleviate their harmful effects, to enhance plant metabolism and perform better in such polluted areas.
Abstrak tesis dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

KESAN KEPEKATAN KADMIUM DAN PENGURANGAN KETOKSIKAN OLEH PENAMBAHAN KALSIUM TERHADAP PERTUMBUHAN SALAD

(Lactuca sativa L.)

Oleh

SANI AHMAD JIBRIL

Jual 2017

Pengerusi : Profesor Madya Siti Aishah bt Hassan, PhD
Fakulti : Pertanian

Perbandaran yang pesat dan pertumbuhan penduduk menyumbang kepada kekurangan air tawar di peringkat global. Petani di negara membungkun mengambil jalan keluar dengan menggunakan air sisa bandar yang tidak dirawat sebagai sumber pengairan. Pengairan tidak konvensional ini mengandungi bahan toksik dari isi rumah dan industri seperti $\text{Hg}^{2+}$, $\text{Cd}^{2+}$, $\text{Cr}^{2+}$ dan $\text{Pb}^{2+}$ yang boleh menjadi toksik kepada tumbuhan dan haiwan. Salad (Lactuca sativa L.) adalah pengumpul yang baik di dalam daun bagi unsur toksik, terutamanya Cd. Oleh itu, tanaman ini telah dipilih dalam kajian ini untuk mengkaji kesan Cd kepada ciri morfologi, fisiologi, biokimia dan anatomi.

Biji benih lima (5) jenis salad (Var. 163, Var. 168, Dankabo-D/Kabo, Itali salad-167 dan Bombilasta-BBL) telah dicambahkan dalam span dan diletakkan di bawah stuktur lindungan hujan untuk pemisahan varietal dalam eksperimen awal. Anak benih yang berusia dua minggu telah dipindahkan ke dalam palung dan dibekalkan dengan larutan formulasi nutrisi Cooper (Cooper, 1979) yang mengandungi (mg L$^{-1}$): 236 N, 60 P, 300 K, 185 Ca, 50 Mg, 68 S, 12 Fe (EDTA), 2.0 Mn, 0.1 Zn, 0.1 Cu, 0.3 B dan 0.2 Mo, dengan menggunakan teknik nutrisi cetek (NFT). Paras pH dikekalkan pada 6 dan kekondusksian elektrik (E.C) daripada 1.5-2.5 dS m$^{-1}$. Varieti BBL dan Itali 167 telah dipilih dan dirawat dengan kepekatan $\text{Cd}^{2+}$ 0, 0.5, 1, 2, dan 4 mg L$^{-1}$ untuk menentukan kesan keracunan pada kedua-dua jenis varieti salad ini. Kesaran negatif yang ketara telah dicatatkan dalam ciri morfologi, anatomi dan perubahan fisiologi yang berlaku kesan daripada ketoksikan Cd. Walau bagaimanapun, tiada tanda keracunan kelihatan sepanjang tempoh pertumbuhan pada dua tanaman berkenaan. Kepekatan Cd tinggi 0, 3, 6, 9 dan 12 mg L$^{-1}$ telah digunakan untuk mengkaji semula kesan keracunan pada kedua-dua jenis varieti salad ini. Kesara negatif yang ketara telah dicatatkan dalam ciri morfologi, fisiologi, biokimia dan kandungan nutrisi dalam tanaman. Pada tahap Cd yang telah digunakan, varieti BBL adalah lebih tinggi dari segi jumlah daun, luas daun, berat segar dan berat kering akar daripada varieti Itali 167.
Terdapat peningkatan yang lebih tinggi dalam aktiviti antioksidan dan vitamin C dengan peningkatan kepekatuan Cd berbanding kawalan; tetapi lebih tinggi pada varieti 167 berbanding BBL. Kedua-dua varieti tersebut memaparkan simptom ketoksikan Cd yang sama iaitu klorosis daun dan pertumbuhan yang terbantut dari tahap kepekatuan 6 mg L\(^{-1}\) ke 12 mg L\(^{-1}\) Cd berbanding tanaman tanpa rawatan. Elemen nutrien makro dalam akar salad telah menurun dengan signifikan masing-masing berbanding tanaman kawalan pada tahap kepekatuan kadmium yang paling tinggi iaitu 12 mg L\(^{-1}\). Terdapat perbezaan yang signifikan dalam kandungan unsur mineral mikro dalam akar antara varieti salad, bagaimanapun, varieti 167 didapati menyerap Cd lebih banyak berbanding varieti BBL. Varieti 167 mempunyai kandungan Fe, Mn, Cu dan Zn yang lebih tinggi, menunjukkan kesan sinergi Cd dan elemen mikro dalam akar dan pucuk varieti salad.

Kalsium (Ca) tambahan pada tahap 0, 6 dan 9 mg L\(^{-1}\) pada air yang telah dicemari Cd 0, 6, dan 9 mg L\(^{-1}\) mengurangkan kesan negatif Cd secara signifikan terhadap semua parameter yang dikaji. Kalsium menambah baik morfologi, fitokimia, anatomi dan ciri fisiologi salad. Disamping itu meningkatkan kecepatan pigmen fotosintesis, proline dan kandungan flavonoid; meningkatkan elemen nutrien mineral dan hasil serta mengurangkan MDA. Penambahan 6 mg L\(^{-1}\) Ca yang mengandungi 6 mg L\(^{-1}\) Cd dan 9 mg L\(^{-1}\) Ca yang mengandungi 6 mg L\(^{-1}\) Cd memberikan keputusan yang hampir sama dengan keputusan rawatan kawalan. Kajian ini menunjukkan bahawa aplikasi Ca\(^{2+}\) memberikan kesan yang signifikan dan antagonis terhadap Cd dengan menambah baik pertumbuhan dan perkembangan pokok. Varieti Italian 167 adalah tidak digalakkan untuk ditanam di persekitaran yang dicemari Cd memandangkan ia menyerap lebih banyak Cd berbanding varieti BBL. Kalsium dengan ini boleh disyorkan untuk digunakan dalam media pertumbuhan sebagai strategi untuk mengurangkan kesan bahaya logam berat, terutamanya Cd, untuk meningkatkan metabolisma tanaman dan memastikan prestasi yang lebih baik dalam persekitaran yang dicemari Cd.
ACKNOWLEDGEMENTS

All thanks be to Allah for sparing my life to undertake the research work and witness the writing of this thesis to conclusion. I wish to express my gratitude and appreciation to the chairperson of my supervisory committee Assoc. Prof. Dr. Siti Aishah Hassan for believing in me from the beginning of my journey as a graduate student and allow me to undertake this research work despite my poor knowledge of plant nutrition and hydroponics. Moreover, I would also like to appreciate the allocation of her valuable time to guide and support the research work at her personal cost for the purchase of some consumables.

Special thanks goes to Prof. Che Fauziah Ishak for being an active member of my supervisory committee with her valuable and brilliant ideas during any discussion with regards to the research work and other related areas. I would like to acknowledge the contribution of Dr. Puteri Edaroyati Megat Wahab as a committee member for her guidance and encouragement which have motivated me immensely in the conduct of this research work.

My sincere appreciation goes to Assoc. Prof. Muhammad Ridzwan B. Abdul Halim for statistical know how and advice. I acknowledged the guidance and input of Dr. Roslan Ismail on some technical issues concerning the research work at the beginning of my field experiments.

The analysis of my experimental data would not have possible without the contribution of my fellow colleague and friend Mal. Usman Magaji and other fellow graduate students such as Juju Nakasha bt Jaafar and Nur Fatin Ahmad for their guidance in many laboratory setups and analyses.

I would like to thank Mr. Che Yosoup Yasin for his technical expertise in the construction of hydroponic troughs, tables and making of sheds for lettuce; and also for making sure everything works perfectly throughout the period of the field experiments. I appreciate the assistance of other technical staff like Mr. Mazlan Bangi for taking photosynthesis readings from the field and providing support and equipment for other physiological laboratory analysis. My gratitude goes to Azahar Othman, Haris Ahmad and Muhammad Khoiri Kandar for providing chemicals and reagents for some laboratory analysis.

My special thanks goes to my wife Asma’u Muhammad for answering my call at all times when the need arises to travel all the way from Nigeria to Malaysia in order to support and give a helping hand in the conduct of my field work; and to my children for their patience and prayers for my absence during the time they most needed my attention back home.
I certify that a Thesis Examination Committee has met on 26 July 2017 to conduct the final examination of Sani Ahmad Jibril on his thesis entitled "Growth of Lettuce (Lactuca sativa L.) Affected by Cadmium Concentrations and Toxicity Alleviation by Calcium Supplement" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Phebe Ding, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Yahya bin Awang, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Samsuri bin Abd. Wahid, PhD
Senior Lecturer
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Shamsul Hayat, PhD
Professor
Aligarh Muslim University
India
(External Examiner)

NOR AINI AB. SHUKOR, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 28 September 2017
This thesis was submitted to the senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the supervisory committee were as follows:

**Siti Aishah bt Hassan, PhD**  
Associate Professor  
Faculty of Agriculture  
Universiti Putra Malaysia  
(Chairman)

**Che Fauziah Ishak, PhD**  
Professor  
Faculty of Agriculture  
Universiti Putra Malaysia  
(Member)

**Puteri Edaroyati M.W., PhD**  
Senior Lecturer  
Faculty of Agriculture  
Universiti Putra Malaysia  
(Member)

**ROBIAH BINTI YUNUS, PhD**  
Professor and Dean  
School of Graduate Studies  
Universiti Putra Malaysia

Date :
Declaration by graduate student

I hereby confirm that:

• this thesis is my original work;
• quotations, illustrations and citations have been duly referenced;
• this thesis has not been submitted previously or concurrently for any other degree at any institutions;
• intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
• written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
• there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software

Signature: ___________________________ Date: __________________

Name and Matric No: Sani Ahmad Jibril GS35534
Declaration by Members of Supervisory Committee

This is to confirm that:
- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) were adhered to.

Signature: ________________________________
Name of Chairman of Supervisory Committee: Associate Professor Dr. Siti Aishah bt Hassan

Signature: ________________________________
Name of Member of Supervisory Committee: Professor Dr. Che Fauziah Ishak

Signature: ________________________________
Name of Member of Supervisory Committee: Dr. Puteri Edaroyati M.W.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xviii</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATIONS</td>
<td>xxii</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.1 Background</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.2 Objectives</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>LITERATURE REVIEW</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2.1 Lettuce (Lactuca sativa L.)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2.2 Use of wastewater in agriculture</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>2.3 Cadmium in the environment and plants</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>2.3.1 Morphological and ultrastructural alterations due to Cd</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>2.3.2 Physiological and Biochemical effect of Cd to plants</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>2.3.3 Effect of Cd toxicity on photosynthesis</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>2.3.4 Induction of oxidative stress</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>2.3.5 Defense against oxidative stress</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>2.4 Antioxidant systems</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>2.4.1 Enzymatic antioxidant system</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>2.4.2 Superoxide dismutase (SOD)</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>2.4.3 Catalase (CAT)</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>2.4.4 Peroxidase (POD)</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>2.5 Non-enzymatic antioxidant system</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>2.6 Role of mineral nutrients in Cd alleviation</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>2.7 Expectation</td>
<td>19</td>
</tr>
<tr>
<td>3</td>
<td>MORPHOLOGICAL AND GROWTH CHARACTERISTICS OF LETTUCE FOR VARIETAL SELECTION</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>3.1 Introduction</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>3.2 Materials and Methods</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>3.2.1 Site description</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>3.2.2 Planting material</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>3.2.3 Growing technique</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>3.2.4 Experimental design and treatments</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>3.2.5 Crop establishment and management</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>3.2.6 Physiological characteristics</td>
<td>23</td>
</tr>
</tbody>
</table>
3.2.7 Statistical analysis 24
3.3 Results 24
3.3.1 Percentage of germination and survival rate 24
3.3.2 Morphological characteristics 24
3.3.3 Physiological characteristics 26
3.4 Discussions 28
3.5 Conclusion 28

4 EFFECT OF LOW CADMIUM CONCENTRATIONS ON MORPHOLOGICAL AND PHYSIOLOGICAL CHARACTERISTICS OF LETTUCE VARIETIES
4.1 Introduction 29
4.2 Materials and Methods 30
  4.2.1 Site description 30
  4.2.2 Planting material 30
  4.2.3 Growing technique 30
  4.2.4 Experimental design and treatments 30
  4.2.5 Crop establishment and management 30
  4.2.6 Measured parameters 31
    4.2.6.1 Measurement of morphological characteristics 31
    4.2.6.2 Physiological parameters 31
    4.2.6.3 Determination of chlorophyll content 31
    4.2.6.4 Proline assay 32
    4.2.6.5 Lipid peroxidation 32
    4.2.6.6 Nutrient analysis 32
  4.2.7 Statistical analysis 33
4.3 Results 33
  4.3.1 Morphological characteristics 33
  4.3.2 Physiological characteristics 39
  4.3.3 Proline and lipid peroxidation (MDA) contents 42
  4.3.4 Nutrient elements in the roots of lettuce varieties 43
    4.3.4.1 Macronutrient elements 43
    4.3.4.2 Micronutrient elements 45
  4.3.5 Nutrient elements in the shoots 47
    4.3.5.1 Macronutrient elements 47
    4.3.5.2 Micronutrient elements 48
4.4 Discussion 50
4.5 Conclusion 52

5 EFFECT OF HIGH CADMIUM CONCENTRATIONS ON MORPHOLOGICAL, PHYSIOLOGICAL, BIOCHEMICAL AND NUTRIENT ELEMENT CONTENTS OF TWO LETTUCE VARIETIES
5.1 Introduction 53
5.2 Materials and Methods 54
  5.2.1 Site description 54
  5.2.2 Planting material 54
  5.2.3 Growing technique 54
5.2.4 Experimental design and treatment  
5.2.5 Crop establishment and management  
5.2.6 Measured parameters  
5.2.6.1 Measurement of morphological characteristics  
5.2.6.2 Physiological characteristics  
5.2.6.3 Determination of chlorophyll content  
5.2.6.4 Antioxidant extraction  
5.2.6.5 Extraction of total phenolic acids and total flavonoids  
5.2.6.6 Ascorbic acid determination  
5.2.6.7 Proline assay  
5.2.6.8 Lipid peroxidation  
5.2.6.9 Nutrient analysis  
5.2.7 Statistical analysis  

5.3 Results  
5.3.1 Morphological characteristics  
5.3.2 Physiological characteristics  
5.3.3 Phytochemical attributes  
5.3.4 Nutrient elements contents in the roots of lettuce  
5.3.4.1 Macroelements  
5.3.4.2 Micronutrient elements  
5.3.5 Nutrient elements in the shoots of lettuce  
5.3.5.1 Macroelements  
5.3.5.2 Micronutrient elements  

5.4 Discussion  
5.5 Conclusion  

6 ALLEVIATION OF CADMIUM TOXICITY IN LETTUCE USING CALCIUM SUPPLEMENT  
6.1 Introduction  
6.2 Materials and Methods  
6.2.1 Site description  
6.2.2 Planting material  
6.2.3 Growing technique  
6.2.4 Experimental design and treatment  
6.2.5 Crop establishment and management  
6.2.6 Measured parameters  
6.2.6.1 Measurement of morphological characteristics  
6.2.6.2 Physiological characteristics  
6.2.6.3 Determination of chlorophyll content  
6.2.6.4 Antioxidant extraction  
6.2.6.5 DPPH free radical scavenging assay  
6.2.6.6 Ferric reducing antioxidant power assay (FRAP)  
6.2.6.7 Extraction of total phenolic acids and total flavonoids  
6.2.6.8 Total phenolic acid assay
6.2.6.9 Total flavonoid assay
6.2.6.10 Ascorbic acid determination
6.2.7 Proline assay
6.2.7.1 Lipid peroxidation
6.2.7.2 Nutrient analysis
6.2.8 Antioxidant enzymes assay
6.2.8.1 Assay for catalase activity
6.2.8.2 Assay for superoxidase (SOD) activity
6.2.8.3 Assay of peroxidase (POD) activity
6.2.9 Electron microscopy (TEM)
6.3 Statistical analysis
6.4 Results
6.4.1 Morphological characteristics
6.4.2 Physiological characteristics
6.4.3 Biochemical characteristics
6.4.4 Nutrient element contents in the roots of lettuce
6.4.4.1 Morphological characteristics
6.4.4.2 Micronutrient elements
6.4.5 Nutrient element contents in the shoots of lettuce
6.4.5.1 Macronutrient elements
6.4.5.2 Micronutrient elements
6.4.6 Antioxidant enzymes activities in the roots and leaves of lettuce
6.4.7 Electron microscopy (TEM) of chloroplasts structure treated with cadmium polluted water in lettuce and calcium supplements
6.5 Discussion
6.6 Conclusion

7 GENERAL DISCUSSION, CONCLUSIONS AND RECOMMENDATIONS
7.1 General discussion
7.2 Conclusion
7.3 Recommendations for future research

REFERENCES
APPENDICES
BIODATA OF STUDENT
LIST OF PUBLICATIONS
## LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Germination percentage of five lettuce varieties</td>
</tr>
<tr>
<td>3.2</td>
<td>Morphological characteristics of lettuce varieties BBL and Italian 167</td>
</tr>
<tr>
<td>3.3</td>
<td>Correlation coefficient in morphological traits of lettuce</td>
</tr>
<tr>
<td>3.4</td>
<td>Root characteristics of lettuce varieties BBL and Italian 167</td>
</tr>
<tr>
<td>3.5</td>
<td>Photosynthesis rate, stomatal conductance and transpiration rate in varieties BBL and Italian 167</td>
</tr>
<tr>
<td>3.6</td>
<td>Correlation coefficient in root characteristics, photosynthesis rate, stomatal conductance and transpiration rate of lettuce</td>
</tr>
<tr>
<td>4.1</td>
<td>Main effect of varieties and low cadmium concentrations on morphological attributes of lettuce</td>
</tr>
<tr>
<td>4.2</td>
<td>Correlation coefficients between morphological traits of lettuce varieties treated with low cadmium concentrations</td>
</tr>
<tr>
<td>4.3</td>
<td>Main effect of varieties and low cadmium concentrations on root characteristics lettuce varieties</td>
</tr>
<tr>
<td>4.4</td>
<td>Main effect of varieties and low cadmium concentrations on physiological characteristics of lettuce</td>
</tr>
<tr>
<td>4.5</td>
<td>Correlation coefficients between physiological traits of lettuce treated with low cadmium concentrations</td>
</tr>
<tr>
<td>4.6</td>
<td>Main effect of varieties and low cadmium concentrations on proline and lipid peroxidation (MDA) in lettuce</td>
</tr>
<tr>
<td>4.7</td>
<td>Main effect of varieties and low cadmium concentrations on macronutrients content in the roots of lettuce</td>
</tr>
<tr>
<td>4.8</td>
<td>Correlation coefficients between macronutrient elements of lettuce treated with low cadmium concentrations</td>
</tr>
<tr>
<td>4.9</td>
<td>Main effect of varieties and low cadmium concentrations on micronutrients content in the roots of lettuce</td>
</tr>
<tr>
<td>4.10</td>
<td>Correlation coefficients between micronutrient elements of lettuce treated with low cadmium concentrations</td>
</tr>
</tbody>
</table>
4.11 Main effect of varieties and low cadmium concentrations on macroelements content in the shoots of lettuce

4.12 Correlation coefficients between macronutrient elements and cadmium in lettuce treated with low cadmium concentrations

4.13 Main effect varieties and of low cadmium concentrations on micronutrients content in the shoot of lettuce

4.14 Correlation coefficients between micronutrient elements and cadmium in lettuce treated with low cadmium concentrations

5.1 Main effect of varieties and high cadmium concentrations on morphological characteristics of lettuce

5.2 Correlation coefficient between morphological attributes of lettuce treated with high cadmium concentrations

5.3 Main effect of varieties and high cadmium concentrations on the root characteristics of lettuce

5.4 Main effect of varieties and high cadmium concentrations on physiological characteristics of lettuce

5.5 Correlation coefficient of physiological attributes of lettuce treated with high cadmium concentrations

5.6 Main effect of varieties and high cadmium concentrations on phytochemicals of lettuce

5.7 Correlation coefficient of phytochemical attributes of lettuce treated with high cadmium concentrations

5.8 Main effect of varieties and high cadmium concentrations on macroelements in the roots of lettuce

5.9 Correlation coefficients between macronutrient elements and high cadmium concentrations in lettuce roots

5.10 Main effect of varieties and high cadmium concentrations on micronutrients in lettuce roots

5.11 Correlation coefficient between micronutrient elements and cadmium in the roots of lettuce

5.12 Main effect of varieties and high cadmium concentrations on macroelements in the shoots of lettuce
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.13</td>
<td>Correlation coefficients between macronutrient element and cadmium in lettuce shoots</td>
<td>83</td>
</tr>
<tr>
<td>5.14</td>
<td>Main effect of varieties and high cadmium concentrations on micronutrients in lettuce shoots</td>
<td>83</td>
</tr>
<tr>
<td>5.15</td>
<td>Correlation coefficients between micronutrient elements and cadmium in lettuce shoots</td>
<td>87</td>
</tr>
<tr>
<td>6.1</td>
<td>Main effect of varieties and calcium and cadmium concentrations on morphological characteristics of lettuce</td>
<td>101</td>
</tr>
<tr>
<td>6.2</td>
<td>Correlation coefficient of morphological attributes of lettuce treated with calcium and cadmium concentrations</td>
<td>105</td>
</tr>
<tr>
<td>6.3</td>
<td>Main effect of calcium and cadmium concentrations on the root characteristics of lettuce</td>
<td>106</td>
</tr>
<tr>
<td>6.4</td>
<td>Main effect of calcium and cadmium concentrations on physiological characteristics of lettuce</td>
<td>108</td>
</tr>
<tr>
<td>6.5</td>
<td>Correlation coefficient between physiological attributes of lettuce treated with calcium and cadmium concentrations</td>
<td>113</td>
</tr>
<tr>
<td>6.6</td>
<td>Effect of calcium and cadmium concentrations on phytochemical characteristics of lettuce</td>
<td>114</td>
</tr>
<tr>
<td>6.7</td>
<td>Correlation coefficient between phytochemical attributes of lettuce treated with calcium and cadmium concentrations</td>
<td>119</td>
</tr>
<tr>
<td>6.8</td>
<td>Effect of calcium and cadmium concentrations on macronutrients in the roots of lettuce</td>
<td>119</td>
</tr>
<tr>
<td>6.9</td>
<td>Correlation coefficients between macronutrient elements and cadmium in lettuce roots</td>
<td>124</td>
</tr>
<tr>
<td>6.10</td>
<td>Effect of calcium and cadmium concentrations on micronutrient elements in lettuce roots</td>
<td>124</td>
</tr>
<tr>
<td>6.11</td>
<td>Correlation coefficients between micronutrients and cadmium in lettuce roots</td>
<td>127</td>
</tr>
<tr>
<td>6.12</td>
<td>Effect of calcium and cadmium concentrations on macronutrients in lettuce shoots</td>
<td>128</td>
</tr>
<tr>
<td>6.13</td>
<td>Correlation coefficients between calcium and cadmium concentrations on macronutrient elements and cadmium in lettuce shoots</td>
<td>132</td>
</tr>
</tbody>
</table>
6.14 Effect of calcium and cadmium concentrations on micronutrient elements in lettuce shoots

6.15 Correlation coefficients between calcium and cadmium concentrations on micronutrient elements and cadmium in lettuce shoots

6.16 Effect of calcium and cadmium concentrations on antioxidant enzymes activities in roots and shoots

6.17 Correlation coefficients between antioxidant enzymes and cadmium in lettuce roots and shoots
# LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The potential pathway of Cd uptake and distribution in a root</td>
<td>7</td>
</tr>
<tr>
<td>3.1</td>
<td>Seeds sown in foam and placed under a rain shelter</td>
<td>22</td>
</tr>
<tr>
<td>3.2</td>
<td>Seedlings at 3 weeks old ready for transplanting</td>
<td>23</td>
</tr>
<tr>
<td>4.1</td>
<td>Effect of low cadmium concentrations on lettuce plant heights</td>
<td>35</td>
</tr>
<tr>
<td>4.2</td>
<td>Effect of low cadmium concentrations on fresh shoot (A) and root (B) weights in lettuce</td>
<td>36</td>
</tr>
<tr>
<td>4.3</td>
<td>Effect of low cadmium concentrations on root to shoot ratio (A) and dry shoot weight (B) in lettuce</td>
<td>37</td>
</tr>
<tr>
<td>4.4</td>
<td>Effect of low cadmium concentrations on chlorophylls a, b and total chlorophyll contents in lettuce</td>
<td>41</td>
</tr>
<tr>
<td>4.5</td>
<td>Effect of low cadmium concentrations on lipid peroxidation (MDA) content in lettuce varieties</td>
<td>43</td>
</tr>
<tr>
<td>4.6</td>
<td>Effect of low cadmium concentrations on cadmium contents in lettuce roots</td>
<td>46</td>
</tr>
<tr>
<td>4.7</td>
<td>Effect of low cadmium concentrations on cadmium content in lettuce shoots</td>
<td>49</td>
</tr>
<tr>
<td>5.1</td>
<td>Effect of high cadmium concentrations on plant height in lettuce</td>
<td>60</td>
</tr>
<tr>
<td>5.2</td>
<td>Effect of high cadmium concentrations on total leaf area (A) and fresh shoot weight (B) in lettuce</td>
<td>61</td>
</tr>
<tr>
<td>5.3</td>
<td>Effect of high cadmium concentrations on dry shoot (A) and fresh root weights (B) in lettuce varieties</td>
<td>62</td>
</tr>
<tr>
<td>5.4</td>
<td>Effect of high cadmium concentrations on root diameter in lettuce</td>
<td>66</td>
</tr>
<tr>
<td>5.5</td>
<td>Effect of high cadmium concentrations on the contents of chlorophylls a, b and total chlorophyll in lettuce plants</td>
<td>68</td>
</tr>
<tr>
<td>5.6</td>
<td>Effect of high cadmium concentrations on photosynthesis rate in lettuce</td>
<td>69</td>
</tr>
<tr>
<td>5.7</td>
<td>Effect of high cadmium concentrations on DPPH (A) and phenolics (B) contents in varieties of lettuce</td>
<td>72</td>
</tr>
</tbody>
</table>

xviii
5.8 Effect of high cadmium concentrations on Malondialdehyde (MDA) content in lettuce varieties 73
5.9 Effect of high cadmium concentrations on potassium (A) and magnesium (B) contents in varieties of lettuce 75
5.10 Effect of high cadmium concentrations on iron (A) and manganese (B) contents in the roots of lettuce varieties 77
5.11 Effect of high cadmium concentrations on copper (A) and zinc (B) contents in the roots of lettuce varieties 78
5.12 Effect of high cadmium concentrations on cadmium content in lettuce roots 79
5.13 Effect of high cadmium concentrations on phosphorus content in the shoots 81
5.14 Effect of high cadmium concentrations on potassium (A) and magnesium (B) contents in the shoots of lettuce varieties 82
5.15 Effect of high cadmium concentrations on iron, manganese, copper and zinc contents in the shoots of lettuce 84
5.16 Effect of high cadmium concentrations on iron (A) and manganese (B) contents in lettuce shoots 85
5.17 Effect of high cadmium concentrations on copper (A) and zinc (B) contents in lettuce shoots 86
5.18 Effect of high cadmium concentrations and cadmium content in lettuce varieties 87
5.19 Effect of high cadmium concentration on fresh weight of BBL (A) and Italian 167 (B) lettuce varieties 88
6.1 Number of leaves in lettuce as affected by calcium and cadmium concentrations 102
6.2 Fresh shoot weight in lettuce as affected by calcium and cadmium concentrations 103
6.3 Dry root weight (A) and number of leaved (B) as affected by calcium and cadmium concentrations 104
6.4 Root to shoot ratio in lettuce as affected by calcium and cadmium concentrations 105
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.5</td>
<td>Effect of calcium and cadmium concentrations on root length in lettuce</td>
</tr>
<tr>
<td>6.6</td>
<td>Effect of calcium and cadmium concentrations on root volume in lettuce</td>
</tr>
<tr>
<td>6.7</td>
<td>Effect of calcium and cadmium concentrations on Chlorophyll b (A) and total chlorophyll (B) contents in lettuce</td>
</tr>
<tr>
<td>6.8</td>
<td>Effect of calcium and cadmium concentrations on photosynthesis rate in lettuce</td>
</tr>
<tr>
<td>6.9</td>
<td>Effect of calcium and cadmium concentrations on stomatal conductance (A) and transpiration rate (B) in lettuce</td>
</tr>
<tr>
<td>6.10</td>
<td>Effect of calcium and cadmium concentrations on DPPH (A), FRAP (B) contents in lettuce</td>
</tr>
<tr>
<td>6.11</td>
<td>Effect of calcium and cadmium concentrations on vitamin C contents in lettuce</td>
</tr>
<tr>
<td>6.12</td>
<td>Effect of calcium and cadmium concentrations on proline (A) and flavonoid (B) contents in lettuce</td>
</tr>
<tr>
<td>6.13</td>
<td>Effect of calcium and cadmium concentrations on malondialdehyde (A) and phenolics (B) contents in lettuce</td>
</tr>
<tr>
<td>6.14</td>
<td>Effect of calcium and cadmium concentrations on nitrogen (A) and phosphorus (B) contents in lettuce</td>
</tr>
<tr>
<td>6.15</td>
<td>Effect of calcium and cadmium concentrations on potassium contents in lettuce roots</td>
</tr>
<tr>
<td>6.16</td>
<td>Effect of calcium and cadmium concentrations on calcium (A) and magnesium (B) contents in lettuce roots</td>
</tr>
<tr>
<td>6.17</td>
<td>Effect of calcium and cadmium concentrations on copper (A) and iron (B) contents in lettuce roots</td>
</tr>
<tr>
<td>6.18</td>
<td>Effect of calcium and cadmium concentrations on manganese (A) and zinc (B) contents in lettuce roots</td>
</tr>
<tr>
<td>6.19</td>
<td>Effect of calcium and cadmium concentrations on cadmium contents in lettuce roots</td>
</tr>
<tr>
<td>6.20</td>
<td>Effect of calcium and cadmium concentrations on nitrogen contents in lettuce shoots</td>
</tr>
</tbody>
</table>

xx
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.21</td>
<td>Effect of calcium and cadmium concentrations on phosphorus contents in lettuce shoots</td>
<td>129</td>
</tr>
<tr>
<td>6.22</td>
<td>Effect of calcium and cadmium concentrations on potassium (A), calcium (B) and magnesium (C) contents in lettuce shoots</td>
<td>131</td>
</tr>
<tr>
<td>6.23</td>
<td>Effect of calcium and cadmium concentrations on copper (A) and iron (B) contents in lettuce shoots</td>
<td>134</td>
</tr>
<tr>
<td>6.24</td>
<td>Effect of calcium and cadmium concentrations on manganese (A) and zinc (B) contents in lettuce shoots</td>
<td>135</td>
</tr>
<tr>
<td>6.25</td>
<td>Effect of calcium and cadmium concentrations on cadmium content in lettuce shoots</td>
<td>136</td>
</tr>
<tr>
<td>6.26</td>
<td>Effect of calcium and cadmium concentrations on superoxidase (A) and catalase (B) activities in lettuce roots</td>
<td>139</td>
</tr>
<tr>
<td>6.27</td>
<td>Effect of calcium and cadmium concentrations on catalase activity in lettuce shoots</td>
<td>140</td>
</tr>
<tr>
<td>6.28</td>
<td>A bean shaped chloroplast structure of a control specimen</td>
<td>142</td>
</tr>
<tr>
<td>6.29</td>
<td>Chloroplast structure treated with cadmium at 6 mg L⁻¹</td>
<td>142</td>
</tr>
<tr>
<td>6.30</td>
<td>A chloroplast treated with calcium supplement of Ca₆ + Cd₆ mg L⁻¹</td>
<td>143</td>
</tr>
<tr>
<td>6.31</td>
<td>Chloroplast structure treated with Ca₀ + Cd₉ mg L⁻¹</td>
<td>144</td>
</tr>
<tr>
<td>6.32</td>
<td>Chloroplast structure treated with Ca supplement of Ca₆ + Cd₉ mg L⁻¹</td>
<td>145</td>
</tr>
<tr>
<td>6.33</td>
<td>Fully formed chloroplast supplemented with Ca₉ + Cd₆ mg L⁻¹</td>
<td>146</td>
</tr>
<tr>
<td>6.34</td>
<td>Chloroplast not recovered at Ca₉ + Cd₉ mg L⁻¹ supplement</td>
<td>147</td>
</tr>
</tbody>
</table>
**LIST OF ABBREVIATIONS**

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAS</td>
<td>Atomic Absorption Spectrometer</td>
</tr>
<tr>
<td>ASC</td>
<td>Ascorbic acid</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>BBL</td>
<td>Bombilasta</td>
</tr>
<tr>
<td>CT</td>
<td>Cytoplasm</td>
</tr>
<tr>
<td>Ca</td>
<td>Calcium</td>
</tr>
<tr>
<td>CAT</td>
<td>Catalase</td>
</tr>
<tr>
<td>CCFAC</td>
<td>Committee on food additives and contaminants</td>
</tr>
<tr>
<td>Cd</td>
<td>Cadmium</td>
</tr>
<tr>
<td>Ch</td>
<td>Chloroplast</td>
</tr>
<tr>
<td>Chl.</td>
<td>Chlorophyll</td>
</tr>
<tr>
<td>cm²</td>
<td>Centimeter square</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>CV</td>
<td>Coefficient of variation</td>
</tr>
<tr>
<td>CW</td>
<td>Cell wall</td>
</tr>
<tr>
<td>DPPH</td>
<td>2, 2-diphenyl-1-picrylhydrazyl</td>
</tr>
<tr>
<td>DF</td>
<td>Degrees of freedom</td>
</tr>
<tr>
<td>DMRT</td>
<td>Duncan’s Multiple Range Test</td>
</tr>
<tr>
<td>DW</td>
<td>Dry weight</td>
</tr>
<tr>
<td>E</td>
<td>Transpiration rate</td>
</tr>
<tr>
<td>EC</td>
<td>Electrical conductivity</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization</td>
</tr>
<tr>
<td>FRAP</td>
<td>Ferric ion reducing antioxidant reducing power</td>
</tr>
<tr>
<td>G</td>
<td>Grana</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>Gs</td>
<td>Stomatal conductance</td>
</tr>
<tr>
<td>H$_2$O$_2$</td>
<td>Hydrogen peroxide</td>
</tr>
<tr>
<td>HSD</td>
<td>Honest Significant Difference</td>
</tr>
<tr>
<td>JECFA</td>
<td>Joint External Committee on Food Additives</td>
</tr>
<tr>
<td>LSD</td>
<td>Least Significant Difference</td>
</tr>
<tr>
<td>MDA</td>
<td>Malondialdehyde</td>
</tr>
<tr>
<td>NFT</td>
<td>Nutrient Film Technique</td>
</tr>
<tr>
<td>PT</td>
<td>Plastoglobuli</td>
</tr>
<tr>
<td>Pn</td>
<td>Net photosynthesis</td>
</tr>
<tr>
<td>POD</td>
<td>Peroxidase</td>
</tr>
<tr>
<td>PS I</td>
<td>Photosystem I</td>
</tr>
<tr>
<td>PS II</td>
<td>Photosystem II</td>
</tr>
<tr>
<td>RCBD</td>
<td>Randomized Complete Block Design</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive Oxygen Species</td>
</tr>
<tr>
<td>S</td>
<td>Starch grain</td>
</tr>
<tr>
<td>SAS</td>
<td>Statistical Analyses System</td>
</tr>
<tr>
<td>SLA</td>
<td>Specific Leaf Area</td>
</tr>
<tr>
<td>SOD</td>
<td>Superoxidase</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission Electron Microscope</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>*</td>
<td>Significant at 0.05 probability</td>
</tr>
<tr>
<td>**</td>
<td>Significant at 0.01 probability</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background

Global increase in population and industrialization are escalating the demand on fresh water resources. Insufficient safe water for domestic use leads to growing water shortage and pressure, thus, resulting in the utilization of contaminated sources, such as unprocessed metropolitan sewage effluents for growing of crops. Lazarova and Bahri (2008), made an estimation of about 10% of total land mass used in irrigation are supplied with untreated effluents. Generally, untreated effluent is a combination of liquid wastes from industries, commercial sources, households, resulting from daily uses, production and consumption activities. These anthropogenic activities are linked with environmental pollution of worldwide concern as it results in polluting underground water sources for lack of unplanned waste disposal of untreated domestic sewage and industrial effluents into water channels. Ultimately, this polluted water is drained into agricultural fields where it is utilized in the irrigation of food crops including vegetables. Wastewater offers consistently good resource for irrigation to growers and has advantageous addition of essential macro and micronutrients to agricultural fields, thereby creating opportunities for agriculture. Use of wastewater in agriculture could be beneficial to plants and animals on one hand and disadvantageous in the other as it contain minerals essential for growth and development as well as excessive amount of heavy metals, bacteria and viruses (UNU-INWEH, 2011). Naturally, plants take up essential micronutrients like Cu$^{2+}$, Fe$^{2+}$, Mo$^{2+}$, Mn$^{2+}$, and Zn$^{2+}$ which are beneficial, at the same time assimilate others like Hg$^{2+}$, Cd$^{2+}$, Cr$^{2+}$ and Pb$^{2+}$ that are toxic to their systems. Though, Liu et al. (2001) explained that the toxic effect differs from genotype to genotype of the same crop plants, Memon and Schröder (2009) added that it is influenced by the nature of ion and ion concentration, type of plant, and age of plant. Itanna (2002), reiterated that differences in heavy metal absorption by vegetable crops are credited to plant resilience to the metals; while Alexander et al. (2006) stated that leafy vegetables are high accumulators of metal ions compared to root vegetables and legumes.

Certainly, cadmium turns out to be a common occurrence in wastewater of industries sited along the waterways in view of which the United States Environmental Protection Agency (USEPA) has enforced stringent regulations on cadmium levels in industrial discharges. As a toxic substance, small quantities of Cd are usually found in agricultural environments. Wang and Song (2009) reported polluted fields might contain 600 mg kg$^{-1}$ Cd, but unpolluted areas could be 0.01 to 5 μg kg$^{-1}$. Use of sewage sludge as fertilizer in agriculture, zinc mining, combustion of fossil fuels, pesticides, phosphate fertilizer application, increase the naturally low amounts of Cd available to plants leading to accumulation in nature (Lombi et al. 2000).
According to Schutzendubel et al. (2001), Cd can restrict shoot and root development, disorderliness of the grana assemblies and decrease in chlorophyll synthesis. Sandalio et al. (2001) added that Cd can also inhibit the action of some sets of enzymes like that of the light fixing of Calvin cycle, nitrogen fixation, sugar metabolic processes and sulphate integration (Lee and Leustek, 1999) and acceleration of leaf senescence (Siedlecka and Krupa, 1999). Cadmium toxicity was associated with disruption in the absorption and transportation of macro and micronutrients in flora (Sandalio et al., 2001).

Oxidative degradation of lipids in the cells is caused by over production of ROS and their reaction with unsaturated fatty acids. Demiral and Turkan (2005) explained that the building block and efficiency of membrane tissues resulted in the rise of protoplasmic permeability, leading to escape of K$^+$ ions and other solutes and finally cause cell death which is a result of the ROS production process as well as some of its by-products.

Lettuce (Lactuca sativa L.) is a cosmopolitan important leafy vegetable that is consumed worldwide with annual production of about 18 million metric tons (Davey et al., 2007). Vitamins A and C in addition to iron and phosphorus are some of the important minerals found in lettuce. Many workers (Mensch and Baize, 2004; Kim et al., 1988) have reported lettuce as a good accumulator of Cd in its leaves. According to Cox, (2000) lettuce, spinach, cereals, and cabbage accumulates high content of heavy metals more than tomatoes, corn or sweet pea. In another work by Hibben et al. (1984), lettuce accumulated more lead than other vegetables when grown in contaminated soils. Lettuce was therefore suggested to be identified as measure for health status of vegetable plants cultivated in heavy metal polluted areas (Brown et al., 1996).

As a macro-essential nutrient, calcium serves an important part in plant life processes. Functions of membrane structure is insured by Ca for fixing to lipid bilayers, stabilizing phospholipids and finally offer essential structure to biological cells. Wang and Wang (2007), reported Ca regulated the actions of some important proteins separately or through proteins attached to calcium, such as calmodulin, which afterwards, initiate many protein kinases and additional proteins in cells. Certain vital elements like Ca, P, Zn, Cu, Mn and Fe acts antagonistically, limiting or inhibiting heavy metals uptake depending upon species of the plant and variety (Krupa et al., 1999). In another report by Zorrig et al. (2012), Ca can hinder undesirable changes induced by environmental factors via the control of free radicals and osmoregulation. Cadmium toxicity alleviation using Ca supplement, therefore, happens either by reducing Cd uptake or by declining its harmful effect. Little attention was given to assess the toxicity of Cd concentrations on physiological, biochemical and structural traits of vegetable crops, especially lettuce cultivated in Cd polluted environments and its alleviation by fertilization with calcium chloride salt.
Nutrient Film Technique (NFT) system was opted for in this research over soil because apart from being less labor intensive and its ability to a better control of pest infestations and prevent plant diseases, it offers the precise control of plant nutrient supply, water conservation comparative to soil cultures. It is easier to test, check electrical conductivity (EC), change and manipulate pH which is practically unthinkable in soil culture, along these lines guaranteeing upkeep over plant’s development and improvement.

1.2 Objectives

This research was conducted to assess the effects of Cd concentrations on lettuce varieties and determine the appropriate level of calcium chloride required in the alleviation of cadmium uptake in polluted environments.

Specifically, the objectives of this research work were:

i. To identify two to three varieties of lettuces that may be planted under high temperature and humidity environment,

ii. To determine the morphological, physiological, biochemical and structural changes that may occur in lettuce varieties due to cadmium stress,

iii. To determine effects of calcium on the uptake of essential nutrient elements and cadmium, and

iv. To determine the most resistant variety and fertilization level of Ca to be recommended for planting on potentially Cd polluted environments.
REFERENCES


