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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in
fulfilment of the requirement for the degree of Doctor of Philosophy

WAVELET METHODS FOR SOLVING LINEAR AND
NONLINEAR SINGULAR BOUNDARY VALUE PROBLEMS

By

ALTASGHAR KAZEMI NASAB

September 2014

Chair: Prof. Adem Kiligman, PhD
Faculty: Science

In this thesis, wavelet analysis method is proposed for solving singular boundary
value problems. Operational matrix of differentiation is introduced. Further-
more, product operational matrix is also presented. Many different examples are
solved using Chebyshev wavelet analysis method to confirm the accuracy and the
efficiency of wavelet analysis method.

An efficient and accurate method based on hybrid of Chebyshev wavelets and
finite difference methods is introduced for solving linear and nonlinear singular
ordinary differential equations such as Lane-Emden equations, boundary value
problems of fractional order and singular and nonsingular systems of boundary
and initial value problems. High-order multi-point boundary value problems are
also solved. The useful properties of Chebyshev wavelets and finite difference
method make it a computationally efficient method to approximate the solution
of nonlinear equations in a semi-infinite interval. The given problem is converted
into a system of algebraic equations using collocation points. The main advantage
of this method is the ability to represent smooth and especially piecewise smooth
functions properly. It is also clarified that increasing the number of subintervals
or the degree of the Chebyshev polynomials in a proper way leads to improvement
of the accuracy. Moreover, this method is applicable for solving problems on large
interval. Several examples will be provided to demonstrate the powerfulness of
the proposed method. A comparison is made among this method, some other
well-known approaches and exact solution which confirms that the introduced
method are more accurate and efficient. For future studies, some problems are
proposed at the end of this thesis.



Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia
sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

KAEDAH ANAK GELOMBANG UNTUK MENYELESAIKAN
LINEAR DAN TAK LELURUS SINGULAR MASALAH NILAI
SEMPADAN

Oleh

ALTASGHAR KAZEMI NASAB

September 2014

Pengerusi: Prof. Adem Kilicman, PhD

Fakulti: Sains

Dalam tesis ini, kaedah analisis gelombang telah dicadangkan untuk menyele-
saikan masalah nilai sempadan tunggal. Matriks operasi bagi pembezaan telah
diperkenalkan. Selain itu, produk operasi matriks juga dibentangkan. Banyak
contoh yang berbeza telah diselesaikan dengan menggunakan kaedah analisis
gelombang Chebyshev untuk mengesahkan ketepatan dan kecekapan kaedah anal-
isis anak gelombang.

Satu kaedah yang cekap dan tepat berdasarkan hibrid gelombang Chebyshev dan
kaedah perbezaan terhingga telah diperkenalkan untuk menyelesaikan persamaan
pembezaan biasa tunggal linear tak linear serta masalah-masalah nilai sempadan
dalam perintah pecahan dan singular dan tak singular sistems sempadan dan ni-
lai awal masalah. Ciri-ciri berguna gelombang Chebyshev dan kaedah perbezaan
terhingga menyebabkan ia menjadi satu kaedah pengiraan yang cekap bagi men-
ganggar penyelesaian persamaan linear dalam jarak semi-tak terhingga. Masalah
tersebut akan ditukarkan ke dalam sistem persamaan algebra dengan menggu-
nakan titik gabungan. Kelebihan utama kaedah ini adalah keupayaan untuk
mewakili ciri-ciri licin terutamanya fungsi cebis demi cebis yang licin dengan baik.
[a juga menunjukkan bahawa ketepatan ini boleh dipertinkatkan sama ada dengan
menambah bilangan subselang atau meningkatkan bilangan titk gabungan dalam
subselang. Selain itu, kaedah ini adalah sah untuk pengiraan yang domainnya
besar. Beberapa contoh akan disediakan untuk menunjukkan kekuasaan kaedah
yang telah dicadangkan. Perbandingan telah dibuat di antara kaedah ini, dengan
beberapa pendekatan lain yang terkenal dan juga penyelesaian yang tepat telah
mengesahkan bahawa kaedah yang diperkenalkan adalah lebih tepat dan berke-
san. Untuk kajian masa depan, beberapa masalah telah dicadangkan dalam akhir
tesis ini.
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CHAPTER 1
INTRODUCTION

1.1 Background

Change is an intrinsic nature of the universe; the world is a moving entity. In
order to understand and predict change we often need to create models reflecting
rates of change. The information of rates should be translated into the lan-
guage of mathematics by setting up an equation containing a derivative which
is called a differential equation. Many phenomena in physics, chemistry, en-
gineering, medicine, biology, astronomy and economics can be modelled using
differential equations. In spite of many analytical techniques developed for their
solution, many differential equations can not be solved analytically. Therefore,
many attempts have been made to propose numerical methods. When it comes
to numerical methods, the frequent questions often are: how close is the numer-
ical solution to the exact solution? and how possible to measure this closeness?

to what extent the numerical solution preserves the physical quality of the exact
solution? (Asadzadeh, 2012).

A differential equation is a relation between an unknown function y of one or
several variables and its derivatives of various orders. Differential equations can
be classified either as ordinary or as partial. If the function y depends on only
one variable (x € R), then the equation is called an ordinary differential equa-
tion (ODE). A partial differential equation (PDE) is a differential equation in
which the function of interest depends on two or more variables. The order of
the differential equation is determined by the order of the highest derivative of
the function y that appears in the equation.

Numerical methods used for numerical solution of physical problems can be cat-
egorized into the following classes (Mehra et al., 2009):

Finite difference methods (FDM):

The unknowns that appear in equation are defined by their values on discrete grid
and differential operators are replaced by difference operators using neighboring
points.

Finite volume methods (FVM):

Finite volume methods are similar to the finite difference method, values are cal-
culated at discrete places on a meshed geometry. ”Finite volume” refers to the
small volume surrounding each node point on a mesh.

Finite elements methods (FEM):

In this approach, the unknown solution is approximated by a linear combination
of a set of linearly independent test functions, which are piecewise continuous
and non vanishing only on the finite number of elements in the domain.



Spectral methods:
These methods use basis functions which are infinitely differentiable and non van-
ishing on the entire domain (global support).

Wavelet methods:
In wavelet methods, basis functions employed which are differentiable (according
to the requirement) and non vanishing on the compact support.

In FDM and FVM, the differential equation is approximated while in other meth-
ods its solution is approximated. In spectral methods, bases functions are in-
finitely differentiable with global support, while in finite difference or finite ele-
ment methods, bases functions have small compact support but poor continuity
properties. So spectral methods have high accuracy, but poor spatial localization,
while FDM, FVM and FEM have good spatial localization but low accuracy. On
the other hand, wavelet methods seem to have the advantage of other methods
simultaneously (high spectral accuracy as well as good localization).

1.2 Motivation and problem statement

In recent decades, many researchers have been attempting to answer the three
main questions that arise in the study of singular boundary value problems: exis-
tence and uniqueness of solutions, behaviour of the solution in the neighbourhood
of the singular points and its numerical approximation.

Many nonlinear phenomena in physics, chemistry, engineering and other sciences
can be modeled as a singular two-point boundary value problems (BVPs). The
Thomas-Fermi differential equation, the Ginzburg-Landau equation, the Lane-
Emden equation, the Bratu and Troesch equations take the form of singular
boundary value problems of second order. The singularity typically occurring
at an end of the interval of integration. ODEs with singularities arise also in
numerous applications which are of interest in modern applied mathematics.

The existence of singularities makes the approximate solution lose its accuracy
in the neighbourhood of the singular points. Even for local methods, such as the
finite difference or finite element methods, spurious oscillations appearing near
the singularity may distort the solution in the whole domain. This phenomenon
is even more critical for global solution methods, such as the Chebyshev method,
whose accuracy depends on the regularity of the solution. For a solution with a
low regularity, the “infinite accuracy” commonly associated to spectral methods is
lost and such methods show little advantages over local approximation methods.
Therefore, a suitable treatment of the singularities is necessary for preserving, as
far as possible, the high accuracy of spectral methods (Botella and Peyret, 2001).

Spectral methods can be applied for solving differential equations. The solution



function is expanded as a finite series of very smooth basis functions as follows,

Il

N-1
y(6) =y (8) = > api(t) (1.1)
i=0

in which, the best choice of v;, are the eigenfunctions of a singular Sturm-Liouville
problem. The most important characteristic of this method is that it reduces the
given problem to those of solving a system of algebraic equations which can be
solved easily. If the function y belongs to C'°°[a,b], the produced error of ap-
proximation (1.1), when N tends to infinity, approaches zero with exponential
rate (Canuto et al., 1988). This phenomenon is usually referred to as “spectral
accuracy” (Gottlieb and Orszag, 1977). The accuracy of derivatives obtained
by direct, term by term, differentiation of such truncated expansion naturally
deteriorates (Canuto et al., 1988), but for low order derivatives and sufficiently
high-order truncations this deterioration is negligible. So, if solution function and
coefficient functions are analytic on [a, b, spectral methods will be very efficient
and suitable.

The Troesch’s problem comes from the investigation of the confinement of a
plasma column under radiation pressure, while the Bratu problem is used in a
different variety of applications such as the fuel ignition of the thermal combus-
tion theory, the model thermal reaction process, the Chandrasekhar model of the
expansion of the Universe, chemical reaction theory, radiative heat transfer and
nanotechnology (Wazwaz, 2005b; Syam and Hamdan, 2006; Buckmire, 2004; Mc-
gough, 1998; Mounim and de Dormale, 2006; Li and Liao, 2005; Liao and Tan,
2007).

The application of the Lane-Emden equation in astrophysics, its importance in
the kinetics of combustion and the Landau-Ginzburg critical phenomena mo-
tivates physicists to pay considerable attention to solve it (Dixon and Tuszyski,
1990; Fermi, 1927; Fowler, 1930; Frank-Kameneétiskisae, 1969; Chandrasekhar and
Chandrasekar, 1958; Eddington, 1988; Spitzer Jr, 1942). On the other hand, its
nonlinearity and singular behaviour at the origin makes it fascinating for math-
ematicians to consider it as a prototype for testing new methods for solving
nonlinear differential equations.

Fractional calculus has received much attention from scientists and engineers
in recent years. Many researchers in various fields found that derivatives of non-
integer order are useful for the description of some natural physics phenomena and
dynamic system processes such as damping laws, diffusion process, etc. (Ciesiel-
ski and Leszczynski, 2003; Metzler and Klafter, 2000). In general, it is difficult
to solve fractional differential equations analytically. Therefore, it is necessary to
introduce some reliable and efficient numerical algorithms to solve them. During
the past decades, an increasing number of numerical methods have been devel-
oped.



Chebyshev polynomials which are the eigenfunctions of a singular Sturm-Liouville
problem have many advantages. They can be considered as a good representation
of smooth functions by finite Chebyshev expansions provided that the function
is infinitely differentiable. The Chebyshev expansion coefficients converge faster
than any finite power of % as n goes to infinity for problems with smooth solutions.
The numerical differentiation and integration can be performed. Moreover, they
have been applied to solve different kinds of boundary value problems (Canuto
et al., 1988; Voigt et al., 1984; Fox and Parker, 1968). Marzban and Hoseini
(2013) combined Chebyshev polynomials with block pulse functions to construct
a composite Chebyshev finite difference method for solving linear optimal control
problems with time delay.

In recent years, wavelets have received considerable attention by researchers in
different fields of science and engineering. The main characteristic of wavelet
analysis is the ability to perform local analysis (Misiti et al., 2000). Wavelet
analysis is able to reveal signal aspects that other analysis method miss, such
as trends, breakdown points, discontinuities, etc. In contrast with other orthog-
onal functions, multiresolution analysis aspect of wavelets permit the accurate
representation of a variety of functions and operators. In other words, we can
change M and k simultaneously to get more accurate solution. Another benefit
of wavelet method for solving equations is that after discreting the coefficients
matrix of algebraic equations is sparse. So it is computationally efficient the use
of wavelet methods for solving equations. In addition, the solution is convergent
(Adibi and Assari, 2010).

1.3 Objectives of the Research

The objectives of this research are to find out some accurate and efficient nu-
merical algorithms which can be applied for solving singular ordinary differential
equations and boundary value problems of fractional order. Wavelet analysis and
Chebyshev wavelet finite difference methods are proposed to obtain more accu-
rate solutions.

The specific objectives to be addressed are:

e to propose Chebyshev wavelet analysis method for solving both linear and
nonlinear singular initial and boundary value problems,

e Chebyshev wavelet analysis method is also proposed for solving Troesch’s
and Bratu’s equations,

e to employ Chebyshev wavelet finite difference method for obtaining more
accurate and efficient solution to singular initial and boundary value prob-
lems such as Lane-Emden type equations,

e to solve high-order multi-point boundary value problems,



e solving fractional ordinary differential equations by using Chebyshev wavelet
finite difference method,

e to apply Chebyshev wavelet finite difference method for solving singular
and non-singular system of boundary and initial value problems.

1.4 Outline of the Thesis

This thesis is structured as follows. In Chapter 1, a brief introduction to the
research topic is given. The problems under consideration for solving in the suc-
ceeding chapters are stated and the main objectives of the thesis are summarized.
Chapter 2 includes some notations, definitions and preliminary facts that will be
used further in this research work. Some main concepts like approximation the-
ory, orthogonal functions, multiresolution analysis and wavelet analysis method
are explained in this chapter.

In Chapter 3, we introduce Chebyshev wavelet analysis method and is then em-
ployed to get an accurate and efficient solution to linear and nonlinear singular
boundary value problems.

In Chapter 4, we solve Bratu’s and Troesch’s equations by using Chebyshev
wavelet analysis method.

In Chapter 5, Chebyshev wavelet finite difference method is presented. we em-
ploy Chebyshev wavelet finite difference method for solving linear and nonlinear
singular initial and boundary value problems such as Lane-Emden equations.

In Chapter 6, high-order multi-point boundary value problems are solved.
In Chapter 7, ordinary differential equations of fractional order are considered to
solve.

In Chapter 8, we apply Chebyshev wavelet finite difference method for solving
singular and non-singular system of boundary and initial value problems.

Finally, in Chapter 9, we conclude with a brief discussion of the work carried out
and the main results drawn from this research. A number of possible extensions
to this work in further studies are outlined.
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