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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in
fulfilment of the requirement for the degree of Doctor of Philosophy

NUMERICAL METHODS FOR SOLVING OSCILLATORY AND
FUZZY DIFFERENTIAL EQUATIONS

By

ALI KARIMI DIZICHEH

June 2014

Chair: Professor Fudziah Ismail, Ph.D.

Faculty: Institute of Mathematical Research

In this thesis we develop five numerical schemes for solving ordinary differential
equations. These include exponentially-fitted Runge-Kutta method, trigonometri-
cally fitted hybrid method, Legendre wavelet method on large intervals as well as
an iterative spectral collocation method, exponentially-fitted fuzzy Runge-Kutta
method, exponentially-fitted system of fuzzy Runge-Kutta method. The stability
analysis, estimation of local truncation errors and the efficiency of the methods’
implementation in computer programs are discussed.

An exponentially-fitted explicit Runge-Kutta method of algebraic order 4 is for-
mulated for the first-order ordinary differential equations

y′ = f(x, y), y(x0) = y0.

It integrates exactly the first-order systems where their solutions are expressed as
linear combinations of {exp (wx), exp (−wx)} or {cos (λx), sin(λx)} where w = λi.
Stability analysis of our approach as well as a good estimation for the local trunca-
tion errors are presented. The efficiency of the exponentially-fitted Runge-Kutta
method is tested via some numerical experiments and a comparison with other
existing methods.

A trigonometrically fitted explicit hybrid three-stage method is derived for the
second-order initial value problems with oscillatory solutions. We compare our
results with the classical hybrid method and the trigonometrically fitted explicit
Runge-Kutta method through several examples. Our results indicate that trigono-
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metrically fitted explicit hybrid method is more efficient than the classical hybrid
method. we analyze the stability, phase- lag (dispersion) and dissipation.

An iterative spectral collocation method are introduced for solving initial value
problems defined on large intervals. Indeed, the Legendre wavelet method is ex-
tended and proved valid for large interval. Then, the Legendre-Guass collocation
points of the Legendre wavelets are computed. By employing an interpolation
based on Legendre wavelet, we find approximate solution for any order (first-order
and second-order) differential equations. Using this strategy the iterative spectral
method converts the differential equation to a set of algebraic equations. Solving
this set of algebraic equations yields an approximate solution.

Using exponentially-fitted Runge-Kutta (EFRK) method, we develop a method
for numerically solving fuzzy first order linear and nonlinear differential equations
under generalized differentiability. In addition, this method is applied for the sys-
tem of first order fuzzy differential equations with uncertainty. The generalized
Hukuhara differentiability are applied to estimate the solutions. For solving the
fuzzy problems, the exponentially-fitted Runge-Kutta method is applied.

Finally, some examples are solved to illustrate our proposed approaches. The
results are compared with those in the literature. We show that our proposed
methods are simple and more accurate than the other existing methods.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

KAEDAH BERANGKA UNTUK PENYELESAIAN AYUNAN DAN
PERSAMAAN PEMBEZAAN SAMAR

Oleh

ALI KARIMI DIZICHEH

Jun 2014

Pengerusi: Professor Fudziah Ismail, Ph.D.
Fakulti: Institut Penyelidikan Matematik

Dalam tesis ini kita akan membangunkan lima skim berangka bagi menyelesaikan
masalah pembezaan biasa persamaan. Ini termasuk pesat dipasang kaedah Runge-
Kutta, secara trigonometri kaedah hibrid dipasang, Legendre kaedah ombak kecil
di selang besar serta kaedah penempatan bersama spektrum lelaran, pesat di-
pasang kabur Runge-Kutta kaedah, sistem pesat dipasang kabur kaedah Runge-
Kutta.

Analisis kestabilan, anggaran ralat pangkasan setempat dan kecekapan pelak-
sanaan kaedah dalam program komputer yang dibincangkan. Satu yang jelas
kaedah Runge-Kutta pesat dipasang perintah algebra 4 dirumus untuk pertama-
perintah persamaan pembezaan biasa

y′ = f(x, y), y(x0) = y0.

Ia menggabungkan betul-betul sistem tertib pertama di mana penyelesaian mereka
dinyatakan sebagai gabungan linear bagi {eks(wx), eks(−wx)} atau {kos(λx),
sin(λx)} di mana w = iλ.

Analisis kestabilan pendekatan kami dan juga anggaran yang baik bagi tempatan
ralat pangkasan dibentangkan. Keberkesanan kaedah Runge-Kutta eksponen di-
pasang diuji melalui beberapa ujikaji berangka dan perbandingan dengan kaedah
lain yang sedia ada. A secara trigonometri dipasang jelas hibrid kaedah tiga
peringkat berasal bagi tertib kedua masalah nilai awal dengan penyelesaian ayu-
nan. Kami membandingkan keputusan kami dengan kaedah hibrid klasik dan jelas
kaedah Runge-Kutta yang secara trigonometri dipasang melalui beberapa contoh.
Keputusan kami menunjukkan bahawa secara trigonometri dipasang kaedah hib-
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rid eksplisit adalah lebih cekap daripada kaedah hibrid klasik. Kita menganalisis
kestabilan, fasa lag (penyebaran) dan pelepasan.

Satu kaedah penempatan bersama spektrum lelaran diperkenalkan untuk menye-
lesaikan nilai awal masalah ditakrifkan pada selang yang besar. Malah, kaedah
wavelet Legendre dilanjutkan dan terbukti sah untuk tempoh yang besar. Kemu-
dian, Legendre-Guass titik penempatan bersama daripada riak Legendre dikira.
Dengan menggunakan satu interpolasi berdasarkan Legendre ombak kecil, kita
mencari penyelesaian anggaran untuk perintah (pertama-perintah dan tertib ke-
dua) persamaan pembezaan. Menggunakan strategi ini kaedah spektrum lelaran
menukarkan persamaan pembezaan untuk satu set persamaan algebra. Menyele-
saikan set persamaan algebra menghasilkan penyelesaian hampir. Menggunakan
pesat dipasang Runge-Kutta (EFRK) kaedah, kami membangunkan satu kaedah
yang untuk menyelesaikan secara berangka kabur linear peringkat pertama dan
persamaan pembezaan linear bawah kebolehbezaan umum. Di samping itu, kaedah
ini digunakan untuk sistem perintah pertama persamaan pembezaan kabur dengan
ketidakpastian.

Teritlak Hukuhara kebolehbezaan digunakan bagi menganggarkan penyelesaian.
Untuk menyelesaikan masalah kabur, kaedah Runge-Kutta eksponen dipasang
digunakan. Akhir sekali, beberapa contoh diselesaikan untuk menggambarkan
pendekatan dicadangkan kami. Keputusan berbanding dengan mereka dalam ke-
susasteraan. Kita menunjukkan bahawa kaedah yang dicadangkan kami adalah
mudah dan lebih tepat berbanding kaedah lain yang sedia ada.
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CHAPTER 1

INTRODUCTION

1.1 Background

Many research results have been reported in the area of the numerical solution of
initial value problems in the last century. Particularly, problems exhibit a pro-
nounced oscillatory property have taken a special attention. Such problems often
arise in the filed of celestial mechanics, astrophysics, electronics and molecular
dynamic, etc. There are many different approaches to deal with such problems.
However, it is of central importance for an approach to specifically address the
structure of the problem and its physical solutions.

Numerous numerical methods have been developed to approximate solutions of
differential systems while a challenging important task is to preserve reasonable
bounds for errors. Recent developments in computer sciences and technology have
given the theory of numerical analysis a given momentum.

There exist ways for finding analytical solutions for certain simple ordinary dif-
ferential equations. However, most models of real life problems are modeled by
nonlinear differential equations which there does not exist any approach for find-
ing analytic solutions. Furthermore, any analytic solution must be implemented
in a computer for most real applications. Therefore, the most and final practical
solutions are the numeric solutions.

Generally, there are two types of numerical methods, single-step methods and mul-
tistep methods. The single-step method assumes an initial point and approximates
a new solution in a one step process. However, the multistep methods comprise
of consecutive phases such that in each phase, the previous solutions and their
associated derivatives are used. Therefore, the multistep methods require more
initial points in which they are usually determined via a one-step approach.

Recently fuzzy systems and their associated solutions have been introduced in
order to study problems with real conditions. The systems of first order differential
equations under fuzzy conditions, have been treated in this thesis under generalized
Hukuhara differentiability.
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1.1.1 Initial value problem

We deal with the initial value problem of second order ordinary differential equa-
tions

y′′ = f(x, y), y(x0) = y0, y′(x0) = y′0, (1.1)

where y stands for the vector valued function with y = [y1, y2, . . . , yn] and y′ =
[y′1, y

′
2, . . . , y

′
n].

Theorem 1.1.1 (Lambert 1991) Assume that the function f : R× R −→ R is con-
tinuous for all (x, y) in the region D; where D is given by a ≤ x ≤ b, −∞ < y < ∞.
Further, assume that f satisfies the Lipschitz condition corresponding with the Lip-
schitz constant L, i.e.,

‖f(x, y)− f(x, ŷ)‖ ≤ L‖y − ŷ‖ (1.2)

holds for every (x, y) ∈ D, (x, ŷ) ∈ D. Then, there exists a unique continuous and
differentiable solution y(x) for all (x, y) ∈ D associated with the initial problem (1.1).

For the proof of Theorem (1.1.1) see Henrici (1962) and Lambert (1991).

1.2 Runge-Kutta method

The general s-stage Runge-Kutta method is defined by

yn+1 = yn + h

s∑

i=1

bif(xn + cih, Yi) (1.3)

where

Y1 = yn;

Yi = yn + h
s∑

j=1

aijf(xn + cjh, Yj), i = 2, . . . , s

ci =
i−1∑

j=1

aij

In this research, the explicit Runge-Kutta method of concern have the form

yn+1 = yn + h
4∑

i=1

bif(xn + cih, Yi) (1.4)

where

Y1 = yn;
Y2 = yn + ha21f(xn + c1h, Y1)
Y3 = yn + h(a31f(xn + c1h, Y1) + a32f(xn + c2h, Y2))
Y4 = yn + h(a41f(xn + c1h, Y1) + a42f(xn + c2h, Y2) + +a43f(xn + c3h, Y3))

2
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Table 1.1: Butcher tableau fourth order explicit Runge-Kutta method

0

2
5

2
5

3
5 − 3

20
3
4

1 19
44 − 15

44
10
11

11
72

25
72

25
72

11
72

(1.5)

The method chosen in this case is the fourth order explicit Runge-Kutta method
by Dormand (1996) which is given in Table 1.1.

1.2.1 Local truncation error and order conditions

Using Table 1.1, we have c1 = 0, c2 = 2
5 , c3 = 3

5 , c4 = 1 ;
a21 = 2

5 ; a31 = − 3
20 ; a32 = 3

4 ; a41 = 19
44 ; a42 = − 15

44 ; a43 = 10
11

b4 = 11
72 ; b1 = b4 , b3 = b2 ; b2 = 1

2 − b4;
Consider in Taylor series around xn, i.e.

y(xn+1) = y(xn) + hy′(xn) +
h2

2
y′′(xn) +

h3

6
y′′′(xn) +

h4

24
y(4) + . . .

where

y′(xn) = f

y′′(xn) = fx + f.fy

y′′′(xn) = fxx + 2f.fxy + f2.fyy + fy.(fx + f.fy)

y(4)(xn) = fxxx + 3f.fxxy + 3fx.fxy + 5f.fy.fxy + 3f2.fxyy + 3f.fx.fyy

+4f2.fy.fyy + f3.fyyy + fy.fxx + fx.f2
y + f3

y .f

Also we used Taylor expansion for a function of two variables around the point
(xn, yn). At first we put

T (s, r) =
s3

6
fxxx +

s2r

2
fxxy +

sr2

2
fxyy +

r3

6
fyyy

then

k1 = f

k2 = f + hc2fx + (Y2 − yn)fy +
1
2
c2
2h

2fxx + c2h(Y2 − yn)fxy +
1
2
(Y2 − yn)2fyy

+T (c2h, Y2 − yn)

= f + c2hfx + ha21f.fy +
1
2
c2
2h

2fxx + (ha21f)hc2fxy +
1
2
(ha21f)2fyy

+T (c2h, ha21f)

3
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and

k3 = f + hc3fx + (Y3 − yn)fy +
1
2
c2
3h

2fxx + c3h(Y3 − yn)fxy

+
1
2
(Y3 − yn)2fyy + T (c3h, Y3 − yn)

where
Y3 = yn + h(a31k1 + a32k2).

also

k4 = f + hc4fx + (Y4 − yn)fy

+
1
2
c2
4h

2fxx + c4h(Y4 − yn)fxy +
1
2
(Y4 − yn)2fyy

+T (c4h, Y4 − yn)

where
Y4 = t4yn + h(a41k1 + a42k2 + a43k3).

Finally we have
yn+1 = yn + h(b1k1 + b2k2 + b3k3 + b4k4).

Now

LTE = yn+1 − y(xn+1) (1.6)
= (−f + b1f + b2f + b3f + b4f)h

+[−fx

2
− f.fy

2
+ b2(c2fx + a21f.fy)

+b3(c3fx + (a31f + a32f)fy) + b4(c4fx + (a41f + a42f + a43f)fy)]h2

+[−fxx

6
− ffxy

3
− f2.fyy

6
− fx.fy

6
− f.f2

y

6
+ b2(

c2
2fxx

2
+ c2a21f.fxy

+
a2
21f

2.fyy

2
) + b3(a32(c2fx + a21f.fy)fy +

c2
3fxx

2
+ c3(a31f + a32f)fxy

+
1
2
(a31f + a32f)2fyy) + b4((a42(c2fx + a21f.fy)

+a43(c3fx + (a31f + a32f)fy))fy +
1
2
c2
4fxx

+c4(a41f + a42f + a43f)fxy +
1
2
(a41f + a42f + a43f)2fyy)]h3 + . . . .

Let

s1 =
4∑

i=1

bi − 1 ,

s2 =
4∑

i=2

bici − 1
2

,

s3 =
4∑

i=2

bic
2
i −

1
3

,

s4 = b3a32c2 + b4a42c2 + b4a43c3 − 1
6
,

s5 =
4∑

i=2

bic
3
i −

1
4

,
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s6 = b3a32a21 + b4a42a21 + b4a43a31 + b4a43a32 − 1
6
;

s7 = b3a32c3c2 + b4a42c2c4 + b4a43c3c4 − 1
8
;

s8 = b3a32c
2
2 + b4a42c

2
2 + b4a43c

2
3 −

1
12

;

s9 = b4a43a32c2 − 1
24

.

Setting si, i = 1, . . . , 9 to zero, we obtain the order conditions:

∑4
i=1 bi = 1 ,

∑4
i=2 bici =

1
2

,

∑4
i=2 bic

2
i =

1
3

,

∑4
i=2 bic

3
i =

1
4

,

b3a32c2 + b4a42c2 + b4a43c3 =
1
6
,

b3a32a21 + b4a42a21 + b4a43a31 + b4a43a32 =
1
6
;

b3a32c3c2 + b4a42c2c4 + b4a43c3c4 =
1
8
;

b3a32c
2
2 + b4a42c

2
2 + b4a43c

2
3 =

1
12

;

b4a43a32c2 =
1
24

.

Here we use the values of Table 1.1 in (1.6). Then, using Maple code, the coeffi-
cients of h3, h4 are zero. Now, the coefficient of h5 is obtained as follow:

C5 =
1
30

.fyy.f.fxx +
13

1800
.fy.fxxx +

1
15

.f.f2
xy +

5
176

.fyy.f2
x

+
1
30

.fxy.fxx +
163
1320

fyy.fx.f.fy +
91
880

.fyy.f2.f2
y

+
103
1800

.fy.f3.fyyy +
43
600

.fy.f.fxxy +
73
600

.fy.f2.fxyy

+
1
10

.fxy.f2.fyy +
1
30

.f3.f2
yy +

1
15

.fy.fx.fxy +
1
12

.f.f2
y .fxy

+
1
20

.fxxy.fx +
1

120
.f2

y .fxx +
1
10

.f.fxyy.fx +
1
20

.f2.fyyy.fx.

1.2.2 Stability

Assume that H = λh and
y′ = −λy, λ > 0. (1.7)

Hence,
y = c1 exp(−λx),

5
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for a constant c1. We use the Runge-Kutta method (1.4) for equation (1.7) and
obtain

yn+1 = yn −H
s∑

i=1

biYi,

Yi = yn −H
s∑

j=1

ai,jYj , i = 1, . . . , s.

Alternatively, we have

yn+1 = yn −HbtY, (1.8)
Y = eyn −HAY, (1.9)

where e = (1, 1, . . . , 1)t and Y = (Y1, Y2, . . . , Ys)t. From (1.8), we have

Y = (I + HA)−1eyn. (1.10)

Next

yn+1 = yn −HbtY = yn −Hbt(I + HA)−1eyn

= (1−Hbt(I + HA)−1e)yn = R(H)yn,

for
R(H) = (1−Hbt(I + HA)−1e).

The associated sequence is bounded if and only if

|R(H)| ≤ 1. (1.11)

We define the corresponding stability region by

S = {H ∈ C| |R(H)| ≤ 1}. (1.12)

1.3 Hybrid method

Coleman (2003) studied the following class of hybrid method:

yn+1 = 2yn − yn−1 + h2
s∑

i=1

bif(xn + cih, Yi), xn = x0 + nh (1.13)

Yi = (1 + ci)yn − ciyn−1 + h2
s∑

j=1

ai,jf(xn + cjh, Yj), i = 1, . . . , s.

The Butcher tableau represents the following where bt = [b1, b2, . . . , bs],
A = [aij ] and ct = [c1, . . . , cs].
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Table 1.2: Butcher tableau fourth order explicit Runge-Kutta method
c A

bt

In this research, our hybrid method follow

Y1 = yn, Y2 = yn−1

Yi = (1 + ci)yn − ciyn−1 + h2
s∑

j=3

ai,jf(xn + cjh, Yj), i = 3, . . . , s,

yn+1 = 2yn − yn−1 + h2
s∑

i=1

bif(xn + cih, Yi). (1.14)

Here, fn−1 and fn stands for f(tn−1, yn−1) and f(tn, yn), respectively. These ap-
proaches are explicit and have s − 1 function evaluations or phases in each stages
of integration. Franco (2006) was the first who introduced this class of explicit
hybrid method. They are a subclass of methods defined in equation (1.13), by
taking c1 = −1, c2 = 0, a21 = 0 and aij = 0 for j > i.

1.3.1 Local truncation error and order conditions

Consider the autonomous scalar differential equation

y′′ = f(y). (1.15)

Taking a few consecutive differentiations gives rise to

y′′′ = y′f ′(y),

y(4) = y′′f ′(y) + y′2f ′′(y),

y(5) = y′′′f ′(y) + 3y′f(y)f ′′(y) + y′3f ′′′(y),
y(6) = f ′(y)f ′(y)f(y) + 5f ′′(y)f ′(y)(y′)2 + 3y′f(y)f ′′(y) + 5f ′′(y)f(y)(y′)2 (1.16)

+f (4)(y)(y′)4.

The class of hybrid method (1.14) is applied to solve (1.15), and thereby,

yn+1 = 2yn − yn−1 + h2Φ.

Here,

Φ = b1f(yn−1) + b2f(yn) +
s∑

i=3

bif(Yi).

Let the exact solution of (1.15)

y(xn+1) = 2y(xn)− y(xn−1) + h2∆.

Next, the local truncation error (LTE) follows

LTE = h2(Φ−∆). (1.17)
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Order conditions are defined as relationships between coefficients of a method
which cause successive terms in a Taylor expansion of the local truncation error
to vanish (Coleman 2003).
We demonstrate on how to get the order conditions by means of an example.
Suppose that we want to obtain the order conditions of the problem (1.15) for
hybrid method defined in (1.14) with two-stage. We expand f(yn−1) and f(Y3) as a
Taylor series about h = 0 giving

Φ = (b1 + b2 + b3 + b4)f(yn) + [b4f
′(yn)c4y

′
n + b3f

′(yn)c3y
′
n

−b1f
′(yn)y′n]h + {b3[−1

2
f ′(yn)c3y

′′ + f ′(yn)a31f(yn)

+f ′(yn)a32f(yn) +
1
2
f ′′(yn)c2

3(y
′
n)2] + b4[−1

2
f ′(yn)c4y

′′

+f ′(yn)a41f(yn) + f ′(yn)a42f(yn)

+f ′(yn)a43f(yn) +
1
2
f ′′(yn)c2

4(y
′
n)2]

+b1[
1
2
f ′(yn)y′′n +

1
2
f ′′(yn)y′n

2]}h2 + . . . (1.18)

f(yn−1) = f(yn)− f ′(yn)y′nh + [
1
2
f ′(yn)y′′n +

1
2
f ′′(yn)y′n

2]h2

−1
6
(y(3)f ′(y) + 3y′f(y)f ′′(y) + y′3f ′′′(y))h3 + . . .

f(Y4) = f(yn) + f ′(yn)c4y
′
nh + [−1

2
f ′(yn)c4y

′′

+f ′(yn)a41f(yn) + f ′(yn)a42f(yn) + f ′(yn)a43f(yn)

+
1
2
f ′′(yn)c2

4(y
′
n)2]h2 + . . .

f(Y3) = f(yn) + f ′(yn)c3y
′
nh + [−1

2
f ′(yn)c3y

′′ + f ′(yn)a31f(yn)

+f ′(yn)a32f(yn) +
1
2
f ′′(yn)c2

3(y
′
n)2]h2 + . . .

Taylor series expansions of y(xn−1) and y(xn+1) about h = 0 are given by

y(xn+1) = y(xn) + hy′(xn) +
h2

2
y′′(xn) +

h3

6
y′′′(xn) +

h4

24
y(4)(xn) + . . .

y(xn−1) = y(xn)− hy′(xn) +
h2

2
y′′(xn)− h3

6
y′′′(xn) +

h4

24
y(4)(xn) + . . .

and thus, the corresponding expansion for y(xn+1)− 2y(xn) + y(xn−1) is

y(xn+1)− 2y(xn) + y(xn−1) = h2y′′(xn) +
h4

12
y(4)(xn) +

h6

360
y(6)(xn) . . .

and hence,

∆ = y′′(xn) +
h2

12
y(4)(xn) +

h4

360
y(6)(xn) . . . (1.19)

Assume that y(xn) = yn . Then (1.18) and (1.19) are substituted into the right side
of equation (1.17). Next, (1.15) and derivative terms such as those given (1.16)
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are used to obtain

LTE = h2(b1 + b2 + b3 + b4 − 1)f(yn) + h3(b4c4 + b3c3 − b1)f ′(yn)y′n (1.20)

+h4[(−b4c4

2
− b3c3

2
+ b4a41 + b4a42 + b4a43 + b3a31 + b3a32

+
b1

2
− 1

12
)f ′(yn)f(yn) + (

b4c
2
4

2
+

b3c
2
3

2
+

b1

2
− 1

12
)f ′′(yn)(y′n)2]

Let

t1 = b1 + b2 + b3 + b4 − 1,

t2 = b4c4 + b3c3 − b1,

t3 = −b4c4

2
− b3c3

2
+ b4a41 + b4a42 + b4a43 + b3a31 + b3a32

+
b1

2
− 1

12
,

t4 =
b4c

2
4

2
+

b3c
2
3

2
+

b1

2
− 1

12
.

Setting t1 and t2 to zero, we obtain the order conditions:

b1 + b2 + b3 + b4 = 1,

b4c4 + b3c3 − b1 = 0

If the above conditions are fulfilled, then t3 reduces to

t3 = b4a41 + b4a42 + b4a43 + b3a31 + b3a32 − 1
12

Setting t3 to zero, we get the order condition:

b4a41 + b4a42 + b4a43 + b3a31 + b3a32 − 1
12

= 0.

Finally, by assuming that

b1 + b2 + b3 + b4 = 1,

b4c4 + b3c3 − b1 = 0,

b4a41 + b4a42 + b4a43 + b3a31 + b3a32 − 1
12 = 0.

The following order conditions of order 2 to 9 are listed as given by Coleman
(2003).

Order 2:
s∑

i=1

bi = 1 (1.21)

Order 3:
s∑

i=1

bici = 0 (1.22)
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Order 4:
s∑

i=1

bic
2
i =

1
6

(1.23)

s∑

j=1

s∑

i=1

biaij =
1
12

(1.24)

Order 5:
s∑

i=1

bic
3
i = 0 (1.25)

s∑

j=1

s∑

i=1

biciaij =
1
12

(1.26)

s∑

j=1

s∑

i=1

biaijcj = 0 (1.27)

Order 6:
s∑

i=1

bic
4
i =

1
15

(1.28)

s∑

j=1

s∑

i=1

bic
2
i aij =

1
30

(1.29)

s∑

j=1

s∑

i=1

biciaijcj =
−1
60

(1.30)

s∑

i=1

s∑

j=1

s∑

k=1

biaijaik =
7

120
(1.31)

s∑

j=1

s∑

i=1

biaijc
2
j =

1
180

(1.32)

s∑

i=1

s∑

j=1

s∑

k=1

biaijajk =
1

360
(1.33)

Order 7:
s∑

i=1

bic
5
i = 0 (1.34)

s∑

j=1

s∑

i=1

bic
3
i aij =

1
30

(1.35)

s∑

j=1

s∑

i=1

bic
2
i aijcj = 0 (1.36)

s∑

i=1

s∑

j=1

s∑

k=1

biciaijaik =
1
30

(1.37)

s∑

j=1

s∑

i=1

bic
2
i aijcj = 0 (1.38)
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s∑

i=1

s∑

j=1

s∑

k=1

biciaijajk =
−1
720

(1.39)

s∑

j=1

s∑

i=1

biciaijc
2
j =

1
72

(1.40)

s∑

i=1

s∑

j=1

s∑

k=1

biaijaikck =
−1
120

(1.41)

s∑

j=1

s∑

i=1

biaijc
3
j = 0 (1.42)

s∑

i=1

s∑

j=1

s∑

k=1

biaijcjajk =
1

360
(1.43)

s∑

i=1

s∑

j=1

s∑

k=1

biaijajkck = 0. (1.44)

1.3.2 Phase-lag and stability analysis

Let H = λh and consider the test problem

y′′ = −λ2y, λ > 0, (1.45)

where the exact solution is given by

y = c1 exp(λx) + c2 exp(−λx)

with c1 and c2 are constants. Applying the hybrid method (1.13) to equation
(1.45) yields

yn+1 = 2yn − yn−1 −H2
s∑

i=1

biYi,

Yi = (1 + ci)yn − ciyn−1 −H2
s∑

j=1

ai,jYj , i = 1, . . . , s,

which can be expressed in vector form as

yn+1 = 2yn − yn−1 −H2btY (1.46)
Y = (e + c)yn − cyn−1 −H2AY, (1.47)

where e = (1, 1, . . . , 1)t and Y = (Y1, Y2, . . . , Ys)t. From (1.46), we get

Y = (I + H2A)−1(e + c)yn − (I + H2A)−1cyn−1 (1.48)

Then, substituting (1.48) into (1.47) give us

yn+1 − S(H2)yn + P (H2)yn−1 = 0 (1.49)

where S(H2) = 2−H2bt(I + H2A)−1(e + c) and P (H2) = 1−H2bt(I + H2A)−1c.
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The phase-lag and stability properties of the hybrid method (1.13) are determined
by the characteristic equation

ξ2 − S(H2)ξ + P (H2) = 0 (1.50)

which is associated with (1.49). The study of phase-lag has been initiated by
Brusa and Nigro (1980) in which the phase-lag was introduced as the truncation
error on exponentials.

According to Van der Houwen and Sommeijer (1987), in the phase analysis, one
compares the phase(s) (or argument(s)) of exp(±iH) with the principal root(s) of
the characteristic polynomial. Thus, phase-lag is defined as the difference

t = H − θ(H)

where H is the phase of exp(±iH) and is the phase of the principal root of (1.50). In
order to determine , assume that the characteristic polynomial (1.50) has complex
roots. Thus, the discriminant should be negative which means that:

(S(H2))2 − 4P (H2) < 0.

It is noted that √
(S(H2))2 − 4P (H2) = i

√
4P (H2)− (S(H2))2

and therefore the principal root may be written as

r1 =
√

S(H2)2 + i
√

4P (H2)− (S(H2))2.

Thus,

tan(θ(H)) =

√
4P (H2)− (S(H2))2

S(H2)

and

cos(θ(H)) =
S(H2)

2
√

P (H2)
.

Hence the phase of r1 is

θ(H) = arccos

(
S(H2)

2
√

P (H2)

)
.

The following is the definition according to the formula and concept given by
Franco (2006).

Definition 1.3.1 For the hybrid method corresponding to the characteristic poly-
nomial (1.50), the quantity

φ(H) = H − arccos

(
S(H2)

2
√

P (H2)

)

is called phase-lag (or dispersion error) while the quantity

d(H) = 1−
√

P (H2)

12
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is called dissipation (or amplification) error. A hybrid method is said to have the
phase-lag of order n if φ(H) = O(Hn+1). If P (H2) = 1 then d(H) = 0 and the method
having this property is said to be zero dissipative or dissipative of order infinity.
Conversely, if P (H2) 6= 1 then we should have d(H) = O(Hm+1). The method with
this property is said to be dissipative of order m.

Definition 1.3.2 For the hybrid method corresponding to the characteristic poly-
nomial (1.50), the interval (0,Hp) is called the interval of periodicity if

P (H2) = 1 and |S(H2)| < 2, ∀ H ∈ (0,Hp).

Definition 1.3.3 For the hybrid method corresponding to the characteristic poly-
nomial (1.50), the interval (0,Ha) is called the interval of absolute stability if

|P (H2)| < 1 and |S(H2)| < 1 + P (H2), ∀ H ∈ (0,Ha)

For the hybrid method defined in (1.14), S(H2) and P (H2) are polynomials in H2.

1.4 Legendre polynomial

In Kajani and Vencheh (2004), The Legendre polynomials are obtained by the
recursive formulas:

L0(t) = 1,

L1(t) = t, (1.51)

Lm+1(t) =
2m + 1
m + 1

tLm(t)− m

m + 1
Lm−1(t), m = 1, 2, . . . .

In Chapter V, the Legendre polynomials are applied for solving differential equa-
tions with initial values on large intervals.

1.5 Fuzzy differential equations

Here, we recall some basic definitions and results by Georgiou et al. (2005) which
will be used later. The set of all real numbers is indicated by R. A fuzzy number
is a mapping u : R→ [0, 1] with the following properties:

1. u is upper semi-continuous,

2. u is fuzzy convex, i.e., u(λx + (1− λ)y) ≥ min{u(x), u(y)}, ∀ x, y ∈ R, λ ∈
[0, 1],

3. u is normal, i.e., ∃x0 ∈ R for which u(x0) = 1,

13



© C
OPYRIG

HT U
PM

4. supp u = {x ∈ R|u(x) > 0} is the support of the u, and its closure cl(supp u) is
compact.

Let E be the set of all fuzzy number on R. The α-level set of a fuzzy number
u ∈ E, 0 ≤ α ≤ 1, denoted by [u]α, is defined as

[u]α =
{ {x ∈ R|u(x) ≥ α} if 0 < α ≤ 1

cl(supp u) if α = 0.

It is clear that the α-level set of a fuzzy number is a closed and bounded interval
[u(α), u(α)],where u(α) denotes the left-hand endpoint of [u]α and u(α) denotes the
right-hand endpoint of [u]α. Since each y ∈ R can be regarded as a fuzzy number ỹ
defined by

ỹ(t) =
{

1 if t = y,
0 if t 6= y,

R can be embedded in E.

Indeed, for Hausdorff distance we have the following metric properties: D : E×E −→
R+

⋃
0,

D(u, v) = sup
α∈[0,1]

max{|u(α)− v(α)|, |ū(α)− v̄(α)|},

It is easy to see that D is a metric in E and has the following properties
(i) D(u⊕ w, v ⊕ w) = D(u, v), ∀u, v, w ∈ E,

(ii) D(k ¯ u, k ¯ v) = |k|D(u, v), ∀k ∈ R, u, v ∈ E,

(iii) D(u⊕ v, w ⊕ e) ≤ D(u,w) + D(v, e), ∀u, v, w ∈ E,

(iv) (D,E) is a complete metric space.

Definition 1.5.1 Let x, y ∈ E. If there exists z ∈ E such that x = y ⊕ z, then z is
called the H-difference of x and y, and it is denoted by xª y.

In this thesis we consider the following definition of differentiability for fuzzy-
valued functions which was introduced by Bede and Gal (2005).

Definition 1.5.2 Let f : (a, b) → E and x0 ∈ (a, b). We say that f is strongly gener-
alized differential at x0. If there exists an element f ′(x) ∈ E , such that
(i) for all h > 0 sufficiently small, ∃f(x0 + h)ª f(x0), ∃f(x0)ª f(x0 − h) and the lim-
its(in the metric d)

lim
h→0

f(x0 + h)ª f(x0)
h

= lim
h→0

f(x0)ª f(x0 − h)
h

= f ′(x0),

(ii) for all h > 0 sufficiently small, ∃f(x0) ª f(x0 + h), ∃f(x0 − h) ª f(x0) and the
limits(in the metric d)

lim
h→0

f(x0)ª f(x0 + h)
−h

= lim
h→0

f(x0 − h)ª f(x0)
−h

= f ′(x0),
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(iii) for all h > 0 sufficiently small, ∃f(x0 + h) ª f(x0), ∃f(x0 − h) ª f(x0) and the
limits(in the metric d)

lim
h→0

f(x0 + h)ª f(x0)
h

= lim
h→0

f(x0 − h)ª f(x0)
−h

= f ′(x0),

(iv) for all h > 0 sufficiently small, ∃f(x0) ª f(x0 + h), ∃f(x0) ª f(x0 − h) and the
limits(in the metric d)

lim
h→0

f(x0)ª f(x0 + h)
−h

= lim
h→0

f(x0)ª f(x0 − h)
h

= f ′(x0).

Remark 1.5.1 In this thesis, only cases (i)- and (ii)-differentiability in Definition
1.5.2 will be used.

Theorem 1.5.1 (see Bede (2006)). Let f : (a, b) → E be a function and denote
[F (t)]α = [fα(t), gα(t)], for each α ∈ [0, 1]. Then

(1) If f is (i)-differentiable, then fα(t) and gα(t) are differentiable functions and

[F ′(t)]α = [f ′α(t), g′α(t)],

(2) If f is (ii)-differentiable, then fα(t) and gα(t) are differentiable functions and

[F ′(t)]α = [g′α(t), f ′α(t)].

1.6 Objectives of the thesis

In this thesis, we propose some new efficient methods for numerically solving linear
and nonlinear first order differential equations and the system of first order differen-
tial equations with deterministic and fuzzy conditions based on the exponentially-
fitted Runge-Kutta method. In particular, the objectives of the thesis are:

1. Applying exponentially-fitted Runge-Kutta method to solve second order
differential equations that has been reduced to first order ODE and obtaining
the local truncation error and the stability regions.

2. To derive an explicit trigonometrically fitted hybrid method for solving os-
cillatory second order ordinary differential equations.
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3. To propose a reliable algorithm based on Legendre wavelets-spectral method
for solving first order and second order nonlinear oscillatory differential equa-
tions.

4. To solve first order ordinary differential equations with uncertainty, repre-
sented by fuzzy numbers and fuzzy-valued functions, involving character-
ization theorem and some other new results under generalized Hukuhara
differentiability.

5. Solving system of first order fuzzy differential equations under generalized
Hukuhara differentiability both exactly and numerically.

1.7 Outline of the thesis

In Chapter I, some preliminaries and basic concepts of Runge-Kutta method are
given. Hybrid method and its Phase-lag and stability analysis is also discussed.
Chapter I also covers some basic concepts on Legendre wavelets and fuzzy differ-
ential equations.

Chapter II is devoted to some discussion on earlier research on Runge-Kutta
method, exponentially-fitted Runge-Kutta method, hybrid-type methods, exponentially-
fitted hybrid-type methods and Legendre wavelet spectral method and fuzzy dif-
ferential equations, system of first order fuzzy differential equations.

Chapter III focuses on the derivation of the exponentially Runge-Kutta method
using the techniques introduced by Simos (1998) and Berghe et al. (1999) for solv-
ing oscillatory first order ordinary differential equations. Stability analysis and the
local truncation error of the methods are also given.

In Chapter IV, we develop the trigonometrically fitted hybrid method based on the
hybrid method of order five given in Franco (2006) for solving oscillatory second
order ordinary differential equations. The stability region of the method when
applied to linear second order ODEs is also depicted.

In Chapter VI, we solve first order fuzzy differential equations, firstly the fuzzy dif-
ferential equation are transformed to ordinary differential equations using charac-
terization theorem. The equations are first order then solved using exponentially-
fitted Runge-Kutta method and numerical comparisons with other existing meth-
ods are made.
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Chapter VII, we solve the fuzzy linear system of first order differential equations
analytically under the generalized Hukuhara differentiability. Then the same fuzzy
differential equations are solved using exponentially-fitted Runge-Kutta method
and comparisons are made between the exact values and the computed values.

Finally, Chapter VIII summarizes the conclusion of the research and recommen-
dation for future research will be suggested.
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