UNIVERSITI PUTRA MALAYSIA

EFFECTS OF STRONTIUM SUBSTITUTION ON STRUCTURAL, ELECTRICAL AND MAGNETIC PROPERTIES OF POLYCRYSTALLINE AND NANOCRYSTALLINE La$_{0.67}$($Ca_{1-x}Sr_x$)$_{0.33}$MnO$_3$

CHANG SEN CHOUNG

FS 2014 59
EFFECTS OF STRONTIUM SUBSTITUTION ON STRUCTURAL, ELECTRICAL AND MAGNETIC PROPERTIES OF POLYCRYSTALLINE AND NANOCRYSTALLINE $\La_{0.67}(\Ca_{1-x}\Sr_x)_{0.33}\MnO_3$

By

CHANG SEN CHOUNG

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Master of Science

April 2014
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

EFFECTS OF STRONTIUM SUBSTITUTION ON STRUCTURAL, ELECTRICAL AND MAGNETIC PROPERTIES OF POLYCRYSTALLINE AND NANOCRYSTALLINE La$_{0.67}$(Ca$_{1-x}$Sr$_x$)$_{0.33}$MnO$_3$

By

CHANG SEN CHOUNG

April 2014

Chairman: Abdul Halim Shaari, PhD
Faculty: Science

This research is aimed at studying the influences of Sr ions substitution on the structural, electrical and magnetic properties of polycrystalline and nanocrystalline La$_{0.67}$(Ca$_{1-x}$Sr$_x$)$_{0.33}$MnO$_3$. The differences between polycrystalline and nanocrystalline samples were discussed.

The polycrystalline and the nanocrystalline La$_{0.67}$(Ca$_{1-x}$Sr$_x$)$_{0.33}$MnO$_3$ for 0 ≤ x ≤ 1.0 were synthesized via the solid-state reaction and the sol gel based polymerizable complex method respectively. The X-Ray Diffraction (XRD) measurements were carried out to determine the crystal structure properties. The XRD spectrums revealed that the structural transition from orthorhombic structure to rhombohedra structure took place when the Ca ions were gradually substituted by the Sr ions in both polycrystalline and nanocrystalline samples. The lattice parameters, Mn-O bond length and Mn-O-Mn bond angle were obtained by the Rietveld refinement method. The microstructures for both polycrystalline and nanocrystalline samples were obtained from the Scanning Electron Microscope (SEM). The grain sizes were found in the ranges of 2.83 µm - 8.78 µm and 35.72 nm - 45.38 nm for polycrystalline samples and nanocrystalline samples respectively.

The temperature dependences of resistivity and magnetoresistance (MR) were measured by the four point probe method at variable magnetic field range of 0 T - 1 T for both polycrystalline and nanocrystalline samples. The metal-insulator transition temperature (T_p) for polycrystalline samples increased with the substitution of Sr ions. However, the nanocrystalline samples with high surface to volume ratio showed that its T_p varied with the grain size. The intrinsic MR around the T_p and the extrinsic MR at T ≤ T_p were observed in polycrystalline samples. The substitution of Sr ions shifted the intrinsic MR of polycrystalline samples towards higher temperature but lowering its magnitude whereas the intrinsic MR of nanocrystalline samples were suppressed and left behind the extrinsic MR at low temperature. The electrical transport properties for both polycrystalline and nanocrystalline samples were explained by the double exchange
interaction within the grain and the spin-polarized tunneling mechanism across the grain boundaries. The highest MR values were found to be -26.79% for polycrystalline $x = 0.0$ at 244 K and -23.37% for nanocrystalline $x = 0.0$ at 80 K. At room temperature, the highest MR for polycrystalline samples and nanocrystalline samples were found to be -8.45% at $x = 0.4$ and -4.19% at $x = 1.0$ respectively.

The field dependences of magnetization for both polycrystalline and nanocrystalline samples were carried out by the Vibrating Sample Magnetometer (VSM). The magnetization increased with the Sr ion substitution for the polycrystalline and nanocrystalline samples due to the increase of the Mn-O-Mn bond angle. The nanocrystalline samples have lower magnetization than that of the polycrystalline samples due to the loss of long-range ferromagnetic ordering in the nanocrystalline samples.
KESAN PENGGANTIAN STRONTIUM PADA SIFAT STRUKTUR, ELEKTRIK DAN MAGNET BAGI POLIHABLUR DAN NANOHABLUR La_{0.67}(Ca_{1-x}Sr_x)_{0.33}MnO_3

Oleh

CHANG SEN CHOUNG

April 2014

Pengerusi: Abdul Halim Shaari, PhD
Fakulti: Sains

Tujuan penyelidikan ini adalah untuk mengaji kesan penggantian ion Sr pada sifat struktur, magnet and elektrik bagi polihablur and nanohablur La_{0.67}(Ca_{1-x}Sr_x)_{0.33}MnO_3. Perbezaan antara polihablur dan nanohablur bagi sampel La_{0.67}(Ca_{1-x}Sr_x)_{0.33}MnO_3 telah dibincang dalam tesis ini.

Polihablur dan nanohablur bagi La_{0.67}(Ca_{1-x}Sr_x)_{0.33}MnO_3 dengan 0 \leq x \leq 1.0 telah disintesis melalui kaedah tindak balas keadaan pepejal and kaedah “sol-gel” melalui pempolimeran kompleks masing-masing. Pengukuran belauan sinar-x (XRD) telah dilaksanakan untuk menentukan sifat struktur hablur. Spektrum XRD menunjukkan bahawa perubahan struktur daripada struktur orthrombik kepada struktur rombohedra berlaku apabila ion Ca diganti dengan ion Sr secara beransur-ansur bagi sampel polihablur dan nanohablur. Parameter kekisi, panjang ikatan Mn-O dan sudut ikatan Mn-O-Mn diperolehi daripada kaedah Rietveld. Mikrostruktur bagi sampel polihablur dan nanohablur diperolehi daripada mikroskop imbasan elektron (SEM). Saiz butiran didapati dalam lingkungan 2.83 µm - 8.78 µm dan 35.72 nm - 45.38 nm bagi sampel polihablur dan sampel nanohablur masing-masing.

Kerintangan elektrik dan magnetorintangan (MR) melawan suhu bagi sampel polihablur dan nanohablur telah diukur dengan menggunakan kaedah penduga empat titik pada medan magnet dalam lingkungan 0 T - 1 T. Suhu peralihan logam-penebat (T_p) bagi sampel polihablur didapati meningkat dengan menambahkan penggantian ion Sr. Walau bagaimanapun, sampel nanohablur yang mempunyai nisbah permukaan terhadap isipadu yang tinggi menunjukkan bahawa T_p berubah dengan saiz butiran. MR intrisik pada sekeliling T_p dan MR ekstrisik pada T \leq T_p telah diperhatikan dalam sampel polihablur. Penggantian ion Sr menyebabkan MR intrisik bagi sampel polihablur beralih ke suhu tinggi tetapi magnitudnya menurun. Manakala, MR intrisik bagi sampel nanohablur didapati ditindaskan dan hanya MR ekstrisik yang dikekalkan pada suhu rendah. Sifat pergerakan elektrik bagi sampel polihablur dan nanohablur boleh dijelaskan dengan tindakbalas tukarganti gandaan dalam butiran dan mekanisme penerowongan spin-
terkutub melintasi sempadan butiran. Nilai MR yang tertinggi adalah -26.79% untuk polihablur $x = 0.0$ pada suhu 244 K dan -23.37% untuk nanohablur $x = 0.0$ pada suhu 80 K. Pada suhu bilik, nilai MR yang tertinggi untuk sampel polihablur dan sampel nanohablur adalah -8.45% pada $x = 0.4$ dan -4.19% pada $x = 1.0$ masing-masing.

Pemagnetan terhadap medan magnet telah dijalankan dengan menggunakan magnetometer getaran sampel (VSM). Pemagnetan bagi sampel polihablur dan nanohablur didapati meningkat dengan penambahan penggantian ion Sr kerana sudut ikatan Mn-O-Mn meningkat. Nilai pemagnetan bagi sampel nanohablur didapati lebih rendah daripada nilai pemagnetan bagi sampel polihablur disebabkan oleh kehilangan susunan feromagnet berjulat panjang dalam sampel nanohablur.
ACKNOWLEDGEMENTS

First of all, I would like to thank and express my deepest gratitude and appreciation to my supervisor, Prof Dr. Abdul Halim Shaari for his invaluable advice, guidance, patience and support throughout this project. It is really my pleasure for having Prof Dr. Abdul Halim Shaari as my supervisor for this project.

In addition, I would like to thank and appreciate to Prof Dr. Zainal Abidin Talib and Dr. Lim Kean Pah for willing to be part of my supervisory committee members and for their guidance and assistance throughout this project.

Last but not least, I would like to give my special thanks and appreciation to all other UPM staffs and to my friends who either directly or indirectly helped me towards the success of this project.
I certify that a Thesis Examination Committee has met on 28 April 2014 to conduct the final examination of Chang Sen Choung on his thesis entitled “Effects of Strontium Substitution on Structural, Electrical and Magnetic Properties of Polycrystalline and Nanocrystalline La_{0.67}(Ca_{1-x}Sr_{x})_{0.33}MnO_3” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Chen Soo Kien, PhD
Senior Lecturer
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Jumiah binti Hassan, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Halimah binti Mohamed Kamari, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Roslan Abd. Shukor, PhD
Professor
Universiti Kebangsaan Malaysia
Malaysia
(External Examiner)

NORITAH OMAR, PhD
Associate Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 23 June 2014
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Abdul Halim Shaari, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Zainal Abidin Talib, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

Lim Kean Pah, PhD
Senior Lecturer
Faculty of Science
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by Graduate Student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ______________________ Date: _______________

Name and Matric No: Chang Sen Choung, GS24993
Declaration by Members of Supervisory Committee

This is to confirm that:
- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature:_____________________
Name of Chairman of Supervisory Committee: Abdul Halim Shaari, PhD

Signature:_____________________
Name of Member of Supervisory Committee: Zainal Abidin Talib, PhD

Signature:_____________________
Name of Member of Supervisory Committee: Lim Kean Pah, PhD

x
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS AND SYMBOLS</td>
<td>xx</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 Introduction 1
1.2 CMR Manganites 2
1.3 Potential Application 3
 1.3.1 Magnetoresistive Read Head Sensor in Magnetic Recording Devices 3
 1.3.2 Magnetoresistive Random Access Memory (MRAM) 3
 1.3.3 Speed Control Sensor in Anti-Lock Brake System (ABS) 3
1.4 Problem Statement 3
1.5 Scope and Objectives of the Research 4
1.6 Overview of the Thesis 5

2 LITERATURE REVIEW

2.1 History 6
2.2 Lanthanum Based Manganites System 7
 2.2.1 Lanthanum Calcium Manganite 7
 2.2.2 Lanthanum Strontium Manganite 9
 2.2.3 Lanthanum Calcium Strontium Manganite 10
2.3 Polycrystalline Manganites 11
2.4 Nanocrystalline Manganites 12
2.5 Synthesis of Doped Manganites by Solid State Reaction 13
2.6 Synthesis of Doped Manganites by Polymerizable Complex Sol-Gel Method 13
2.7 Effect of Ionic Size Mismatch in CMR Manganite Properties 14

3 THEORY

3.1 Perovskite Structure 17
3.2 Tolerance Factor 17
3.3 Crystal Field Splitting and Jahn-Teller Distortion 18
3.3.1 Crystal Field Splitting 19
3.3.2 Jahn-Teller Distortion 19
3.4 Double Exchange 21
3.5 Electron-Phonon Coupling 23

4 METHODOLOGY 25
4.1 Introduction 25
4.2 Solid State Reaction 25
 4.2.1 Weighing of Raw Materials 26
 4.2.2 Mixing and Milling 27
 4.2.3 Calcination 27
 4.2.4 Grinding and Sieving 27
 4.2.5 Pelletizing 27
 4.2.6 Sintering 27
4.3 Sol-Gel Based Polymerizable Complex Method 28
 4.3.1 Weighing of Raw Materials 29
 4.3.2 Dissolving 29
 4.3.3 Mixing 29
 4.3.4 Chelating 29
 4.3.5 Polymerization 30
 4.3.6 Calcination 30
 4.3.7 Moulding 30
 4.3.8 Sintering 30
4.4 Sample Characterization 30
 4.4.1 X-Ray Diffraction (XRD) 30
 4.4.2 Scanning Electron Microscope (SEM) and Energy-Dispersive X-Ray Spectroscopy (EDX) 31
 4.4.3 Four Point Probe Resistivity Measurement 32
 4.4.4 Vibrating Sample Magnetometer (VSM) 33

5 RESULTS AND DISCUSSION 35
5.1 Polycrystalline La$_{0.67}$(Ca$_{1-x}$Sr$_x$)$_{0.33}$MnO$_3$ Compounds 35
 5.1.1 Structural Properties 35
 5.1.2 Electrical Properties and Magnetoresistance 42
 5.1.3 Magnetic Properties 47
5.2 Nanocrystalline La$_{0.67}$(Ca$_{1-x}$Sr$_x$)$_{0.33}$MnO$_3$ Compounds 49
 5.2.1 Structural Properties 49
 5.2.2 Electrical Properties and Magnetoresistance 56
 5.2.3 Magnetic Properties 62
5.3 Comparison of Polycrystalline and Nanocrystalline La$_{0.67}$(Ca$_{1-x}$Sr$_x$)$_{0.33}$MnO$_3$ Compounds 63
 5.3.1 Structural Properties 63
 5.3.2 Electrical Properties and Magnetoresistance 63
 5.3.3 Magnetic Properties 66
CONCLUSION AND FUTURE RESEARCH

6.1 Conclusion 68
6.2 Future Research 69

REFERENCES 71
APPENDICES 76
BIO DATA OF STUDENT 93
LIST OF PUBLICATIONS 94
LIST OF TABLES

Table	Page
4.1 | Stoichiometric amounts of the raw materials for La$_{0.67}$(Ca$_{1-x}$Sr$_x$)$_{0.33}$MnO$_3$ synthesized by solid state reaction 26
4.2 | Stoichiometric amounts of the raw materials for La$_{0.67}$(Ca$_{1-x}$Sr$_x$)$_{0.33}$MnO$_3$ synthesized by sol-gel based polymerizable complex method 29
5.1 | Structural properties of polycrystalline La$_{0.67}$(Ca$_{1-x}$Sr$_x$)$_{0.33}$MnO$_3$ compounds obtained from XRD Rietveld refinement and VPSEM 37
5.2 | Elemental ratio for polycrystalline La$_{0.67}$(Ca$_{1-x}$Sr$_x$)$_{0.33}$MnO$_3$ compounds at different value of x 41
5.3 | Magnetization, coercivity and retentivity of polycrystalline La$_{0.67}$(Ca$_{1-x}$Sr$_x$)$_{0.33}$MnO$_3$ compounds 48
5.4 | Structural properties of nanocrystalline La$_{0.67}$(Ca$_{1-x}$Sr$_x$)$_{0.33}$MnO$_3$ compounds obtained from XRD Rietveld refinement and FESEM 51
5.5 | Elemental ratio for nanocrystalline La$_{0.67}$(Ca$_{1-x}$Sr$_x$)$_{0.33}$MnO$_3$ compounds at different value of x 52
5.6 | Magnetization, coercivity and retentivity of nanocrystalline La$_{0.67}$(Ca$_{1-x}$Sr$_x$)$_{0.33}$MnO$_3$ compounds 62
B.1 | The crystallite sizes for nanocrystalline La$_{0.67}$Ca$_{0.33}$MnO$_3$ with different Ca/Mi ratio 78
C.1 | The crystallite size for nanocrystalline La$_{0.67}$Ca$_{0.33}$MnO$_3$ calcined at different temperature 79
E.1 | Weight percent of elements for polycrystalline La$_{0.67}$(Ca$_{1-x}$Sr$_x$)$_{0.33}$MnO$_3$ compound at $x = 0.0$ 81
E.2 | Weight percent of elements for polycrystalline La$_{0.67}$(Ca$_{1-x}$Sr$_x$)$_{0.33}$MnO$_3$ compound at $x = 0.2$ 82
E.3 | Weight percent of elements for polycrystalline La$_{0.67}$(Ca$_{1-x}$Sr$_x$)$_{0.33}$MnO$_3$ compound at $x = 0.4$ 83
E.4 | Weight percent of elements for polycrystalline La$_{0.67}$(Ca$_{1-x}$Sr$_x$)$_{0.33}$MnO$_3$ compound at $x = 0.6$ 84
E.5 Weight percent of elements for polycrystalline La$_{0.67}$(Ca$_{1-x}$Sr$_x$)$_{0.33}$MnO$_3$ compound at $x = 0.8$

E.6 Weight percent of elements for polycrystalline La$_{0.67}$(Ca$_{1-x}$Sr$_x$)$_{0.33}$MnO$_3$ compound at $x = 1.0$

F.1 Weight percent of elements for nanocrystalline La$_{0.67}$(Ca$_{1-x}$Sr$_x$)$_{0.33}$MnO$_3$ compound at $x = 0.0$

F.2 Weight percent of elements for nanocrystalline La$_{0.67}$(Ca$_{1-x}$Sr$_x$)$_{0.33}$MnO$_3$ compound at $x = 0.2$

F.3 Weight percent of elements for nanocrystalline La$_{0.67}$(Ca$_{1-x}$Sr$_x$)$_{0.33}$MnO$_3$ compound at $x = 0.4$

F.4 Weight percent of elements for nanocrystalline La$_{0.67}$(Ca$_{1-x}$Sr$_x$)$_{0.33}$MnO$_3$ compound at $x = 0.6$

F.5 Weight percent of elements for nanocrystalline La$_{0.67}$(Ca$_{1-x}$Sr$_x$)$_{0.33}$MnO$_3$ compound at $x = 0.8$

F.6 Weight percent of elements for nanocrystalline La$_{0.67}$(Ca$_{1-x}$Sr$_x$)$_{0.33}$MnO$_3$ compound at $x = 1.0$
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Possible magnetic structures of Mn oxides in the perovskite structure</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Phase diagram of the magnetic and electrical properties of La_{1-x}Ca_{x}MnO₃ in ranges of 0<x<1</td>
<td>8</td>
</tr>
<tr>
<td>2.3</td>
<td>Phase diagram of the electrical and magnetic properties of La_{1-x}Sr_{x}MnO₃</td>
<td>10</td>
</tr>
<tr>
<td>2.4</td>
<td>Phase diagram of temperature as a function of tolerance factor for A_{0.7}A'_{0.3}MnO₃ system, where A is a trivalent rare earth cation and A' is a divalent alkali earth cation</td>
<td>15</td>
</tr>
<tr>
<td>3.1</td>
<td>Ideal cubic perovskite structure in different views</td>
<td>17</td>
</tr>
<tr>
<td>3.2</td>
<td>Distorted perovskites structures of manganites: orthorhombic (left) and rhombohedral (right).</td>
<td>18</td>
</tr>
<tr>
<td>3.3</td>
<td>Tilting of MnO₆ octahedra in perovskite distortion</td>
<td>18</td>
</tr>
<tr>
<td>3.4</td>
<td>Five-fold degeneracy of d-orbitals</td>
<td>20</td>
</tr>
<tr>
<td>3.5</td>
<td>Effect of ligands approaching to a metal ion on the energies of e_g- and t_{2g} orbitals</td>
<td>20</td>
</tr>
<tr>
<td>3.6</td>
<td>Energy levels of 3d-orbitals in Mn^{3+} ions. The degeneracies of 3d-orbitals are lifted by crystal field splitting and Jahn-Teller distortion</td>
<td>21</td>
</tr>
<tr>
<td>3.7</td>
<td>Schematic of Zener’s double exchange interaction</td>
<td>22</td>
</tr>
<tr>
<td>3.8</td>
<td>Schematic of Jahn-Teller polaran in an ionic crystal material</td>
<td>23</td>
</tr>
<tr>
<td>4.1</td>
<td>Main procedures of the solid state reaction</td>
<td>26</td>
</tr>
<tr>
<td>4.2</td>
<td>Main procedures of the sol-gel based polymerizable complex method</td>
<td>28</td>
</tr>
<tr>
<td>4.3</td>
<td>Schematic diagram of VSM</td>
<td>33</td>
</tr>
<tr>
<td>5.1</td>
<td>XRD patterns scanned at room temperature for polycrystalline La_{0.67}(Ca_{1-x}Sr_{x})_{0.33}MnO₃ compounds with different composition x</td>
<td>36</td>
</tr>
</tbody>
</table>
5.2 Enlarged view of the diffraction pattern in the ranges of 32.25° - 33.5° for polycrystalline La$_{0.67}$(Ca$_{1-x}$Sr$_x$)$_{0.33}$MnO$_3$ compounds with different composition x

5.3 VPSEM images for polycrystalline La$_{0.67}$(Ca$_{1-x}$Sr$_x$)$_{0.33}$MnO$_3$ compound with different value of x

5.4 Temperature dependence of resistivity at different applied magnetic field for polycrystalline La$_{0.67}$(Ca$_{1-x}$Sr$_x$)$_{0.33}$MnO$_3$ compounds and the corresponding MR at 1 T

5.5 Field dependence of MR for polycrystalline La$_{0.67}$(Ca$_{1-x}$Sr$_x$)$_{0.33}$MnO$_3$ compounds at room temperature (300 K). Inset presents the curve of MR at 1 T as a function of x value at room temperature

5.6 Field dependence of MR for polycrystalline La$_{0.67}$(Ca$_{0.6}$Sr$_{0.4}$)$_{0.33}$MnO$_3$ at different temperature

5.7 Field dependence of magnetization at room temperature for polycrystalline La$_{0.67}$(Ca$_{1-x}$Sr$_x$)$_{0.33}$MnO$_3$ compounds

5.8 XRD patterns scanned at room temperature for nanocrystalline La$_{0.67}$(Ca$_{1-x}$Sr$_x$)$_{0.33}$MnO$_3$ compounds with different composition x

5.9 Enlarged observation of the diffraction pattern in the ranges of 32.25° - 33.5° for nanocrystalline La$_{0.67}$(Ca$_{1-x}$Sr$_x$)$_{0.33}$MnO$_3$ compounds with different composition

5.10 The FESEM images for nanocrystalline La$_{0.67}$(Ca$_{1-x}$Sr$_x$)$_{0.33}$MnO$_3$ compound with different value of x

5.11 Temperature dependence of resistivity at different applied magnetic field for nanocrystalline La$_{0.67}$(Ca$_{1-x}$Sr$_x$)$_{0.33}$MnO$_3$ compounds and the corresponding MR at 1 T

5.12 Field dependence of MR for nanocrystalline La$_{0.67}$(Ca$_{1-x}$Sr$_x$)$_{0.33}$MnO$_3$ compounds at room temperature (300 K). Inset presents the curve of MR at 1 T as a function of x value at room temperature

5.13 Field dependence of MR for nanocrystalline La$_{0.67}$Sr$_{0.33}$MnO$_3$ at different temperature

5.14 Field dependence of magnetization at room temperature for nanocrystalline La$_{0.67}$(Ca$_{1-x}$Sr$_x$)$_{0.33}$MnO$_3$ compounds

xvii
5.15 Variation of T_C and T_p for polycrystalline $\text{La}_{0.67}(\text{Ca}_{1-x}\text{Sr}_x)_0.33\text{MnO}_3$ and T_p for nanocrystalline $\text{La}_{0.67}(\text{Ca}_{1-x}\text{Sr}_x)_0.33\text{MnO}_3$ as a function of x value

5.16 Temperature dependence of MR for polycrystalline and nanocrystalline $\text{La}_{0.67}\text{Ca}_{0.33}\text{MnO}_3$

5.17 Magnetization at 1 T as a function of x value for polycrystalline and nanocrystalline $\text{La}_{0.67}(\text{Ca}_{1-x}\text{Sr}_x)_0.33\text{MnO}_3$ at room temperature. Inset shows the hysteresis curves for polycrystalline and nanocrystalline $\text{La}_{0.67}\text{Sr}_{0.33}\text{MnO}_3$ at room temperature

5.18 Variation of coercivity and retentivity as a function of x value for polycrystalline and nanocrystalline $\text{La}_{0.67}(\text{Ca}_{1-x}\text{Sr}_x)_0.33\text{MnO}_3$ at room temperature

A.1 XRD patterns of the polycrystalline $\text{La}_{0.67}\text{Ca}_{0.33}\text{MnO}_3$ with different sintering temperature

A.2 SEM images of polycrystalline $\text{La}_{0.67}(\text{Ca}_{1-x}\text{Sr}_x)_0.33\text{MnO}_3$ sintered at (a) 1000 °C, (b) 1100 °C, (c) 1200 °C and (d) 1300 °C

B.1 XRD patterns for nanocrystalline $\text{La}_{0.67}\text{Ca}_{0.33}\text{MnO}_3$ with different Ca/Mn ratio. The samples were calcined at 600 °C

C.1 XRD patterns for nanocrystalline $\text{La}_{0.67}\text{Ca}_{0.33}\text{MnO}_3$ with different calcination temperature

D.1 Measurement of grain sizes for $\text{La}_{0.67}\text{Sr}_{0.33}\text{MnO}_3$ compound by using VIS-PRP software

E.1 Scanning of EDX in spot and area for polycrystalline $\text{La}_{0.67}(\text{Ca}_{1-x}\text{Sr}_x)_0.33\text{MnO}_3$ compound at $x = 0.0$

E.2 Scanning of EDX in spot and area for polycrystalline $\text{La}_{0.67}(\text{Ca}_{1-x}\text{Sr}_x)_0.33\text{MnO}_3$ compound at $x = 0.2$

E.3 Scanning of EDX in spot and area for polycrystalline $\text{La}_{0.67}(\text{Ca}_{1-x}\text{Sr}_x)_0.33\text{MnO}_3$ compound at $x = 0.4$

E.4 Scanning of EDX in spot and area for polycrystalline $\text{La}_{0.67}(\text{Ca}_{1-x}\text{Sr}_x)_0.33\text{MnO}_3$ compound at $x = 0.6$

E.5 Scanning of EDX in spot and area for polycrystalline $\text{La}_{0.67}(\text{Ca}_{1-x}\text{Sr}_x)_0.33\text{MnO}_3$ compound at $x = 0.8$
E.6 Scanning of EDX in spot and area for polycrystalline \(\text{La}_{0.67}\text{(Ca}_{1-x}\text{Sr}_x)_{0.33}\text{MnO}_3 \) compound at \(x = 1.0 \)

F.1 Scanning of EDX in spot and area for nanocrystalline \(\text{La}_{0.67}\text{(Ca}_{1-x}\text{Sr}_x)_{0.33}\text{MnO}_3 \) compound at \(x = 0.0 \)

F.2 Scanning of EDX in spot and area for nanocrystalline \(\text{La}_{0.67}\text{(Ca}_{1-x}\text{Sr}_x)_{0.33}\text{MnO}_3 \) compound at \(x = 0.2 \)

F.3 Scanning of EDX in spot and area for nanocrystalline \(\text{La}_{0.67}\text{(Ca}_{1-x}\text{Sr}_x)_{0.33}\text{MnO}_3 \) compound at \(x = 0.4 \)

F.4 Scanning of EDX in spot and area for nanocrystalline \(\text{La}_{0.67}\text{(Ca}_{1-x}\text{Sr}_x)_{0.33}\text{MnO}_3 \) compound at \(x = 0.6 \)

F.5 Scanning of EDX in spot and area for nanocrystalline \(\text{La}_{0.67}\text{(Ca}_{1-x}\text{Sr}_x)_{0.33}\text{MnO}_3 \) compound at \(x = 0.8 \)

F.6 Scanning of EDX in spot and area for nanocrystalline \(\text{La}_{0.67}\text{(Ca}_{1-x}\text{Sr}_x)_{0.33}\text{MnO}_3 \) compound at \(x = 1.0 \)
LIST OF ABBREVIATIONS AND SYMBOLS

ABS Anti-Lock Brake System
AF Antiferromagnetic
CA Citric Acid
CAF Canted Antiferromagnetic
CMR Colossal Magnetoresistance
CNI Spin-Canted Insulator
CO Charge/Orbital Ordering
DTA Differential Thermal Analysis
EDX Energy-Dispersive X-Ray Spectroscopy
EG Ethylene Glycol
FESEM Field Emission Scanning Electron Microscope
FI or FMI Ferromagnetic Insulator
FM or FMM Ferromagnetic Metal
GMR Giant Magnetoresistance
LFMR Low Field Magnetoresistance
MI Metal Ion
MR Magnetoresistance
MRAM Magnetoresistive Random Access Memory
PI or PMI Paramagnetic Insulator
PM Paramagnetic Metal
SEM Scanning Electron Microscope
TGA Thermogravimetric Analysis
VPSEM Variable Pressure Scanning Electron Microscope
VSM Vibrating Sample Magnetometer
XRD X-Ray Diffraction
<br'A'> Average A-site ionic radius
\(\rho \) Resistivity
\(G \) Correction Factor
\(V \) Voltage
\(V \) Unit Cell Volume
\(T_C \) Ferromagnetic-Paramagnetic Transition Temperature or Curie Temperature
\(T_p \) Metal-Insulator Transition Temperature
\(T_N \) Néel Temperature
\(I \) Current
\(n \) Integer Number
\(\lambda \) wavelength of X-Ray
\(d_{hkl} \) Interplaner Distance of (hkl) Planes
\(\theta \) Angle between Incident Ray and (hkl) Plane
\(t \) Thickness of a Slice
\(T_2 \) Thickness Factor
\(F(t,c) \) Additional Correction Factor depending on both thickness and contour
\(C \) Contour Factor
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>emf</td>
<td>Electromotive Force</td>
</tr>
<tr>
<td>N</td>
<td>Number of Wire turns</td>
</tr>
<tr>
<td>s</td>
<td>Time</td>
</tr>
<tr>
<td>B</td>
<td>Magnetic Field</td>
</tr>
<tr>
<td>A</td>
<td>Coil Turn Area</td>
</tr>
<tr>
<td>θ</td>
<td>Angle between B Field and the Direction Normal to the Coil Surface</td>
</tr>
<tr>
<td>r_A</td>
<td>Ionic Radius of A-site Ion</td>
</tr>
<tr>
<td>r_B</td>
<td>Ionic Radius of B-site Ion</td>
</tr>
<tr>
<td>r_O</td>
<td>Ionic Radius of Oxygen Ion</td>
</tr>
<tr>
<td>r_{Mn}</td>
<td>Ionic Radius of Manganese Ion</td>
</tr>
<tr>
<td>d_{A-O}</td>
<td>Distance between A-Site Ion and Oxygen Ion</td>
</tr>
<tr>
<td>d_{Mn-O}</td>
<td>Distance between Manganese Ion and Oxygen Ion</td>
</tr>
<tr>
<td>t_e</td>
<td>Effective Transfer Integral</td>
</tr>
<tr>
<td>t_0</td>
<td>Normal Transfer Integral</td>
</tr>
<tr>
<td>θ_s</td>
<td>Angle between the Two Spin Direction</td>
</tr>
<tr>
<td>f</td>
<td>Goldschmidt Tolerance Factor</td>
</tr>
<tr>
<td>K</td>
<td>Constant Depending on the Grain Shape</td>
</tr>
<tr>
<td>β_{Size}</td>
<td>Full Width at Half Maxima of XRD Peak</td>
</tr>
<tr>
<td>R_H</td>
<td>Resistance or Resistivity in the Present of External Magnetic Field</td>
</tr>
<tr>
<td>R_0</td>
<td>Resistance or Resistivity in the Absence of External Magnetic Field</td>
</tr>
</tbody>
</table>
CHAPTER 1
INTRODUCTION

1.1 Introduction
The present high technology era strongly relies on the development of the smart and smaller magnetic material for various applications particularly in the computer industries. The discovery of the magnetoresistance (MR) effect which is defined as the ability of resistivity changed upon external magnetic field, have boosted up the development of magnetic sensor and read head sensor in data storage and electronic devices by the application of MR. One of the current technological challenges is to produce a smaller device with high sensitivity. Thus, studying the MR effect and looking for the highest MR operated at room temperature are required for next-generation devices.

During recent decades, the manganites systems have received tremendous attention in consequence of the discovered extraordinary large negative MR near the metal-insulator transition temperature (T_p) and the ferro-paramagnetic transitions temperature (T_C), so-called ‘Colossal’ Magnetoresistance (CMR). The MR effect of the CMR materials is in the order of magnitude larger than a typical giant magnetoresistance (GMR) that is currently used in the magnetic device. Thus, the CMR manganites with enormous MR have greater sensitivity to the magnetic field, making it possible to be applied in various technologies such as magnetic sensor and the read head sensor for hard disk drive. Researchers believe that the CMR manganites are promising to be the new generation of the magnetic sensor especially the read head sensor in the hard disk drive.

A lot of researches have devoted much effort in the study of CMR properties in manganites systems, in order to have a deeper understanding of the physical origin of the CMR properties. Moreover, researchers are looking for the optimization of the CMR properties at room temperature and lower magnetic field in order to achieve their applicability to hand on devices. The ferromagnetic coupling between Mn$^{3+}$ and Mn$^{4+}$ plays an important role in governing the CMR properties. The mechanism is explained by the double exchange interaction where the e_g electrons from Mn$^{3+}$ can hop to Mn$^{4+}$ when their spins are parallel. The hopping amplitude of e_g electron via double exchange is strongly dependent on the Mn-O-Mn bond angle and Mn-O bond length in the perovskite structure (Coey et al., 1999). Radaelli et al. (1997) showed that the magnetic and electrical properties are sensitive to the average A-site ionic radius that directly influences the internal atomic structure and the electronic band width. Hence, it is possible to optimize the CMR properties by manipulating the atomic structure of perovskite manganites. Besides that, researchers have found an extrinsic MR effect at a moderately low magnetic field (<0.1T), which is contributed by the grain boundary (Hwang et al., 1996). This brings out the necessity to study the microstructure dependence of the MR properties of manganites as well.

1.2 CMR Manganites
The general formula of manganites compound is $R_{1-x}A_xMnO_3$ where R is a trivalent rare earth ion and A is a divalent alkaline earth ion. Without hole doping ($x = 0$), the parent manganites compound is an antiferromagnetic insulator. By the partial substitution of
trivalent rare earth ions with divalent alkali earth ions, this leads to the co-existing of mix-valence Mn$^{3+}$ and Mn$^{4+}$ in the manganites (Jonker and Santen, 1950). Around $x = 0.33$, the mix-valence manganites exhibit a transition from a high-temperature paramagnetic insulator to a low-temperature ferromagnetic metal. At this transition point, an enormous change in resistivity upon external applied magnetic field is observed and attributing to the CMR effect (Jin et al., 1994; Helmolt et al., 1993).

MR is the relative change in the electrical resistance or resistivity of a material upon an external magnetic field. The MR effect is defined as the percentage of the fractional change to the zero field resistance,

$$\text{MR} = \frac{\Delta R}{R_0} \times 100\% = \left(\frac{R_H - R_0}{R_0}\right) \times 100\%, \quad (1.1)$$

where R_0 and R_H are the resistance or resistivity in the absence and the presence of external magnetic field respectively. Recent investigations have found that mix-valence manganites tend towards 100% of MR value. Thus, alternative definition of MR effect is expressed in MR ratio,

$$\text{MR ratio} = \left(\frac{R_H - R_0}{R_H}\right) \times 100\%. \quad (1.2)$$

This definition gives a better way to show how many orders of resistance magnitude can be decreased by an applied magnetic field. For example, Jin et al. (1994) observed a large negative MR as large as 99.92% in La$_{0.67}$Ca$_{0.33}$MnO$_3$ thin film at temperature 77 K and 6 T magnetic field. Alternatively, expression in term of MR ratio in this case is 127000%, which is a truly “colossal” MR factor (Dagatto et al., 2001; Raveau et al., 1998). Thus, the term “colossal” was coined because of its thousand-fold of MR ratio observed in manganites oxide.

The CMR is due to the suppression of spin fluctuations by aligning the spin parallel upon an external magnetic field which favors the double exchange interaction, consequently enhancing the mobility of charge carries. CMR effect is only observed in the appropriate doping of parent compound where the mix-valence state is present (Mn$^{3+}$ and Mn$^{4+}$ coexists in the manganites oxide). In this mix-valence state, the itinerant electrons can hop to the neighboring Mn$^{4+}$ ion via the double exchange mechanism. Generally, the highest T_C was found in doped manganites at doping level $x = 0.33$. The most significant MR effect is observed at the vicinity of T_C.

1.3 Potential Application
The CMR manganites material has a large potential for the application based on their various physical and chemical properties. For examples: magnetoresistive read head sensor in the magnetic recording devices, magnetoresistive random access memory and speed control sensor in the anti-lock brake system.
1.3.1 Magnetoresistive Read Head Sensor in Magnetic Recording Devices
CMR manganite materials with large MR is a very good magnetic sensor that can be used as read head sensor for the magnetic recording device. In hard disk, the read head detects the change in the direction of magnetization (represents the binary data bits) emanating from the magnetic media and then changes its resistivity correspondingly. The MR effect in CMR materials are in the order of magnitude larger than the typical GMR that is currently used in magnetic device. Hence, this material has a greater sensitivity to the magnetic field and making it possible to detect smaller recorded data bit (White et al., 1994).

1.3.2 Magnetoresistive Random Access Memory (MRAM)
MRAM is a non-volatile random-access memory that can retain information for a long period of time even in the absence of electrical power. A data bit is stored in a spin valve which is composed of two ferromagnetic plates separated by a thin insulating layer. Both the ferromagnetic plates hold a magnetic field where one of the two plates is permanently magnetized in a particular orientation and the other plate changes its magnetic field according to the external field to store memory. Both data bits 1 and 0 are represented by the parallel and antiparallel moment in the spin valve and can be determined by measuring the resistance of the spin valve. Comparing with the conventional RAM chip technologies, MRAM records data in the form of magnetic moment instead of electric charge. This makes MRAM has an advantage in retaining their data over time and not necessary to refresh their contents. Hence, MRAM is expected to have much lower power consumption compared to the conventional RAM (Zhuang et al., 2002; Katti, 2000).

1.3.3 Speed Control Sensor in Anti-Lock Brake System (ABS)
The CMR materials can be used as a speed control sensor to detect the rotation and speed of the steel disc attached to the automobiles wheel and then transferring the information to a computer for monitoring the rotational speed of each wheel. If the system detects a wheel rotating significantly slower than the others, it reduces the braking pressure at the detected wheel. Conversely, if the system detects a wheel rotating faster than the others, it increases the braking pressure at the detected wheel. This condition of releasing and increasing on the braking pressure allows the wheels on the automobile keep friction contact with the road surface while braking. Hence, it is able to avoid the automobiles from uncontrolled skidding and to decrease the automobiles braking distance (Aly et al., 2011).

1.4 Problem Statement
The CMR effect in the manganites is much higher than the current employing magnetic multi-layer system, i.e. GMR. Hence, it is prospected to increase the sensitivity of the magnetic sensor and to reduce the operation power required. However, the conventional magnetic sensor requires material which is able to operate at room temperature and low magnetic field. Commercialization of the CMR is discouraged because of
Significant CMR in manganites appears only in a high magnetic field of several Tesla range, which is considered too large for the potential use in the magnetic recording (Dagotto et al., 2001) and

- The CMR effect is rather low at room temperature.
 - Significant CMR effect is confined to a quite narrow temperature range around the T_C. The CMR effect is relatively low beyond T_C (Tokura and Tomioka, 1999).
 - CMR effect appears significant only when its T_C temperature is at low temperature. High T_C temperature will sacrifice the CMR effect (Dagotto et al., 2001).

Hence, enhancing the CMR properties of the manganite materials for utilizing in room temperature and low magnetic field will be the final goal for researchers.

1.5 Scope and Objectives of the Research
This project mainly studies the structural, electrical, magnetic and CMR properties on La$_{0.67}$(Ca$_{1-x}$Sr$_x$)$_{0.33}$MnO$_3$ manganites compounds with the x value ranging from 0 to 1.0. Samples with two different crystalline forms were synthesized i.e. polycrystalline bulk and nanocrystalline manganites. The polycrystalline bulk manganites were synthesized via the solid state reaction which is the most common method in synthesizing various kind of ceramic. Nanocrystalline manganites were synthesized via the sol-gel based polymerizable complex method in order to confine the crystallite size down to nano-scale. A systematic characterization was carried out upon the polycrystalline bulk and the nanocrystalline samples. Structural properties of these samples were investigated by X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Energy-Dispersive X-Ray Spectroscopy (EDX). While the MR effect in the manganite samples was measured by employing the four point probe method with applied magnetic field range of 0 T to 1 T. The magnetization of the samples was investigated by Vibrating Sample Magnetometer (VSM) at room temperature and applied magnetic field ranges from 0 kG to 10 kG. Lastly, the experiments data obtained were analyzed and the features of both polycrystalline and nanocrystalline manganites samples were studied and discussed. Hence, the objectives of this research are:

I. To characterize polycrystalline and nanocrystalline La$_{0.67}$(Ca$_{1-x}$Sr$_x$)$_{0.33}$MnO$_3$ samples synthesized by the solid state reaction and sol-gel based polymerizable complex method respectively.

II. To study the effects of Strontium ions substitution at Calcium site by investigating and comparing the structural, electrical and magnetic properties of the polycrystalline and nanocrystalline samples.

III. To find the optimum composition of both polycrystalline and nanocrystalline La$_{0.67}$(Ca$_{1-x}$Sr$_x$)$_{0.33}$MnO$_3$ for obtaining the highest MR effect at room temperature.
1.6 Overview of the Thesis
In the first chapter, an introduction concerning about this project is presented. Problem statements regarding to the research of CMR materials are mentioned. The scope of project and the objectives are presented. Lastly, the overview of this thesis is given.

In chapter 2, the histories of the CMR material will be presented. A review on the existing literatures related to the physical properties of CMR manganites is also given.

In chapter 3, some theories related to the CMR material will be presented. It is important to understand the theories behind the CMR phenomenon so that the experimental results can be well interpreted.

In chapter 4, the implemented methodology, the synthesis method adopted in this project will be discussed in details. Systematic characterizations are carried out. The equipments involved in this project will be introduced and the experimental settings will also be provided in chapter 4.

In chapter 5, the experimental data will be presented in the form of graphs, pictures or tables to give a clear and facilitated observation. The structural, magnetic and electrical properties of the CMR manganite samples will be discussed with respect to the analyzed graph, picture and table.

Finally, in chapter 6, the conclusion of this project will be presented. The future research will also be suggested in this chapter.
REFERENCES

71

Mera, J., Mera, M., Cordoba, C., Paredes, O. and Moran, O. (2013). La$_{0.7}$Sr$_{0.3}$MnO$_3$ Nanoparticles Synthesized Via the (Pechini) Polymeric Precursor Method. *Journal of Superconductivity and Novel Magnetism* 26: 2553-2556.

