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Abstract of thesis presented to the Senate of Universiti Putra Malaysia  
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EFFECTS OF STRONTIUM SUBSTITUTION ON STRUCTURAL, 
ELECTRICAL AND MAGNETIC PROPERTIES OF POLYCRYSTALLINE 

AND NANOCRYSTALLINE La0.67(Ca1-xSrx)0.33MnO3 

By

CHANG SEN CHOUNG 

April 2014

Chairman: Abdul Halim Shaari, PhD 
Faculty: Science 

This research is aimed at studying the influences of Sr ions substitution on the structural, 
electrical and magnetic properties of polycrystalline and nanocrystalline La0.67(Ca1-

xSrx)0.33MnO3. The differences between polycrystalline and nanocrystalline samples 
were discussed.  

The polycrystalline and the nanocrystalline La0.67(Ca1-xSrx)0.33MnO3 for 0 ≤ x ≤1.0 were 
synthesized via the solid-state reaction and the sol gel based polymerizable complex 
method respectively. The X-Ray Diffraction (XRD) measurements were carried out to 
determine the crystal structure properties. The XRD spectrums revealed that the 
structural transition from orthorhombic structure to rhombohedra structure took place 
when the Ca ions were gradually substituted by the Sr ions in both polycrystalline and 
nanocrystalline samples. The lattice parameters, Mn-O bond length and Mn-O-Mn bond 
angle were obtained by the Rietveld refinement method. The microstructures for both 
polycrystalline and nanocrystalline samples were obtained from the Scanning Electron 
Microscope (SEM). The grain sizes were found in the ranges of 2.83 µm - 8.78 µm and 
35.72 nm - 45.38 nm for polycrystalline samples and nanocrystalline samples 
respectively. 

The temperature dependences of resistivity and magnetoresistance (MR) were measured 
by the four point probe method at variable magnetic field range of 0 T - 1 T for both 
polycrystalline and nanocrystalline samples. The metal-insulator transition temperature 
(Tp) for polycrystalline samples increased with the substitution of Sr ions. However, the 
nanocrystalline samples with high surface to volume ratio showed that its Tp varied with 
the grain size. The intrinsic MR around the Tp and the extrinsic MR at T ≤ Tp were 
observed in polycrystalline samples. The substitution of Sr ions shifted the intrinsic MR 
of polycrystalline samples towards higher temperature but lowering its magnitude 
whereas the intrinsic MR of nanocrystalline samples were suppressed and left behind the 
extrinsic MR at low temperature. The electrical transport properties for both 
polycrystalline and nanocrystalline samples were explained by the double exchange 
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interaction within the grain and the spin-polarized tunneling mechanism across the grain 
boundaries. The highest MR values were found to be -26.79% for polycrystalline x = 0.0 
at 244 K and -23.37% for nanocrystalline x = 0.0 at 80 K. At room temperature, the 
highest MR for polycrystalline samples and nanocrystalline samples were found to be -
8.45% at x = 0.4 and -4.19% at x = 1.0 respectively. 

The field dependences of magnetization for both polycrystalline and nanocrystalline 
samples were carried out by the Vibrating Sample Magnetometer (VSM). The 
magnetization increased with the Sr ion substitution for the polycrystalline and 
nanocrystalline samples due to the increase of the Mn-O-Mn bond angle. The 
nanocrystalline samples have lower magnetization than that of the polycrystalline 
samples due to the loss of long-range ferromagnetic ordering in the nanocrystalline 
samples. 
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Abstrak tesis yang dikemukakan kapade Senat Universiti Putra Malaysia 
sebagai memenuhi keperluan untuk ijazah Sarjana Sains 

KESAN PENGGANTIAN STRONTIUM PADA SIFAT STRUKTUR, ELEKTRIK 
DAN MAGNET BAGI POLIHABLUR DAN NANOHABLUR La0.67(Ca1-

xSrx)0.33MnO3

Oleh

CHANG SEN CHOUNG 

April 2014

Pengerusi: Abdul Halim Shaari, PhD 
Fakulti: Sains 

Tujuan penyelidikan ini adalah untuk mengaji kesan penggantian ion Sr pada sifat 
struktur, magnet and elektrik bagi polihablur and nanohablur La0.67(Ca1-xSrx)0.33MnO3.
Perbezaan antara polihablur dan nanohablur bagi sampel La0.67(Ca1-xSrx)0.33MnO3 telah 
dibincang dalam tesis ini. 

Polihablur dan nanohablur bagi La0.67(Ca1-xSrx)0.33MnO3 dengan 0 ≤ x ≤ 1.0 telah 
disintesis melalui kaedah tindak balas keadaan pepejal and kaedah “sol-gel” melalui 
pempolimeran kompleks masing-masing. Pengukuran belauan sinar-x (XRD) telah 
dilaksanakan untuk menentukan sifat struktur hablur. Spektrum XRD menunjukkan 
bahawa perubahan struktur daripada struktur orthrombik kepada struktur rombohedra 
berlaku apabila ion Ca diganti dengan ion Sr secara beransur-ansur bagi sampel 
polihablur dan nanohablur. Parameter kekisi, panjang ikatan Mn-O dan sudut ikatan Mn-
O-Mn diperolehi daripada kaedah Rietveld. Mikrostruktur bagi sampel polihablur dan 
nanohablur diperolehi daripada mikroskop imbasan elektron (SEM).  Saiz butiran 
didapati dalam lingkungan 2.83 µm - 8.78 µm dan 35.72 nm - 45.38 nm bagi sampel 
polihablur dan sampel nanohablur masing-masing. 

Kerintangan elektrik dan magnetorintangan (MR) melawan suhu bagi sampel polihablur 
dan nanohablur telah diukur dengan menggunakan kaedah penduga empat titik pada 
medan magnet dalam lingkungan 0 T - 1 T. Suhu peralihan logam-penebat (Tp) bagi 
sampel polihablur didapati meningkat dengan menambahkan penggantian ion Sr. Walau 
bagaimanapun, sampel nanohablur yang mempunyai nisbah permukaan terhadap isipadu 
yang tinggi menunjukkan bahawa Tp berubah dengan saiz butiran. MR intrisik pada 
sekeliling Tp dan MR ekstrinsik pada T ≤ Tp telah diperhati dalam sampel polihablur. 
Penggantian ion Sr menyebabkan MR intrinsik bagi sampel polihablur beralih ke suhu 
tinggi tetapi magnitudnya menurun. Manakala, MR intrinsik bagi sampel nanohablur 
didapati ditindaskan dan hanya MR ekstrinsik yang dikekalkan pada suhu rendah. Sifat 
pergerakan elektrik bagi sampel polihablur dan nanohablur boleh dijelaskan dengan 
tindakbalas tukarganti gandaan dalam butiran dan mekanisme penerowongan spin-
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terkutub melintasi sempadan butiran. Nilai MR yang tertinggi adalah -26.79% untuk 
polihablur x = 0.0 pada suhu 244 K dan -23.37% untuk nanohablur x = 0.0 pada suhu 80 
K. Pada suhu bilik, nilai MR yang tertinggi untuk sampel polihablur dan sampel 
nanohablur adalah -8.45% pada x = 0.4 dan -4.19% pada x = 1.0 masing-masing. 

Pemagnetan terhadap medan magnet telah dijalankan dengan menggunakan 
magnetometer getaran sampel (VSM). Pemagnetan bagi sampel polihablur dan 
nanohablur didapati meningkat dengan penambahkan penggantian ion Sr kerana sudut 
ikatan Mn-O-Mn meningkat. Nilai pemagnetan bagi sampel nanohablur didapati lebih 
rendah daripada nilai pemagnetan bagi sampel polihablur disebabkan oleh kehilangan 
susunan feromagnet berjulat panjang dalam sampel nanohablur. 
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FI or FMI Ferromagnetic Insulator
FM or FMM Ferromagnetic Metal
GMR Giant Magnetoresistance
LFMR Low Field Magnetoresistance
MI Metal Ion
MR Magnetoresistance
MRAM Magnetoresistive Random Access Memory
PI or PMI Paramagnetic Insulator
PM Paramagnetic Metal
SEM Scanning Electron Microscope
TGA Thermogravimetric Analysis
VPSEM Variable Pressure Scanning Electron Microscope
VSM Vibrating Sample Magnetometer
XRD X-Ray Diffraction
<rA> Average A-site ionic radius
ρ Resistivity
G Correction Factor
V Voltage
V Unit Cell Volume
TC Ferromagnetic-Paramagnetic Transition Temperature or Curie 

Temperature
Tp Metal-Insulator Transition Temperature
TN Nell Temperature
I Current
n Integer Number
λ wavelength of X-Ray
dhkl Interplaner Distance of (hkl) Planes
θ Angle between Incident Ray and (hkl) Plane
t Thickness of a Slice
T2 Thickness Factor
F(t,c) Additional Correction Factor depending on both thickness and 

contour
C Contour Factor



© C
O

UPM

xxi 
 

emf Electromotive Force
N Number of Wire turns
s Time
B Magnetic Field
A Coil Turn Area
ϑ Angle between B Field and the Direction Normal to the Coil 

Surface
rA Ionic Radius of A-site Ion
rB Ionic Radius of B-site Ion
rO Ionic Radius of Oxygen Ion
rMn Ionic Radius of Manganese Ion
dA-O Distance between A-Site Ion and Oxygen Ion
dMn-O Distance between Manganese Ion and Oxygen Ion
te Effective Transfer Integral
t0 Normal Transfer Integral
θs Angle between the Two Spin Direction
f Goldschmidt Tolerance Factor
K Constant Depending on the Grain Shape
βSize Full Width at Half Maxima of XRD Peak
RH Resistance or Resistivity in the Present of External Magnetic Field
R0 Resistance or Resistivity in the Absence of External Magnetic Field
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 
The present high technology era strongly relies on the development of the smart and 
smaller magnetic material for various applications particularly in the computer industries. 
The discovery of the magnetoresistance (MR) effect which is defined as the ability of 
resistivity changed upon external magnetic field, have boosted up the development of 
magnetic sensor and read head sensor in data storage and electronic devices by the 
application of MR. One of the current technological challenges is to produce a smaller 
device with high sensitivity. Thus, studying the MR effect and looking for the highest 
MR operated at room temperature are required for next-generation devices.  

During recent decades, the manganites systems have received tremendous attention in 
consequence of the discovered extraordinary large negative MR near the metal-insulator 
transition temperature (Tp) and the ferro-paramagentic transitions temperature (TC), so-
called ‘Colossal’ Magnetoresistance (CMR). The MR effect of the CMR materials is in 
the order of magnitude larger than a typical giant magnetoresistance (GMR) that is 
currently used in the magnetic device. Thus, the CMR manganites with enormous MR 
have greater sensitivity to the magnetic field, making it possible to be applied in various 
technologies such as magnetic sensor and the read head sensor for hard disk drive. 
Researchers believe that the CMR manganites are promising to be the new generation of 
the magnetic sensor especially the read head sensor in the hard disk drive.  

A lot of researches have devoted much effort in the study of CMR properties in 
manganites systems, in order to have a deeper understanding of the physical origin of the 
CMR properties. Moreover, researchers are looking for the optimization of the CMR 
properties at room temperature and lower magnetic field in order to achieve their 
applicability to hand on devices. The ferromagnetic coupling between Mn3+ and Mn4+

plays an important role in governing the CMR properties. The mechanism is explained 
by the double exchange interaction where the eg electrons from Mn3+ can hop to Mn4+

when their spins are parallel. The hopping amplitude of eg electron via double exchange 
is strongly dependent on the Mn-O-Mn bond angle and Mn-O bond length in the 
perovskite structure (Coey et al., 1999). Radaelli et al. (1997) showed that the magnetic 
and electrical properties are sensitive to the average A-site ionic radius that directly 
influences the internal atomic structure and the electronic band width. Hence, it is 
possible to optimize the CMR properties by manipulating the atomic structure of 
perovskite manganites. Besides that, researchers have found an extrinsic MR effect at a 
moderately low magnetic field (<0.1T), which is contributed by the grain boundary 
(Hwang et al., 1996). This brings out the necessity to study the microstructure 
dependence of the MR properties of manganites as well.  

1.2 CMR Manganites 
The general formula of manganites compound is R1-xAxMnO3 where R is a trivalent rare 
earth ion and A is a divalent alkaline earth ion. Without hole doping (x = 0), the parent 
manganites compound is an antiferromagnetic insulator. By the partial substitution of 
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trivalent rare earth ions with divalent alkali earth ions, this leads to the co-existing of 
mix-valence Mn3+ and Mn4+ in the manganites (Jonker and Santen, 1950). Around x = 
0.33, the mix-valence manganites exhibit a transition from a high-temperature 
paramagnetic insulator to a low-temperature ferromagnetic metal. At this transition point, 
an enormous change in resistivity upon external applied magnetic field is observed and 
attributing to the CMR effect (Jin et al., 1994; Helmolt et al., 1993).  

MR is the relative change in the electrical resistance or resistivity of a material upon an 
external magnetic field. The MR effect is defined as the percentage of the fractional 
change to the zero field resistance,  

MR = 
0R
R�

× 100% = �
�

�
�
�

	 


0

0

R
RRH × 100%,       (1.1) 

where R0 and RH are the resistance or resistivity in the absence and the presence of 
external magnetic field respectively. Recent investigations have found that mix-valence 
manganites tend towards 100% of MR value. Thus, alternative definition of MR effect is 
expressed in MR ratio,  

MR ratio = �
�

�
�
�

	 


H

H

R
RR 0 × 100%.        (1.2) 

This definition gives a better way to show how many orders of resistance magnitude can 
be decreased by an applied magnetic field. For example, Jin et al. (1994) observed a 
large negative MR as large as 99.92% in La0.67Ca0.33MnO3 thin film at temperature 77 K
and 6 T magnetic field. Alternatively, expression in term of MR ratio in this case is 
127000%, which is a truly “colossal” MR factor (Dagatto et al., 2001; Raveau et al., 
1998). Thus, the term “colossal” was coined because of its thousand-fold of MR ratio 
observed in manganites oxide.  

The CMR is due to the suppression of spin fluctuations by aligning the spin parallel 
upon an external magnetic field which favors the double exchange interaction, 
consequently enhancing the mobility of charge carries. CMR effect is only observed in 
the appropriate doping of parent compound where the mix-valance state is present (Mn3+

and Mn4+ coexists in the manganites oxide). In this mix-valence state, the itinerant 
electrons can hop to the neighboring Mn4+ ion via the double exchange mechanism. 
Generally, the highest TC was found in doped manganites at doping level x = 0.33. The 
most significant MR effect is observed at the vicinity of TC.

1.3 Potential Application 
The CMR manganites material has a large potential for the application based on their 
various physical and chemical properties. For examples: magnetoresistive read head 
sensor in the magnetic recording devices, magnetoresistive random access memory and 
speed control sensor in the anti-lock brake system.  
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1.3.1 Magnetoresistive Read Head Sensor in Magnetic Recording Devices 
CMR manganite materials with large MR is a very good magnetic sensor that can be 
used as read head sensor for the magnetic recording device. In hard disk, the read head 
detects the change in the direction of magnetization (represents the binary data bits) 
emanating from the magnetic media and then changes its resistivity correspondingly. 
The MR effect in CMR materials are in the order of magnitude larger than the typical 
GMR that is currently used in magnetic device. Hence, this material has a greater 
sensitivity to the magnetic field and making it possible to detect smaller recorded data 
bit (White et al., 1994).

1.3.2 Magnetoresistive Random Access Memory (MRAM) 
MRAM is a non-volatile random-access memory that can retain information for a long
period of time even in the absence of electrical power. A data bit is stored in a spin valve 
which is composed of two ferromagnetic plates separated by a thin insulating layer. Both 
the ferromagnetic plates hold a magnetic field where one of the two plates is 
permanently magnetized in a particular orientation and the other plate changes its 
magnetic field according to the external field to store memory. Both data bits 1 and 0 are 
represented by the parallel and antiparallel moment in the spin valve and can be 
determined by measuring the resistance of the spin valve. Comparing with the 
conventional RAM chip technologies, MRAM records data in the form of magnetic 
moment instead of electric charge. This makes MRAM has an advantage in retaining 
their data over time and not necessary to refresh their contents. Hence, MRAM is 
expected to have much lower power consumption compared to the conventional RAM 
(Zhuang et al., 2002; Katti, 2000).

1.3.3 Speed Control Sensor in Anti-Lock Brake System (ABS) 
The CMR materials can be used as a speed control sensor to detect the rotation and 
speed of the steel disc attached to the automobiles wheel and then transferring the 
information to a computer for monitoring the rotational speed of each wheel. If the 
system detects a wheel rotating significantly slower than the others, it reduces the 
braking pressure at the detected wheel. Conversely, if the system detects a wheel 
rotating faster than the others, it increases the braking pressure at the detected wheel. 
This condition of releasing and increasing on the braking pressure allows the wheels on 
the automobile keep friction contact with the road surface while braking. Hence, it is 
able to avoid the automobiles from uncontrolled skidding and to decrease the 
automobiles braking distance (Aly et al., 2011). 

1.4 Problem Statement 
The CMR effect in the manganites is much higher than the current employing magnetic 
multi-layer system, i.e. GMR. Hence, it is prospected to increase the sensitivity of the 
magnetic sensor and to reduce the operation power required. However, the conventional 
magnetic sensor requires material which is able to operate at room temperature and low 
magnetic field. Commercialization of the CMR is discouraged because of  
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� Significant CMR in manganites appears only in a high magnetic field of several 
Tesla range, which is considered too large for the potential use in the magnetic 
recording (Dagotto et al., 2001) and 

� The CMR effect is rather low at room temperature. 

� Significant CMR effect is confined to a quite narrow temperature range around 
the TC. The CMR effect is relatively low beyond TC (Tokura and Tomioka, 1999).  

� CMR effect appears significant only when its TC temperature is at low 
temperature. High TC temperature will sacrifice the CMR effect (Dagotto et al., 
2001). 

Hence, enhancing the CMR properties of the manganite materials for utilizing in room 
temperature and low magnetic field will be the final goal for researchers.  

1.5 Scope and Objectives of the Research 
This project mainly studies the structural, electrical, magnetic and CMR properties on 
La0.67(Ca1-xSrx)0.33MnO3 manganites compounds with the x value ranging from 0 to 1.0.
Samples with two different crystalline forms were synthesized i.e. polycrystalline bulk 
and nanocrytalline manganites. The polycrystalline bulk manganites were synthesized 
via the solid state reaction which is the most common method in synthesizing various 
kind of ceramic. Nanocrystalline manganites were synthesized via the sol-gel based 
polymerizable complex method in order to confine the crystallite size down to nano-
scale. A systematic characterization was carried out upon the polycrystalline bulk and 
the nanocrystalline samples. Structural properties of these samples were investigated by 
X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Energy-Dispersive 
X-Ray Spectroscopy (EDX). While the MR effect in the manganite samples was
measured by employing the four point probe method with applied magnetic field range 
of 0 T to 1 T. The magnetization of the samples was investigated by Vibrating Sample 
Magnetometer (VSM) at room temperature and applied magnetic field ranges from 0 kG 
to 10 kG. Lastly, the experiments data obtained were analyzed and the features of both 
polycrystalline and nanocrystalline manganites samples were studied and discussed. 
Hence, the objectives of this research are:  

I. To characterize polycrystalline and nanocrystalline La0.67(Ca1-xSrx)0.33MnO3

samples synthesized by the solid state reaction and sol-gel based polymerizable 
complex method respectively.  

II. To study the effects of Strontium ions substitution at Calcium site by 
investigating and comparing the structural, electrical and magnetic properties of 
the polycrystalline and nanocrystalline samples.  

III. To find the optimum composition of both polycrystalline and nanocrystalline 
La0.67(Ca1-xSrx)0.33MnO3 for obtaining the highest MR effect at room temperature.  
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1.6 Overview of the Thesis 
In the first chapter, an introduction concerning about this project is presented. Problem 
statements regarding to the research of CMR materials are mentioned. The scope of 
project and the objectives are presented. Lastly, the overview of this thesis is given.  

In chapter 2, the histories of the CMR material will be presented. A review on the 
existing literatures related to the physical properties of CMR manganites is also given.  

In chapter 3, some theories related to the CMR material will be presented. It is important 
to understand the theories behind the CMR phenomenon so that the experimental results 
can be well interpreted.  

In chapter 4, the implemented methodology, the synthesis method adopted in this project 
will be discussed in details. Systematic characterizations are carried out. The equipments
involved in this project will be introduced and the experimental settings will also be 
provided in chapter 4.  

In chapter 5, the experimental data will be presented in the form of graphs, pictures or 
tables to give a clear and facilitated observation. The structural, magnetic and electrical 
properties of the CMR manganite samples will be discussed with respect to the analyzed 
graph, picture and table.  

Finally, in chapter 6, the conclusion of this project will be presented. The future research 
will also be suggested in this chapter.  
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