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The smart grid has modified and upgraded the existing traditional grid, these 
modifications solve lots of shortcomings of the existing traditional grid in terms of 
energy generation and utilization, it also provides a platform for researchers to ponder 
on.  Among the modifications include adaptive and computational intelligence, 
improved automation, clean energy integration, 2-way communication and energy 
flow, improved security, reliability, and end-user conveniences. The traditional grid 
approach of restoring stability when all measures are exhausted is the conventional load 
shedding way. However, this type of load shedding subject end-users connected to the 
affected bus to experience a blackout and absolute discomfort. The smart grid in its 
early quest to optimize load shedding proffer adaptive and computational schemes 
which still performs below par. Demand Side Load Management (DSLM) provides a 
better means of mitigating load shedding than the latter, it also minimizes CO2 emission 
contributed by fossil fuel turbines and maximizes energy utilization. Domestic Grid-
Friendly Appliance Controller (DG-FAC) is one of the contenders in DSLM, it 
provides support to grid stability and overcomes the bottleneck of 2-way 
communication in smart grid realization. DG-FAC manage Grid Friendly Appliance 
(GFA) loads autonomously based on frequency stability levels of the single-phase 
voltage, it also automates home surrounding security lightings control to optimum 
operational hours. The research work conducted involves design and hardware 
implementation of DG-FAC; this encompasses User Demand Response (UDR), 
frequency stability sensor and illuminance sensor as the input unit to the system and 
built on MXP connector “A” of myRIO-1900 module whereas embedded coding 
utilizing Field Programmable Gate Array (FPGA) personality of myRIO in LabVIEW 
was developed as the processing unit, and a driver circuit to Solid State Relays (SSR) 
was built on MXP connector “B”. The SSR controls the flow of supply to GFA loads 
by sending digitals signal which depends on frequency level and UDR. The design was 
simulated in LabVIEW and Multisim and then implemented on a hardware platform. 
The test result signifies that the implementation DG-FAC hardware is feasible. DG-
FAC shaves two HVAC loads in the Stage-I and three in Stage-II but cannot support 
any further after these stages. The simulation of aggregated DG-FAC of one hundred 
smart homes connected to the same bus indicates that DG-FACs can act as spin reserve 
(SR), and may provide flexible SR of 24.35% to 42.19% of active loadings between 
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Stage-I and Stage-II respectively, this will avert any conventional load shedding that 
may require shedding of active loading between 24.35% to 42.19% in similar scenario 
with little or no inconveniences by virtue flexible UDR freedom, and hence improves 
system security. The implementation of DG-FAC showcase a new paradigm of 
detecting frequency instability via LabVIEW real-time, adds to the number of few 
existing GFA controller hardware, improves GFA utilization with daily activities of 
lighting automation, and provide a platform for a flexible open-ended design utilizing 
FPGA and LabVIEW capabilities which include parallelism of executing task. 
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Grid pintar telah diubahsuai dan dinaik taraf dari grid tradisional yang sedia ada, 
dimana pengubahsuaian ini dapat mengatasi banyak kelemahan grid sedia ada dari segi 
penjanaan tenaga dan pemanfaatannya, ia juga menyediakan landasan untuk para 
penyelidik menjalankan kajian. Antara pengubahsuaian yang dilakukan termasuklah 
penyesuaian dan kecerdasan komputasi, memperbaiki automasi, persepaduan tenaga 
bersih, komunikasi dan aliran tenaga dua hala, meningkatkan tahap keselamatan, 
kebolehpercayaan, dan kemudahan untuk pengguna akhir. Grid tradisional 
menggunakan pendekatan pemulihan kestabilan apabila semua bahagian telah 
kehilangan upaya dan ini adalah merupakan pelepasan beban konvensional. 
Walaubagaimanapun, jenis pelepasan beban ini tertakluk kepada pengguna akhir yang 
berhubung dengan bas yang terjejas dan mengalami penggelapan dan ketidakselesaan 
mutlak. Di awal kajian, grid pintar adalah untuk mengoptimumkan pelepasan beban 
yang menunjukkan penyesuaian dan skim komputasi yang mana masih dilakukan 
dibawah par. Pengurusan pada sisi permintaan beban (DSLM) menyediakan cara yang 
lebih baik untuk mengurangkan pelepasan beban berbanding cara satu lagi, dan ia juga 
mengurangkan pelepasan karbon dioksida (CO2) yang disumbangkan oleh turbin bahan 
bakar fosil dan memaksimumkan penggunaan tenaga. Pengawal perkakas grid mesra 
domestik (DG-FAC) adalah salah satu pesaing dalam DSLM, ia juga menyediakan 
sokongan kepada kestabilan grid dan mengatasi masalah kesesakan komunikasi dua 
hala dalam pelaksanaan grid pintar. DG-FAC menguruskan beban perkakas grid mesra 
(GFA) secara persendirian berdasarkan pada aras kestabilan frekuensi pada voltan fasa 
tunggal, ia juga mengautomasikan kawalan lampu keselamatan di persekitaran rumah 
kepada masa operasi yang optimum. Kerja–kerja penyelidikan yang dijalankan 
melibatkan rekaanbentuk dan pembangunan perkakasan DG-FAC, ia merangkumi 
tindak balas permintaan pengguna (UDR), sensor kestabilan frekuensi dan sensor 
cahaya siang sebagai unit masukan sistem dan dibina pada penyambung MXP “A” 
pada modul myRIO-1900, manakala pengkodan menggunakan personaliti myRIO 
lapangan terpogram gerbang logika (FPGA) dalam LabVIEW dibangunkan sebagai 
unit pemprosesan, dan litar pemacu kepada geganti padat (SSR)dibina pada 
penyambung MXP “B”. SSR mengawal aliran bekalan kuasa kepada beban GFA 
dengan menghantar isyarat digital yang mana bergantung kepada aras frekuensi dan 
UDR. Rekaan tersebut disimulasi dalam perisian LabVIEW dan Multisin dan 
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direalisasikan kepada lapangan perkakasan. Keputusan ujian menunjukkan bahawa 
pelaksanaan perkakasan DG-FAC adalah wajar, DG-FAC mencukur dua beban HVAC 
semasa tahap I dan tiga pada tahap II tetapi ia tidak dapat menampung apa-apa lagi 
selepas tahap tersebut. Pengumpulan hasil simulasi DG-FAC untuk seratus buah rumah 
pintar yang dihubungkan kepada bas yang sama menunjukkan bahawa ia boleh 
bertindak sebagai cadangan putar (SR), dan boleh menyediakan SR fleksibel antara 
24.35 % sehingga 42.19 % beban aktif diantara tahap I dan tahap II setiap satu. Ini 
dapat mengelakkan berlaku pelepasan beban konvensional yang mungkin dilepaskan 
ketika bebanan aktif antara 24.35 % sehingga 42.19 % dalam senario yang sama 
dengan gangguan yang sedikit atau tiada oleh pembebasan UDR fleksibel, maka ia 
telah menambahbaik sistem keselamatan. Pelaksanaan DG-FAC menunjukkan 
paradigm baru dalam mengesan frekuensi tidak stabil melalui penggunaan LabVIEW 
masa sebenar, penambahan angka jumlah perkakasan pengawal GFA sedia ada, 
penambahbaikan penggunaan GFA dalam kehidupan harian melalui automasi 
pencahayaan, dan menyediakan lapangan untuk rekaan fleksibel terbuka menggunakan 
FPGA dan LabVIEW selari dengan kehendak tugasan.  
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CHAPTER 1 
 
 

1.INTRODUCTION 
 
 
This chapter presents the research background, targets, and objectives. It further 
highlights a general overview of the thesis on the research findings and expectations. 
The chapter aims at enhancing the reader’s knowledge towards understanding the 
research expected outcome, and why the research was conducted. 
 
 
1.1       Background of the Study 
 
The existing electrical grid system has been in existence for over a century and has 
 been serving the purpose of electrical energy generation, transmission, and distribution 
as a robust system (Solé, Rosas-Casals, Corominas-Murtra, & Valverde, 2008). 
Although the current state of art in electrical power of the 21st century is putting more 
efforts in upgrading and optimizing the existing grid system’s operation, and this new 
system is a hot topic in the area of research and is termed smart grid (Bera, Misra, & 
Rodrigues, 2015; Wang, Wang, & Liang, 2010). 
 
 

    Electrical Power and Energy Management 1.1.1
 
The electrical power grid has been the primary global source of electrical energy for 
decades and considered the robust system that ever existed in history (Cunjiang, 
Huaxun, & Lei, 2012; Solé et al., 2008). Stability, reliability, utilization and proper 
management are some of the features that lead to its robustness. This robustness feature 
perception serves as a norm in all electrical utilities and is essential for maintaining 
electrical power grid system’s stability, ensure its supply continuity, and also serve as a 
means of maximizing end-user satisfaction. With the increasing trend in population and 
technological innovations (Amer, Naaman, Sirdi, M’Sirdi, & El-Zonkoly, 2014; Coley 
& Lemon, 2009), the power demand by end-users tend towards surpassing the amount 
generated(Coley & Lemon, 2009), more especially during peak hours (Coley & Lemon, 
2009; Madani & King, 2007). Thus, in such scenario, the conventional grid has two 
measures to counteract such and similar disturbances, this includes building more 
generating stations or load shedding when necessary and after exhausting all necessary 
protective and corrective avenues for restoring stability. 
 
 
The restoration procedure includes self-adjustment of the generator’s governor to meet 
up with frequency and voltage variations in the generating stations, transformer action, 
capacitor bank operation, redundant /backup power supply, etc. (Sigrist, Egido, & 
Rouco, 2012). Load shedding serves as the last line of defense for restoring system 
stability due to fault, disturbance, loss of generation source, or any undesired 
contributions to the electrical grid that leads to undervoltage and underfrequency 
situations.  
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The load shedding of affected buses is triggered by deviations below a nominal 
threshold values for either frequency or voltage leading to underfrequency or 
undervoltage respectively (Hooshmand & Moazzami, 2012; Hoseinzadeh, Faria, & 
Silva, 2014; Tang, Liu, Ponci, & Monti, 2013), these two types of load shedding are 
accepted global means for measuring instability of generation against the demand of 
electrical power systems (Ye Li et al., 2014). Conventional load shedding is a welcome 
idea by utilities since it proffers immediate solution to instability, thereby protecting the 
system from a total failure and damages due to system overloading or imbalance. 
However, it is not a welcome idea for the affected end-users connected to the disturbed 
bus, this causes an absolute denial of the power supply during the disturbance period, 
leading to consequences of 100% discomfort and several losses. The mode of operation 
of conventional load shedding may be seen as injustice because the affected end-users 
are disconnected from the power supply even though they are willing to pay for 
services at all times. Whereas other end-users connected to the unaffected buses, enjoy 
full power supply 
 
 
The shortcomings of the current grid drive researchers to opt for a better grid 
performance. This challenge gives rise to the evolution of future grid otherwise known 
as the smart grid; the smart grid refer to as an intelligent power system model that 
provide solutions to the challenges faced by the conventional grid. It integrates 
information and communication technology (ICT), intelligence, automation, efficient 
energy utilization, efficient energy management, efficient green energy generation, 
reduction of greenhouse gasses, etc. (I. Khan et al., 2013; Shirazi & Jadid, 2015). 
Unlike in the conventional grid, where only utility is responsible for maintaining 
system stability and reliability, the smart grid platform enables end-users to contribute 
their quota to ensuring the stability of the grid. This includes Demand Response (DR), 
Grid Friendly Appliance (GFA), Home Energy Management (HEM), Smart Load 
shaving (SLS) at end-users’ domain, etc. which act as Spinning Reserves (SR). 
 
 
Renewable Energy Resources (RES) injection to the grid and load-shifting toOff-Peak 
periods also contribute to maintaining grid stability. However, all these aspects are 
lagging in the conventional grid system. These smart home features mitigate the impact 
of conventional load shedding via load shaving that averts load shedding to an extent, 
this act invariably increases the comfort zone of end-users via load shaving house 
demand with little or no discomfort during disturbance situations. 
 
 
The research findings of this work focus on hardware realization of versatile improved 
Domestic Grid-Friendly Appliance Controller (DG-FAC). However, the question is: 
what is DG-FAC and how does it operate? 
 
 
DG-FAC is an autonomous hardware system installed in a smart home for the purpose 
of enhancing grid stability and mitigating traditional load shedding effect with SLS. 
The target is achievable by maximizing end-user convenience with a flexible and easy-
to-use UDR provision that is accessible to the end-user for selection of GFA of choice 
to be turned OFF when the need arises. It also turns ON the GFA supply when the 
system stabilizes. 
DG-FAC is a decentralized controller that detects system’s stability threat by sensing 
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3 

 

frequency deterioration from nominal set-threshold (underfrequency), this frequency 

deviation is perceived as DR to restore system’s stability. Therefore, the DG-FAC 

perform adaptive load shaving while considering end-user load priorities and also 

restore the load in two stages based on system frequency states. Since disturbance 

rarely occurs on robust systems with large operating reserves, the DG-FAC will be 

redundant most of the times. Hence, Home Energy Management (HEM) component of 

outdoor lighting automation is incorporated to maximize DG-FAC with daily activities 

of lighting automation, this optimizes the operation time and hence reduces 

unnecessary electricity consumption. 

 

 

      An Overview of Smart Grid Topology 1.1.2

 

The Smart Grid is the state-of-art electrical grid network, it has advanced and improved 

features over the conventional grid that includes the 2-way flow of energy and 2-way 

flow of communication between utility and end users. It upgrades the existing electrical 

grid with more renewable energy sources (RES) and efficient way of maximizing the 

available energy in all its domains. Figure 1.1 shows a typical basic topology of a smart 

grid network (von Dollen, 2009). 

 

 

 
 

Figure 1.1: Typical topology of smart grid network 

 

 
A typical smart grid has eight domains, the interconnection of flow of energy and 

communication between the eight domains and also an additional domain of DER is 

shown in Figure 1.1, and the brief role of each of these domains forming smart grid 

network is stated in Table 1.1. Each domain has a primary role to perform in the 

network and considered as a vital component forming the network. 
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1.2 Problem Statement 
 
The ratio of demand to generation is growing in favor of demand (Aponte, Member, & 
Nelson, 2006; Tsado, Lund, & Gamage, 2014) due development and addition of new 
end-users (V. C. Gungor et al., 2011). This may lead to peak loading and imbalance 
thereby subjecting electrical grid to instability (Amer et al., 2014). Majority of 
Conventional grid systems employ coal and gas generating stations in generating 
electrical energy, this type generating stations contributes the highest quota in electric 
power production (Y. Chang, Huang, Ries, & Masanet, 2015; W. Han, Jin, & Lin, 
2011), and are considered as some of the major contributors to air pollution via CO2 
emission and also increases global warming (Varaiya, Wu, & Bialek, 2011). 
 
 

Table 1.1: Smart grid domains 
 
S/N Domain Role in the grid network 

 
1 

Generation 
Substation 

 
Primary source of electricity generation to the grid 

 
2 

 
Transmission 

Substation 

 
Receives electricity from generating station and 

transmits to distribution stations 
 

3 Distribution 
Substation 

Receives electricity from transmission station and 
distributes to end user 

 
4 DER Secondary source of electricity generation to the 

grid via RES 
 

5 End Users Consumers of electricity and some cases tertiary 
sources of electricity generation to the grid  

 
6 Service 

Providers 
Organization(s) that are responsible for providing 

services such as the internet to Utility and end-
users  

 
7 Control 

Center  
Manages the flow of electricity in the grid network 
 

8 Market These are operators and participants that That  
interact with dynamic prices to control supply vs. 

demand curve. 
Source: (von Dollen, 2009) 
 
 
The existing electrical grid system resorts to load shedding as the last shedding action 
leads to 0% power supply, 100% end-user discomfort regarding electricity supply and 
lots of losses. Meanwhile, the domestic end-users would have contributed in the DSLM 
if considered. However, existing electricity grid has DSLM programs only for medium 
voltage end-users such as industries and commercial settings and reward them with 
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incentives and rebates to DSLM whereas the domestic consumer is deprived of these 
benefits (A. A. A. Khan et al., 2015). 
 
 
The evolution of smart grid initiatives seems to provide a solution to this challenges, 
but its dependence on 2-way communication may be hampered by significant 
disturbances, signal interference, and signal attenuation such as natural disasters or 
communication failure (V. C. V. C. Gungor et al., 2011). Hence, the need for a system 
that can detect disturbance without reliance on 2-way communication is essential. In 
the quest for smart grid realization, the transformation of the existing grid components 
by upgrading them to be smart grid compliant will minimize cost of smart grid 
realization while compl 
 
 
 The end-users in the smart home are vying for the more robust power system, better 
means of saving electrical and physical energy at homes via increase home automation 
while retaining their comfort level and priorities at all times (Anvari-Moghaddam, 
Monsef, & Rahimi-Kian, 2015). 
 
 
1.3      Objectives of the Study 
 
Main: 
 

i. To design DG-FAC with UDR capable of performing autonomous 
underfrequency load shaving with little or no end-user discomfort. 

ii. To develop and implement the hardware of the DG-FAC system. 
 

Sub:  
To design and implement an autonomous smart home outdoor lighting control 
system and be integrated into the DG-FAC. 
 
 

1.4       Scope and Limitation of Research  
 

i. The DG-FAC is designed and developed for domestic application only. 
ii. The DG-FAC is designed to accommodate single phase, 230VAC, 50Hz from 

a single phase supply. 
iii. The DG-FAC is designed to carry loads rated between 1hp – 6hp and not 

exceeding 80A capacity. 
iv. The DG-FAC act as a load supply controller and not a circuit breaker 

 
 
1.5      Hypothesis 
 

i. DG-FAC improves grid system stability by turning OFF individual loads when 
the grid system is subjected to disturbance. The DG-FAC also restores loads to 
ON state when the system stabilizes autonomously. 

ii. The UDR increases end-user comfort zone and flexibility of load shaving 
based on preferred loads of choice at any time to a large extent. 
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iii. The smart home autonomous outdoor lighting control saves the end-user 
energy of controlling lights and reduces electricity bill due to negligence or 
oversight in turning OFF lights at an optimal time. 

 
1.6      Contributions to Knowledge 
 

i. The new paradigm of detecting power instability via automatic 
underfrequency sensor using LabVIEW coding. 

ii. Hardware development of DG-FAC whereas the majority of the previous 
findings bases on simulations only (Bao & Li, 2014).  

iii. Versatile GFA with the aid of FPGA enables the design to be open-ended and 
flexible, and the incorporation of autonomous security light control maximizes 
the GFA utilization. 

 
 
1.7      Organization of Thesis 
 
This Thesis encompasses of five chapters. Chapter 2 review relevant finding in related 
research areas and their contributions to the field of study. Chapter 3 analyzes the 
stages of the design and development of DG-FAC including the software and the 
hardware aspects. Chapter 4 discuss the result obtained, and Chapter 5 concludes with 
the overall findings, recommends on possible ways of furthering the research to 
enhance its quality, ensure its continuity and transparency as well. 
 
 
1.8      Summary 
 
This chapter aims at introducing the essence of performing the research in context to 
existing findings and also its importance, it further gives an insight of the target set and 
the expected result to solve existing problems, as well as measures on how to improve 
power stability and reliability in the smart grid way. Meanwhile, the design limitations 
elaborate more on expected product; DG-FAC is hypothesized to give the end-user of 
electrical energy a more comfortable lifestyle with economic benefits. The layout set 
for achieving the set target was also discussed in this section. An overview of typical 
smart grid structure was further illustrated to show a clear picture of the future 
electrical grid directions. 
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